首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antioxidant activities of isoorientin-6″-O-glucoside were studied using various models. Isoorientin-6″-O-glucoside was more potent than Trolox, probucol and butylated hydroxytoluene (BHT) in reducing the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). It also scavenged superoxide anion, peroxyl and hydroxyl radicals that were generated by xanthine/xanthine oxidase, 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) and Fe3+–ascorbate–EDTA–H2O2 system, respectively. The IC50 value, stoichiometry factor and second-order rate constant were 9.0 ± 0.8 μM, 1.8 ± 0.1 and 2.6 × 1010 M−1 s−1 for superoxide generation, peroxyl and hydroxyl radicals. However, isoorientin-6″-O-glucoside did not inhibit xanthine oxidase activity or scavenge hydrogen peroxide (H2O2), carbon radical or 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN)-derived peroxyl radical in hexane. Isoorientin-6″-O-glucoside inhibited Cu2+-induced oxidation of human low-density lipoprotein (LDL) as measured by fluorescence intensity, thiobarbituric acid-reactive substance formation and electrophoretic mobility. Since isoorientin-6″-O-glucoside did not possess pro-oxidant activity, it may be an effective water-soluble antioxidant that can prevent LDL against oxidation.  相似文献   

2.
The capacity of urocanic acid to interact with peroxyl radicals has been evaluated in several systems: oxidation in the presence of a free radical source (2,2'-azobis(2-amidinopropane; AAPH), protection of phycocyanin bleaching elicited by peroxyl radicals, and Cu(II)- and AAPH-promoted LDL oxidation. The results indicate that both isomers (cis and trans) are mild peroxyl radical scavengers. For example, trans-urocanic acid is nearly 400 times less efficient than Trolox in the protection of the peroxyl radical promoted bleaching of phycocyanin. Regarding the removal of urocanic acid by peroxyl radicals, nearly 100 muM trans-urocanic acid is required to trap half of the produced radicals under the employed conditions (10 mM AAPH, 37 degrees C). Competitive experiments show that the cis-isomer traps peroxyl radicals 30% less efficiently than the trans-isomer. Given the high concentrations that trans-urocanic acid reaches in skin, its capacity to trap peroxyl radicals could contribute to the protection of the tissue towards ROS-mediated processes. Furthermore, both isomers, and particularly the cis-isomer, protect LDL from Cu(II)-induced oxidation.  相似文献   

3.
Ho SC  Chiu SJ  Hu TM 《Free radical research》2012,46(10):1190-1200
Abstract To study oxidative stress in biological systems, chemical compounds capable of producing free radicals have been widely used. Here, we compared two free-radical generators, 3-morpholinosydnonimine (SIN-1) and 2,2'-azo-bis(2-amidinopropane) hydrochloride (AAPH), by measuring the thiol oxidation kinetics of various thiols. We found that SIN-1 is >?30 times potent in causing thiol oxidation than AAPH. Kinetic simulations revealed that in the SIN-1 system (0.1 mM), superoxide, nitrogen dioxide and carbonate radicals are the major reactive species which, in combination, induce ~50% of thiol molecules to undergo one-electron oxidation, thereby forming the thiyl radical which propagates further thiol oxidation by direct coupling with thiolates. Similarly, the alkyl peroxyl radical derived from AAPH (3 mM) initiates comparable extent of one-electron oxidation and formation of the thiyl radical. In conclusion, our study provides experimental and theoretical evidence that SIN-1 is mainly an one-electron oxidizing agent that can be functionally mimicked by AAPH.  相似文献   

4.
《Free radical research》2013,47(10):1190-1200
Abstract

To study oxidative stress in biological systems, chemical compounds capable of producing free radicals have been widely used. Here, we compared two free-radical generators, 3-morpholinosydnonimine (SIN-1) and 2,2′-azo-bis(2-amidinopropane) hydrochloride (AAPH), by measuring the thiol oxidation kinetics of various thiols. We found that SIN-1 is >?30 times potent in causing thiol oxidation than AAPH. Kinetic simulations revealed that in the SIN-1 system (0.1 mM), superoxide, nitrogen dioxide and carbonate radicals are the major reactive species which, in combination, induce ~50% of thiol molecules to undergo one-electron oxidation, thereby forming the thiyl radical which propagates further thiol oxidation by direct coupling with thiolates. Similarly, the alkyl peroxyl radical derived from AAPH (3 mM) initiates comparable extent of one-electron oxidation and formation of the thiyl radical. In conclusion, our study provides experimental and theoretical evidence that SIN-1 is mainly an one-electron oxidizing agent that can be functionally mimicked by AAPH.  相似文献   

5.
Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2' azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by beta-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

6.
Abstract

Studies on plasma and cells exposed to hydroxyl and peroxyl radicals have indicated that there are few inhibitors of protein hydroperoxide formation. We have, however, observed a small variable lag period during bovine serum albumin (BSA) oxidation by 2-2′ azo-bis-(2-methyl-propionamidine) HCl (AAPH) generated peroxyl radicals, where no protein hydroperoxide was formed. The addition of free cysteine to BSA during AAPH oxidation also produced a lag phase suggesting protein thiols could inhibit protein hydroperoxide formation. The selective reduction of thiols on BSA by β-mercaptoethanol treatment caused the appearance of a lag period where no protein hydroperoxide was formed during the AAPH mediated oxidation. Increasing free thiol concentration on the BSA increased the lag period. Protein hydroperoxide formation began when the protein thiol concentration dropped below one thiol per BSA molecule. It is unlikely that the lag period is due to gross structural alteration of the reduced protein since blocking the free thiols with N-ethyl maleimide eliminated the lag in protein hydroperoxide formation. Protein thiols were found to be ineffective in inhibiting hydroxyl radical-mediated protein hydroperoxide formation during X-ray radiolysis. Evidence is given for protein thiol oxidation occurring via a free radical mediated chain reaction with both free cysteine and protein bound thiol. The data suggest that reduced protein thiol groups can inhibit protein hydroperoxide formation by scavenging peroxyl radicals.  相似文献   

7.
Abstract

The capacity of urocanic acid to interact with peroxyl radicals has been evaluated in several systems: oxidation in the presence of a free radical source (2,2′-azobis(2-amidinopropane; AAPH), protection of phycocyanin bleaching elicited by peroxyl radicals, and Cu(II)- and AAPH-promoted LDL oxidation. The results indicate that both isomers (cis and trans) are mild peroxyl radical scavengers. For example, trans-urocanic acid is nearly 400 times less efficient than Trolox in the protection of the peroxyl radical promoted bleaching of phycocyanin. Regarding the removal of urocanic acid by peroxyl radicals, nearly 100 μM trans-urocanic acid is required to trap half of the produced radicals under the employed conditions (10 mM AAPH, 37°C). Competitive experiments show that the cis-isomer traps peroxyl radicals ~30% less efficiently than the trans-isomer. Given the high concentrations that trans-urocanic acid reaches in skin, its capacity to trap peroxyl radicals could contribute to the protection of the tissue towards ROS-mediated processes. Furthermore, both isomers, and particularly the cis-isomer, protect LDL from Cu(II)-induced oxidation.  相似文献   

8.
Oxygen radical generation in the xanthine- and NADH-oxygen reductase reactions by xanthine oxidase, was demonstrated using the ESR spin trap 5,5'-dimethyl-1- pyrroline-N-oxide. No xanthine-dependent oxygen radical formation was observed when allopurinol-treated xanthine oxidase was used. The significant superoxide generation in the NADH-oxygen reductase reaction by the enzyme was increased by the addition of menadione and adriamycin. The NADH-menadione and -adriamycin reductase activities of xanthine oxidase were assessed in terms of NADH oxidation. From Lineweaver-Burk plots, the Km and Vmax of xanthine oxidase were estimated to be respectively 51 microM and 5.5 s-1 for menadione and 12 microM and 0.4 s-1 for adriamycin. Allopurinol-inactivated xanthine oxidase generates superoxide and OH.radicals in the presence of NADH and menadione or adriamycin to the same extent as the native enzyme. Adriamycin radicals were observed when the reactions were carried out under an atmosphere of argon. The effects of superoxide dismutase and catalase revealed that OH.radicals were mainly generated through the direct reaction of H2O2 with semiquinoid forms of menadione and adriamycin.  相似文献   

9.
Free radical scavenging efficiency of Nano-Se in vitro   总被引:6,自引:0,他引:6  
In this study, we showed that smaller size particles of Nano-Se have better scavenging effects on the following free radicals: carbon-centered free radicals (R*) generated from 2,2'-azo-bis-(2-amidinopropane) hydrochloride (AAPH), the relatively stable free radical 1,1-diphenyl-2-picryhydrazyl (DPPH), the superoxide anion (O2*-) generated from the xanthine/xanthine oxidase (X/XO) system, singlet oxygen (1O2) generated by irradiated hemoporphyrin. Furthermore, the three sizes of Nano-Se studied also show protective effects against the oxidation of DNA. The three samples all have potential size-dependent characteristics on scavenging the free radicals. Although in this study we regarded Nano-Se as a whole without considering interactions between BSA and the red selenium nano-particles, there is the possibility that the apparent free radical scavenging effects may be partially contributed by such interactions.  相似文献   

10.
The oxidative formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA is closely associated with the induction of degenerative diseases, including cancer. However, the oxidant species participating in the formation of 8-OHdG has yet to be fully clarified. On the basis that peroxyl radicals are a strong candidate for this species, we employed 2,2'-azobis(2-amidinopropane) (AAPH) as a peroxyl radical generator. Exposure of calf thymus DNA to AAPH formed 8-OHdG, but the exposure of 2'-deoxyguanosine (dG) alone did not. From the exposure of various combinations of nucleotides, 8-OHdG was formed only in the presence of dG and thymidine (dT). A mix of dG with an oxidation product of dT, 5-(hydroperoxymethyl)-2'-deoxyuridine, produced 8-OHdG, but the amount formed was small. In contrast, 8-OHdG was produced abundantly by the addition of dG to peroxidized dT with AAPH. Thus, the formation of 8-OHdG was mediated by the peroxidized dT. Instead of artificial AAPH, endogenous peroxyl radicals are known to be lipid peroxides, which are probably the oxidant species for 8-OHdG formation mediated by thymidine in vivo.  相似文献   

11.
The recently discovered peroxyl radical scavenging properties of plasmalogen phospholipids led us to evaluate their potential interactions with alpha-tocopherol. The oxidative decay of plasmalogen phospholipids and of polyunsaturated fatty acids as induced by peroxyl radicals (generated from 2,2'-azobis-2-amidinopropane hydrochloride; AAPH) was studied in micelles using 1H-NMR and chemical analyses. In comparison with alpha-tocopherol, a 20- to 25-fold higher concentration of plasmalogen phospholipids was needed to induce a similar inhibition of peroxyl radical-mediated oxidation of polyunsaturated fatty acids. Plasmalogen phospholipids and alpha-tocopherol protected each other from oxidative degradation. In low-density lipoproteins (LDL) and micelles supplemented with plasmalogen phospholipids plus alpha-tocopherol, the peroxyl radical-promoted oxidation was additively diminished. The differences in the capacities to inhibit oxidation processes induced by peroxyl radicals between the plasmalogen phospholipids and alpha-tocopherol were less pronounced in the LDL particles than in the micelles. In conclusion, plasmalogen phospholipids and alpha-tocopherol apparently compete for the interaction with the peroxyl radicals. Oxidation processes induced by peroxyl radicals are inhibited in an additive manner in the presence of the two radical scavengers. The contribution of the plasmalogen phospholipids to the protection against peroxyl radical promoted oxidation in vivo is expected to be at least as important as that of alpha-tocopherol.  相似文献   

12.
The reaction of xanthine and xanthine oxidase generates superoxide and hydrogen peroxide. In contrast to earlier works, recent spin trapping data (Kuppusamy, P., and Zweier, J.L. (1989) J. Biol. Chem. 264, 9880-9884) suggested that hydroxyl radical may also be a product of this reaction. Determining if hydroxyl radical results directly from the xanthine/xanthine oxidase reaction is important for 1) interpreting experimental data in which this reaction is used as a model of oxidant stress, and 2) understanding the pathogenesis of ischemia/reperfusion injury. Consequently, we evaluated the conditions required for hydroxyl radical generation during the oxidation of xanthine by xanthine oxidase. Following the addition of some, but not all, commercial preparations of xanthine oxidase to a mixture of xanthine, deferoxamine, and either 5,5-dimethyl-1-pyrroline-N-oxide or a combination of alpha-phenyl-N-tert-butyl-nitrone and dimethyl sulfoxide, hydroxyl radical-derived spin adducts were detected. With other preparations, no evidence of hydroxyl radical formation was noted. Xanthine oxidase preparations that generated hydroxyl radical had greater iron associated with them, suggesting that adventitious iron was a possible contributing factor. Consistent with this hypothesis, addition of H2O2, in the absence of xanthine, to "high iron" xanthine oxidase preparations generated hydroxyl radical. Substitution of a different iron chelator, diethylenetriaminepentaacetic acid for deferoxamine, or preincubation of high iron xanthine oxidase preparations with chelating resin, or overnight dialysis of the enzyme against deferoxamine decreased or eliminated hydroxyl radical generation without altering the rate of superoxide production. Therefore, hydroxyl radical does not appear to be a product of the oxidation of xanthine by xanthine oxidase. However, commercial xanthine oxidase preparations may contain adventitious iron bound to the enzyme, which can catalyze hydroxyl radical formation from hydrogen peroxide.  相似文献   

13.
We investigated the in vitro effect of 3-hydroxykynurenine (3HKyn), 3-hydroxyanthranilic acid (3HAA), kynurenine (Kyn) and anthranilic acid (AA) on various parameters of oxidative stress in rat cerebral cortex and in cultured C6 glioma cells. It was demonstrated that 3HKyn and 3HAA significantly reduced the thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence measurements in rat cerebral cortex, indicating that these metabolites prevent lipid peroxidation in the brain. In addition, GSH spontaneous oxidation was significantly prevented by 3HAA, but not by the other kynurenines in cerebral cortex. We also verified that 3HKyn and 3HAA significantly decreased the peroxyl radicals induced by the thermolysis of 2,2'-azo-bis-(2-amidinopropane)-derived peroxyl radicals, and to a higher degree than the classical peroxyl scavenger trolox. 2-Deoxy-d-ribose degradation was also significantly prevented by 3HKyn, implying that this metabolite was able to scavenge hydroxyl radicals. Furthermore, the total antioxidant reactivity of C6 glioma cells was significantly increased when these cells were exposed from 1 to 48h to 3HKyn, being the effect more prominent at shorter incubation times. TBA-RS values in C6 cells were significantly reduced by 3HKyn when exposed from 1 to 6h with this kynurenine. However, C6 cell morphology was not altered by 3HKyn. Finally, we tested whether 3HKyn could prevent the increased free radical production induced by glutaric acid (GA), the major metabolite accumulating in glutaric acidemia type I, by evaluating the isolated and combined effects of these compounds on TBA-RS levels and 2',7'-dihydrodichlorofluorescein (DCFH) oxidation in rat brain. GA provoked a significant increase of TBA-RS values and of DCFH oxidation, effects that were attenuated and fully prevented, respectively, by 3HKyn. The results strongly indicate that 3HKyn and 3HAA behave as antioxidants in cerebral cortex and C6 glioma cells from rats.  相似文献   

14.
C G Eriksson  P Eneroth 《Steroids》1990,55(8):366-372
The generation of 6-oxygenated (6 beta-hydroxy, 6 beta-hydroperoxy, and 6-oxo) progesterone derivatives during the hydrolysis of progesterone-3-ethanolimine has been shown to be increased in the presence of xanthine/xanthine oxidase. The combination of xanthine/xanthine oxidase with other enzymes and/or reagents that catalyze transformation (or formation) of oxygen radicals suggested that the most likely oxygen species participating in the 6-oxygenation was the protonated acid of the superoxide anion, i.e., the hydroperoxy radical. The suggestion was further supported by experiments with oxygen scavengers. However, the data presented do not rule out a radical propagation reaction since the steroid compound used may be more reactive than the scavengers tested. A stimulation of 6-oxygenation of progesterone-3-ethanolimine by NADPH-supplemented rat liver microsomes was found. This reaction was inhibited by the only oxygen scavenger (reduced glutathione) found to be effective in the xanthine/xanthine oxidase experiments. The similarities between the two oxygenation systems may implicate a mechanism for 6 beta-hydroperoxidation of 3-oxo-4-ene steroids in rat liver microsomes.  相似文献   

15.
Quantitation of intracellular oxidation in a renal epithelial cell line   总被引:3,自引:0,他引:3  
We quantitated the presence of intracellular oxidizing species in response to oxidative stimuli using fluorescent cell analytic techniques. The studies were performed with a laser-activated flow cytometry system using 2',7'-dichlorofluorescin diacetate (DCFDA) as a probe for intracellular oxidation events. Oxygen radical formation was initiated by the addition of FeCl2 or xanthine oxidase to the culture media. Xanthine oxidase and FeCl2 both increased intracellular DCFDA oxidation over control (p less than .001). Increases in intracellular DCFDA oxidation in response to xanthine oxidase exposure were inhibited by extracellular superoxide dismutase, catalase and dimethyl sulfoxide (p less than 0.001), implicating the superoxide anion, hydrogen peroxide, and the hydroxyl radical in producing the changes in intracellular dichlorofluorescein fluorescence. Increases in intracellular DCFDA oxidation in response to xanthine oxidase correlated with loss of cellular viability, as established by decreased plating efficiency. We conclude that relative intracellular oxidation can be quantitated within the cultured renal cell and that some extracellularly generated radicals may be capable of traversing the intact cell membrane to oxidize DCFDA in the cell interior.  相似文献   

16.
Nitroxides are cell-permeable stable radicals that protect biomolecules from oxidative damage in several ways. The mechanisms of protection studied to date include removal of superoxide radicals as SOD-mimics, oxidation of transition metal ions to preempt the Fenton reaction, and scavenging carbon-centered radicals. However, there is no agreement regarding the reaction of piperidine nitroxides with peroxyl radicals. The question of whether they can protect by scavenging peroxyl radicals is important because these radicals are formed in the presence of oxygen abundant in biological tissues. To further our understanding of the antioxidative behavior of piperidine nitroxides, we studied their effect on biochemical systems exposed to the water soluble radical initiator 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH). AAPH thermally decomposes to yield tert-amidinopropane radicals (t-AP(*)) that readily react with oxygen to form peroxyl radicals (t-APOO(*)). It has recently been reported that piperidine nitroxides protect plasmid DNA from t-AP(*) though not from t-APOO(*). The present study was directed at the question of whether these nitroxides can protect biological systems from damage inflicted by peroxyl radicals. The reaction of nitroxides with AAPH-derived radicals was followed by cyclic voltammetry and electron paramagnetic resonance spectroscopy, whereas the accumulation of peroxide was iodometrically assayed. Assaying DNA damage in vitro, we demonstrate that piperidine nitroxides protect from both t-AP(*) and t-APOO(*). Similarly, nitroxides inhibit AAPH-induced enzyme inactivation. The results indicate that piperidine nitroxides protect the target molecule by reacting with and detoxifying peroxyl radicals.  相似文献   

17.
We examined by using 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) as a radical generator the ability of estrogens to scavenge carbon-centered and peroxyl radicals. Electron spin resonance signals of carbon-centered radicals from AAPH were diminished by catecholestrogens but not by phenolic estrogens, showing that catecholestrogens efficiently scavenged carbon-centered radicals. However, fluorescent decomposition of R-phycoerythrin by AAPH-derived peroxyl radicals was inhibited by catecholestrogens and phenolic estrogens. Evidently, peroxyl radicals were scavenged by catecholestrogens and by phenolic estrogens. However, the scavenging ability of 4-hydroxyestradiol was less than 2-hydroxyestradiol. Strand break of DNA induced by AAPH was inhibited by catecholestrogens, but not by phenolic estrogens under aerobic and anaerobic conditions. Inactivation of lysozyme induced by AAPH was completely blocked by 2-hydroxyestradiol under aerobic and anaerobic conditions, and by 4-hyroxyestradiol only under anaerobic conditions. Peroxidation of arachidonic acid by AAPH was strongly inhibited by catecholestrogens at low concentrations. Only large amounts of phenolic estrogens markedly inhibited lipid peroxidation. These results show that catecholestrogens were antioxidant against AAPH-induced damage to biological molecules through scavenging both carbon-centered and peroxyl radicals, but phenolic estrogens partially inhibited AAPH-induced damage because they scavenged only peroxyl radicals.  相似文献   

18.
The formation of reactive oxygen intermediates (ROI) during redox cycling of newly synthesized potential antitumor 2,5-bis (1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives has been studied by assaying the production of ROI (superoxide, hydroxyl radical, and hydrogen peroxide) by xanthine oxidase in the presence of BABQ derivatives. At low concentrations (< 10 microM) some BABQ derivatives turned out to inhibit the production of superoxide and hydroxyl radicals by xanthine oxidase, while the effect on the xanthine-oxidase-induced production of hydrogen peroxide was much less pronounced. Induction of DNA strand breaks by reactive oxygen species generated by xanthine oxidase was also inhibited by BABQ derivatives. The DNA damage was comparable to the amount of hydroxyl radicals produced. The inhibiting effect on hydroxyl radical production can be explained as a consequence of the lowered level of superoxide, which disrupts the Haber-Weiss reaction sequence. The inhibitory effect of BABQ derivatives on superoxide formation correlated with their one-electron reduction potentials: BABQ derivatives with a high reduction potential scavenge superoxide anion radicals produced by xanthine oxidase, leading to reduced BABQ species and production of hydrogen peroxide from reoxidation of reduced BABQ. This study, using a unique series of BABQ derivatives with an extended range of reduction potentials, demonstrates that the formation of superoxide and hydroxyl radicals by bioreductively activated antitumor quinones can in principle be uncoupled from alkylating activity.  相似文献   

19.
Effects of oxygen radicals on substrate oxidation by cardiac myocytes   总被引:1,自引:0,他引:1  
Freshly isolated adult rat heart cells were used to study the effects of oxygen-free radicals on the myocardial oxidation of different substrates. The calcium-tolerant quiescent cells were incubated with xanthine plus xanthine oxidase as the source of free radicals. The oxidation of exogenous glucose, lactate and octanoate was severely inhibited (approx. 70%) by products of xanthine oxidase activity. Superoxide dismutase plus catalase effectively prevented the inhibition of oxidation. Cellular high energy phosphate levels were decreased in the presence of the oxygen free radical generating system although cell viability determined by Trypan blue exclusion and light microscopic assessment of normal morphology was not affected. These data suggest that oxygen free radicals decrease myocardial substrate oxidation which may contribute to the functional and ultrastructural changes in the myocardium under conditions such as reoxygenation after hypoxia and reperfusion after ischemia.  相似文献   

20.
In the presence of Fe-3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1, 3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. The results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe-3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe-2+ by oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号