首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Rat brain cytosolic and mitochondrial hexokinase activities were undetectable without added divalent cations. Mg2+ activated cytosolic (K0.5 of Mg2+ = 343 +/- 13 microM) and mitochondrial (K0.5 of Mg2+ = 183 +/- 8 microM) hexokinase in a concentration-related manner. The corresponding values for Mn2+ were 702 +/- 99 and 413 +/- 21 microM respectively. Ca2+, however, activated both forms of hexokinase poorly. In the presence of Mg2+, both Mn2+ and Cu2+ were more potent inhibitors of cytosolic hexokinase than mitochondrial hexokinase, whereas the inhibition of Cd2+ and Ca2+ did not show such selectivity. These results demonstrate that brain mitochondrial and cytosolic hexokinases differ significantly in their responses to divalent cations.  相似文献   

2.
Calmodulin has been shown to stimulate the initial rates of Ca2+-uptake and Ca2+-ATPase in cardiac sarcoplasmic reticulum, when it is present in the reaction assay media for these activities. To determine whether the stimulatory effect of calmodulin is mediated directly through its interaction with the Ca2+-ATPase, or indirectly through phosphorylation of phospholamban by an endogenous protein kinase, two approaches were taken in the present study. In the first approach, the effects of calmodulin were studied on a Ca2+-ATPase preparation, isolated from cardiac sarcoplasmic reticulum, which was essentially free of phospholamban. The enzyme was preincubated with various concentrations of calmodulin at 0 degrees C and 37 degrees C, but there was no effect on the Ca2+-ATPase activity assayed over a wide range of [Ca2+] (0.1-10 microM). In the second approach, cardiac sarcoplasmic reticulum vesicles were prephosphorylated by an endogenous protein kinase in the presence of calmodulin. Phosphorylation occurred predominantly on phospholamban, an oligomeric proteolipid. The sarcoplasmic reticulum vesicles were washed prior to assaying for Ca2+ uptake and Ca2+-ATPase activity in order to remove the added calmodulin. Phosphorylation of phospholamban enhanced the initial rates of Ca2+-uptake and Ca2+-ATPase, and this stimulation was associated with an increase in the affinity of the Ca2+-pump for calcium. The EC50 values for calcium activation of Ca2+-uptake and Ca2+-ATPase were 0.96 +/- 0.03 microM and 0.96 +/- 0.1 microM calcium by control vesicles, respectively. Phosphorylation decreased these values to 0.64 +/- 0.12 microM calcium for Ca2+-uptake and 0.62 +/- 0.11 microM calcium for Ca2+-ATPase. The stimulatory effect was associated with increases in the apparent initial rates of formation and decomposition of the phosphorylated intermediate of the Ca2+-ATPase. These findings suggest that calmodulin regulates cardiac sarcoplasmic reticulum function by protein kinase-mediated phosphorylation of phospholamban.  相似文献   

3.
Calcium transport across the basolateral membranes of the enterocyte represents the active step in calcium translocation. This step occurs by two mechanisms, an ATP-dependent pump and a Ca2+/Na+ exchange process. These studies were designed to investigate these two processes in jejunal basolateral membrane vesicles (BLMV) of the spontaneously hypertensive rats (SHR) and their genetically matched controls, Wistar-Kyoto (WKY) rats. The ATP-dependent calcium uptake was stimulated several-fold compared with no ATP condition in both SHR and WKY, but no differences were noted between rate of calcium uptake in SHR and WKY. Kinetics of ATP-dependent calcium uptake at concentrations between 0.01 and 1.0 microM revealed a Vmax of 0.67 +/- 0.03 nmol/mg protein/20 sec and a Km of 0.2 +/- 0.03 microM in SHR and Vmax of 0.69 +/- 0.12 and a Km of 0.32 +/- 0.14 microM in WKY rats. Ca2+/Na+ exchange in jejunal BLMV of SHR and WKY was investigated in two ways. First, sodium was added to the incubation medium (cis-Na+). Second, Ca2+ efflux from BLMV was studied in the presence of extravesicular Na+ (trans-Na+). Both studies suggest a decreased exchange of calcium and Na+. Kinetic parameters of Na(+)-dependent Ca2+ uptake at concentrations between 0.01 and 1.0 microM exhibited Vmax of 0.05 +/- 0.01 nanmol/mg protein/5 sec and a Km of 0.21 +/- 0.13 microM in SHR and Vmax of 0.11 +/- 0.02 nanmol/mg protein/5 sec and a Km of 0.09 +/- 0.05 in WKY, respectively. These results confirm that the intestinal BLMV of SHR and WKY rats have two mechanisms for calcium extrusion, an ATP-dependent Ca2+ transport process and a Na+/Ca2+ exchange process. The ATP-dependent process appears to be functional in SHR; however, the Ca2+/Na+ exchange mechanism appears to have a marked decrease in its maximal capacity. These findings suggest that calcium extrusion via Ca2+/Na+ is impaired in the SHR, which may lead to an increase in intracellular calcium concentration. These findings may have relevance to the development of hypertension.  相似文献   

4.
Spermine. A regulator of mitochondrial calcium cycling   总被引:9,自引:0,他引:9  
Steady-state free Ca2+ concentrations have been measured with a Ca2+ electrode using suspensions of isolated rat liver mitochondria or saponin-treated hepatocytes. Mitochondria, when incubated in the presence of Mg2+ and MgATP2-, maintain a steady-state pCa2+ (-log [Ca2+]) of approximately 6.1 (0.8 microM). Addition of spermine lowered this value to a pCa2+ of 6.6 (0.25 microM). Spermine was the most effective polyamine, giving half-maximal effects at 170 microM and maximal effects at 400 microM. With saponin-permeabilized hepatocytes, spermine addition similarly showed that the mitochondria buffered the steady-state medium-free Ca2+ at a level approximating the cytosolic free Ca2+ concentration of intact hepatocytes. The initial rate of Ca2+ uptake by the mitochondrial Ca2+ uniporter was investigated using Ca2+-depleted mitochondria incubated in the presence of succinate and 0.3 mM free Mg2+. Under control conditions, Ca2+ uptake was not observed at free Ca2+ concentrations below 0.5 microM. Spermine (350 microM) increased the rate of Ca2+ uptake at all Ca2+ concentrations below 4.5 microM, but at higher Ca2+ concentrations, it was inhibitory. Spermine also affected mitochondrial Ca2+ efflux by decreasing the apparent Km from 16 to 3.8 nmol of Ca2+/mg of mitochondrial protein with no change of Vmax. Experiments with 45Ca2+ confirmed that spermine increased mitochondrial Ca2+ cycling at 0.2 microM free Ca2+. Hepatic spermine contents are reported to be about 1 mumol/g, wet weight, suggesting that this polyamine may have an important physiological role in intracellular calcium homeostasis.  相似文献   

5.
The effects of calcium, calmodulin, protein kinase C (PKC) and protein tyrosine kinase (PTK) modulators were examined on the volume-activated taurine efflux in the erythroleukemia cell line K562. Exposure to hypoosmotic solution significantly increased taurine efflux and intracellular calcium concentration ([Ca2+]i). The Ca2+ channel blockers La3+ (1 mM), verapamil (200 microM) and nifedipine (100 microM) inhibited the hypoosmotically-induced [Ca2+]i increase by more than 90%, while the volume-activated taurine efflux was inhibited by 61.3 +/- 9.5, 74.1 +/- 9.3 and 38.0 +/- 1.5%, respectively. Furthermore, the calmodulin inhibitors W7 (50 microM) and trifluoperazine (10 microM) and the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62 (2 microM) significantly blocked the volume-activated taurine efflux by 93.4 +/- 2.7, 77.9 +/- 3.5 and 61.3 +/- 15.8%, respectively. In contrast, the PKC inhibitor staurosporine (200 nM) or the PKC activator phorbol 12-myristate 13-acetate (100 nM) did not have significant effects on the volume-activated taurine efflux. However, pretreatment with PTK inhibitors genistein, tyrphostin A25, and tyrphostin A47 blocked the volume-activated taurine efflux. These results suggest that the volume-activated taurine efflux in K562 cells may not directly involve Ca2+, but may require the presence of calmodulin and/or PTK.  相似文献   

6.
Transverse tubule (TT) calcium transport and permeability were examined in the inherited skeletal muscle disorder malignant hyperthermia (MH). ATP-dependent calcium uptake by TT vesicles isolated from normal and MH-susceptible (MHS) pig muscle had a similar dependence on ionized Ca2+ concentration (K1/2 for Ca2+ of 0.21 +/- 0.04 and 0.25 +/- 0.05 microM for MHS and normal TT, respectively), as well as a similar Vmax (20.9 +/- 2.0 and 23.7 +/- 4.5 nmol Ca/mg protein/min for MHS and normal TT, respectively). Furthermore, the stimulation of calcium uptake by either calmodulin or cAMP-dependent protein kinase was similar in normal and MHS TT. Halothane concentrations greater than 2 mM inhibited calcium uptake by either normal or MHS TT to a similar extent (IC50 = 8 mM). Dantrolene (10 microM), nitrendipine (1 microM), and Bay K 8644 (1 microM) had no significant effect on either the initial rates of calcium uptake or maximal calcium accumulation of either MHS or normal TT vesicles. However, in the absence of any added agents, maximum calcium accumulation by MHS TT was significantly less than by normal TT (90 +/- 10 versus 130 +/- 9 nmol Ca/mg protein after 15 min of uptake). This difference was not due to an increased permeability of MHS TT to calcium, nor was it due to a difference in the sarcoplasmic reticulum contamination (less than 5%) of the MHS and normal preparations. Although our results indicate there is no significant defect in MHS TT calcium regulation, the diminished maximum calcium accumulation by MHS TT may contribute to the abnormal sarcoplasmic calcium homeostasis in skeletal muscle during an MH crisis.  相似文献   

7.
Thyrotropin-releasing hormone (TRH) stimulation of prolactin secretion from GH3 cells, cloned rat pituitary tumor cells, is associated with 1) hydrolysis of phosphatidylinositol 4,5-bisphosphate to yield inositol trisphosphate (InsP3) and 2) elevation of cytoplasmic free Ca2+ concentration [( Ca2+]i), caused in part by mobilization of cellular calcium. We demonstrate, in intact cells, that TRH mobilizes calcium and, in permeabilized cells, that InsP3 releases calcium from a nonmitochondrial pool(s). In intact cells, TRH caused a loss of 16 +/- 2.7% of cell-associated 45Ca which was not inhibited by depleting the mitochondrial calcium pool with uncoupling agents. Similarly, TRH caused an elevation of [Ca2+]i from 127 +/- 6.3 nM to 375 +/- 54 nM, as monitored with Quin 2, which was not inhibited by depleting mitochondrial calcium. Saponin-permeabilized cells accumulated Ca2+ in an ATP-dependent manner into a nonmitochondrial pool, which exhibited a high affinity for Ca2+ and a small capacity, and into a mitochondrial pool which had a lower affinity for Ca2+ but was not saturated under the conditions tested. Permeabilized cells buffered free Ca2+ to 129 +/- 9.2 nM when incubated in a cytosol-like solution initially containing 200 to 1000 nM free Ca2+. InsP3, but not other inositol sugars, released calcium from the nonmitochondrial pool(s); half-maximal effect occurred at approximately 1 microM InsP3. Ca2+ release was followed by reuptake into a nonmitochondrial pool(s). These data suggest that InsP3 serves as an intracellular mediator (or second messenger) of TRH action to mobilize calcium from a nonmitochondrial pool(s) leading to an elevation of [Ca2+]i and then to prolactin secretion.  相似文献   

8.
The crustacean hepatopancreas is an epithelial-lined, multifunctional organ that, among other activities, regulates the flow of calcium into and out of the animal's body throughout the life cycle. Transepithelial calcium flow across this epithelial cell layer occurs by the combination of calcium channels and cation exchangers at the apical pole of the cell and by an ATP-dependent, calcium ATPase in conjunction with a calcium channel and an Na+/Ca2+ antiporter in the basolateral cell region. The roles of intracellular organelles such as mitochondria, lysosomes, and endoplasmic reticulum (ER) in transepithelial calcium transport or in transient calcium sequestration are unclear, but may be involved in transferring cytosolic calcium from one cell pole to the other. The ER membrane has a complement of ATP-dependent calcium ATPases (SERCA) and calcium channels that regulate the uptake and possible transfer of calcium through this organelle during periods of intense calcium fluxes across the epithelium as a whole. This investigation characterized the mechanisms of calcium transport by lobster hepatopancreatic ER vesicles and the effects of drugs and heavy metals on them. Kinetic constants for 45Ca2+ influx under control conditions were K(n) (m)=10.38+/-1.01 microM, J(max)=14.75+/-1.27 pmol/mg protein x sec, and n=2.53+/-0.46. The Hill coefficient for 45Ca2+ influx under control conditions, approximating 2, suggests that approximately two calcium ions were transported for each transport cycle in the absence of ATP or the inhibitors. Addition of 1 mM ATP to the incubation medium significantly (P<0.01) elevated the rate of 45Ca2+ influx at all calcium activities used and retained the sigmoidal nature of the transport relationship. The kinetic constants for 45Ca2+ influx in the presence of 1 mM ATP were K(n) (m)=12.76+/-0.91 microM, J(max)=25.46+/-1.45 pmol/mg protein x sec, and n=1.95+/-0.15. Kinetic analyses of ER 65Zn2+ influx resulted in a sigmoidal relationship between transport rate and zinc activity under control conditions (K(n) (m)=38.63+/-0.52 microM, J(max)=19.35+/-0.17 pmol/mg protein x sec, n=1.81+/-0.03). The Addition of 1 mM ATP enhanced 65Zn2+ influx at each zinc activity, but maintained the overall sigmoidal nature of the kinetic relationship. The kinetic constants for zinc influx in the presence of 1 mM ATP were K(n) (m)=34.59+/-2.31 microM, J(max)=26.09+/-1.17 pmol/mg protein x sec, and n=1.96+/-0.17. Both sigmoidal and ATP-dependent calcium and zinc influxes by ER vesicles were reduced in the presence of thapsigargin and vanadate. This investigation found that lobster hepatopancreatic ER exhibited a thapsigargin- and vanadate-inhibited, SERCA-like, calcium ATPase. This transporter displayed cooperative calcium transport kinetics (Hill coefficient, n approximately 2.0) and was inhibited by the heavy metals zinc and copper, suggesting that the metals may reduce the binding and transport of calcium when they are present in the cytosol.  相似文献   

9.
A unique cytoplast preparation from Ehrlich ascites tumor cells (G. V. Henius, P. C. Laris, and J. D. Woodburn (1979) Exp. Cell. Res. 121, 337-345), highly enriched in plasma membranes, was employed to characterize the high-affinity plasma membrane calcium-extrusion pump and its associated adenosine triphosphatase (ATPase). An ATP-dependent calcium-transport system which had a high affinity for free calcium (K0.5 = 0.040 +/- 0.005 microM) was identified. Two different calcium-stimulated ATPase activities were detected. One had a low (K0.5 = 136 +/- 10 microM) and the other a high (K0.5 = 0.103 +/- 0.077 microM) affinity for free calcium. The high-affinity enzyme appeared to represent the ubiquitous high-affinity plasma membrane (Ca2+ + Mg2+)-ATPase (calcium-stimulated, magnesium-dependent ATPase) seen in normal cells. Both calcium transport and the (Ca2+ + Mg2+)-ATPase were significantly stimulated by the calcium-dependent regulatory protein calmodulin, especially when endogenous activator was removed by treatment with the calcium chelator ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid. Other similarities between calcium transport and the (Ca2+ + Mg2+)-ATPase included an insensitivity to ouabain (0.5 mM), lack of activation by potassium (20 mM), and a requirement for magnesium. These similar properties suggested that the (Ca2+ + Mg2+)-ATPase represents the enzymatic basis of the high-affinity calcium pump. The calcium pump/enzyme system was inhibited by orthovanadate at comparatively high concentrations (calcium transport: K0.5 congruent to 100 microM; (Ca2+ + Mg2+)-ATPase: K0.5 greater than 100 microM). Upon Hill analysis, the tumor cell (Ca2+ + Mg2+)-ATPase failed to exhibit cooperative activation by calcium which is characteristic of the analogous enzyme in the plasma membrane of normal cells.  相似文献   

10.
11.
Exercise provides cardioprotection against ischemia-reperfusion injury, a process involving mitochondrial reactive oxygen species (ROS) generation and calcium overload. This study tested the hypotheses that isolated mitochondria from hearts of endurance-trained rats have decreased ROS production and improved tolerance against Ca(2+)-induced dysfunction. Male Fischer 344 rats were either sedentary (Sed, n = 8) or endurance exercise trained (ET, n = 11) by running on a treadmill for 16 wk (5 days/wk, 60 min/day, 25 m/min, 6 degrees grade). Mitochondrial oxidative phosphorylation measures were determined with glutamate-malate or succinate as substrates, and H(2)O(2) production and permeability transition pore (PTP) opening were determined with succinate. All assays were carried out in the absence and presence of calcium. In response to 25 and 50 microM CaCl(2), Sed and ET displayed similar decreases in state 3 respiration, respiratory control ratio, and ADP:O ratio. Ca(2+)-induced PTP opening was also similar. However, H(2)O(2) production by ET was lower than Sed (P < 0.05) in the absence of calcium (323 +/- 12 vs. 362 +/- 11 pmol.min(-1).mg protein(-1)) and the presence of 50 microM CaCl(2) (154 +/- 3 vs. 197 +/- 7 pmol.min(-1).mg protein(-1)). Rotenone, which blocks electron flow from succinate to complex 1, reduced H(2)O(2) production and eliminated differences between ET and Sed. Mitochondrial superoxide dismutase and glutathione peroxidase were not affected by exercise. Catalase activity was extremely low but increased 49% in ET (P < 0.05). In conclusion, exercise reduces ROS production in myocardial mitochondria through adaptations specific to complex 1 but does not improve mitochondrial tolerance to calcium overload.  相似文献   

12.
Plasma membrane vesicles isolated from rat liver exhibited an azide-insensitive Mg2+-ATP-dependent Ca2+ pump which accumulated Ca2+ at a rate of 5.1 +/- 0.5 nmol of calcium/mg of protein/min and reached a total accumulation of 33.2 +/- 2.6 nmol of calcium/mg of protein in 20 microM Ca2+ at 37 degrees C. Equiosmotic addition of 50 mM Na+ resulted in a loss of accumulated calcium. Measurement of Mg2+-ATP-dependent Ca2+ uptake in the presence of 50 mM Na+ revealed no effect of Na+ on the initial rate of Ca2+ uptake, but a decrease in the total accumulation. The half-maximal effect of Na+ on Ca2+ accumulation was achieved at 14 mM. The Ca2+ efflux rate constant in the absence of Na+ was 0.16 +/- 0.01 min-1, whereas the efflux rate constant in the presence of 50 mM Na+ was 0.25 +/- 0.02 min-1. Liver homogenate sedimentation fractions from 1,500 to 105,000 X g were assayed for azide-insensitive Mg2+-ATP-dependent Ca2+ accumulation. Na+-sensitive Ca2+ uptake activity was found to specifically co-sediment with the plasma membrane-associated enzymes, 5'-nucleotidase and Na+/K+-ATPase, whereas Na+-insensitive Ca2+ uptake was found to co-sediment with the endoplasmic reticulum-associated enzyme, glucose-6-phosphatase. The plasma membrane Ca2+ pump was also distinguished from the endoplasmic reticulum Ca2+ pump by its sensitivity to inhibition by vanadate. Half-maximal inhibition of plasma membrane Ca2+ uptake occurred at 0.8 microM VO4(3-), whereas half-maximal inhibition of microsomal Ca2+ uptake occurred at 40 microM.  相似文献   

13.
Glucagon stimulates flux through the glycine cleavage system (GCS) in isolated rat hepatocytes (Jois, M., Hall, B., Fewer, K., and Brosnan, J. T. (1989) J. Biol. Chem. 264, 3347-3351. In the present study, flux through GCS was measured in isolated rat liver perfused with 100 nM glucagon, 1 microM epinephrine, 1 microM norepinephrine, 10 microM phenylephrine, or 100 nM vasopressin. These hormones increased flux through GCS in perfused rat liver by 100-200% above the basal rate. The possibility that the stimulation of flux by adrenergic agonists and vasopressin is mediated by increases in cytoplasmic Ca2+ which in turn could regulate mitochondrial glycine catabolism was examined by measuring flux through GCS in isolated mitochondria in the presence of 0.04-2.88 microM free Ca2+. Flux through GCS in isolated mitochondria was exquisitely sensitive to free Ca2+ in the medium; half-maximal stimulation occurred at about 0.4 microM free Ca2+ and maximal stimulation (7-fold) was reached when the free Ca2+ in the medium was 1 microM. The Vmax (nanomoles/mg protein/min) and Km (millimolar) values for the flux through GCS in intact mitochondria were 0.67 +/- 0.16 and 20.66 +/- 4.82 in the presence of 1 mM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid and 3.28 +/- 0.76 and 10.98 +/- 1.91 in presence of 0.5 microM free Ca2+, respectively. The results show that the flux through GCS is sensitive to concentrations of calcium which would be achieved in the cytoplasm of hepatocytes stimulated by calcium-mobilizing hormones.  相似文献   

14.
J R Lopez  L Parra 《Cell calcium》1991,12(8):543-557
Inositol 1,4,5-trisphosphate (InsP3) has been proposed as an intracellular messenger which mobilizes calcium from the sarcoplasmic reticulum, during excitation-contraction coupling in skeletal muscle. We have measured the myoplasmic free calcium concentration ([Ca2+]i) by means of calcium selective microelectrodes in intact fibers isolated from Leptodactylus insularis microinjected with InsP3. In muscle fibers bathed in normal Ringer, the mean resting [Ca2+]i was 0.11 +/- 0.01 microM (M +/- SEM, n = 30). The microinjection of 0.3, 0.5 and 1 microM InsP3 induced transient increments in the [Ca2+]i to 0.35 +/- 0.02 microM (n = 9), to 0.53 +/- 0.03 microM (n = 11) and 0.94 +/- 0.06 microM (n = 10) respectively. Microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers incubated in low Ca2+ solution induced increments in [Ca2+]i similar to those observed in fibers bathed with normal Ringer. The microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers partially depolarized with 10 mM [K+]o induced transient enhancements of the resting [Ca2+]i that were greater than the transients observed in the normally polarized muscle. In partially depolarized fibers microinjected with 0.3, 0.5 and 1 microM InsP3, the [Ca2+]i was changed to 1.45 +/- 0.14 microM (n = 20), to 3.37 +/- 0.34 microM (n = 7) and to 7.43 +/- 0.70 microM (n = 6) respectively. In all partially depolarized fibers these increments in [Ca2+]i were associated with local contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Calcium homeostasis was studied following a depolarization-induced transient increase in [Ca2+]i in single cells of the clonal pituitary cell line of corticotropes, AtT-20 cells. The KCl-induced increase in [Ca2+]i was blocked in (i) extracellular calcium-deficient solutions, (ii) external cobalt (2.0 mM), (iii) cadmium (200 microM), and (iv) nifedipine (2.0 microM). The mean increase in [Ca2+]i in single cells in the presence of an uncoupler of mitochondrial function [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, FCCP, 1 microM] was 54 +/- 13 nM (n = 9). The increase in [Ca2+]i produced by FCCP was greater either during or following a KCl-induced [Ca2+]i load. However, FCCP did not significantly alter the clearance of calcium during a KCl-induced rise in [Ca2+]i. Fifty percent of the cells responded to caffeine (10 mM) with an increase in [Ca2+]i (191 +/- 24 nM; n = 21) above resting levels; this effect was blocked by ryanodine (10 microM). Thapsigargin (2 microM) and 2,5 di(-t-butyl)-1,4 hydroquinone (BuBHQ, 10 microM) produced increases in [Ca2+]i (47 +/- 11 nM, n = 6 and 22 +/- 4 nM, n = 8, respectively) that increased cell excitability. These results support a role for mitochondria and sarco-endoplasmic reticulum calcium stores in cytosolic [Ca2+]i regulation; however, none of these organelles are primarily responsible for the return of [Ca2+]i to resting levels following this KCl-induced [Ca2+]i load.  相似文献   

16.
Sodium-dependent calcium efflux from rat liver mitochondria has been studied as a function of mitochondrial calcium loads (2 to 40 nmol/mg) and extramitochondrial sodium concentrations (5 to 40 mM). The resulting data can be fit to a terreactant model which exhibits simultaneous kinetics (i.e. both sodium and calcium must be bound simultaneously for transport to occur). The Hill coefficients for the calcium and sodium dependences were 1.0 +/- 0.1 and 2.0 +/- 0.2, respectively. The cooperativity of the sodium dependence allows the terreactant model to be reduced to a bireactant model in which the sodium concentration only appears mathematically as the square of the sodium concentration. The data then fit the relationship (Formula: see text) The experimentally determined value of Vmax is found to be 2.6 +/- 0.5 nmol/mg/min, and the load of calcium (KCa) and concentration of sodium (KNa) necessary to stimulate the efflux to half its maximal calcium-dependent activity and sodium-dependent activity, respectively, were 8.1 +/- 1.4 nmol of Ca2+/mg and 9.4 +/- 0.6 mM Na+. This sodium-dependent calcium efflux from liver mitochondria was inhibited by magnesium, by ruthenium red, and by tetraphenylphosphonium. Fifty percent inhibition was obtained at 1.0-1.5 mM magnesium, at 12 nmol of ruthenium red/mg of protein, and at 0.2 microM tetraphenylphosphonium.  相似文献   

17.
In synaptosomes prepared from rat cerebral cortex, free cytosolic calcium concentration ([Ca2+]i) was measured using the fluorescent dye fura-2. Incubation of fura-2-loaded synaptosomes with carbachol increased [Ca2+]i in a dose-dependent manner (1-1,000 microM), with a maximum response of 22 +/- 2% at approximately 100 microM and an EC50 (calculated concentration producing 50% of the maximum response) of 30 microM. The effect of carbachol (100 microM) on [Ca2+]i was antagonised by atropine, but not by hexamethonium (10 microM). The calculated concentration of atropine needed for 50% inhibition (IC50) was 260 nM. The rise in [Ca2+]i produced by carbachol was reduced in the absence of extrasynaptosomal Ca2+ and effectively blocked by the L-type calcium channel blocker nifedipine (with an IC50 of 29 nM). The response to carbachol was reduced if the synaptosomes were preincubated with the protein kinase inhibitors H7 [1-(5-isoquinolinylsulfonyl)-2- methylpiperazine] (from 17% in the solvent control to 4%) and staurosporine (from 20% in the solvent control to 3%). These results show that stimulation of muscarinic acetylcholine receptors in synaptosomes increases [Ca2+]i by protein kinase-dependent activation of 1,4-dihydropyridine-sensitive calcium channels.  相似文献   

18.
The (Ca2+ + Mg2+) ATPase of dog heart sarcolemma (Caroni, P., and Carafoli, E. (1980) Nature 283, 765-767) has been characterized. The enzyme possesses an apparent Km (Ca2+) of 0.3 +/- 02 microM, a Vmax of Ca2+ transport of 31 nmol of Ca2+/mg of protein/min, and an apparent Km (ATP) of 30 microM. It is only slightly influenced by monovalent cations and is highly sensitive to orthovanadate (Ki = 0.5 +/- 0.1 microM). The high vanadate sensitivity has been used to distinguish the sarcolemmal and the contaminating sarcoplasmic reticulum Ca2+-dependent ATPase in heart microsomal fractions. Calmodulin has been shown to be present in heart sarcolemma. Its depletion results in the transition of the Ca2+-pumping ATPase to a low Ca2+ affinity; readdition of calmodulin reverses this effect. The Na+/Ca2+ exchange system was not affected by calmodulin. The results of calmodulin extraction can be duplicated by using the calmodulin antagonist trifluoperazine. The calmodulin-depleted Ca2+-ATPase has been solubilized from the sarcolemmal membrane and "purified" on a calmodulin affinity chromatography column. One major (Mr = 150,000) and 3 minor protein bands could be eluted from the column with ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). The major protein band (72%) has Ca2+-dependent ATPase activity and can be phosphorylated by [gamma]32P]ATP in a Ca2+-dependent reaction.  相似文献   

19.
The sarcoplasmic reticulum (SR) Ca(2+) release channel (RyR1) from malignant hyperthermia-susceptible (MHS) porcine skeletal muscle has a decreased sensitivity to inhibition by Mg(2+). This diminished Mg(2+) inhibition has been attributed to a lower Mg(2+) affinity of the inhibition (I) site. To determine whether alterations in the Ca(2+) and Mg(2+) affinity of the activation (A) site contribute to the altered Mg(2+) inhibition, we estimated the Ca(2+) and Mg(2+) affinities of the A- and I-sites of normal and MHS RyR1. Compared with normal SR, MHS SR required less Ca(2+) to half-maximally activate [(3)H]ryanodine binding (K(A,Ca): MHS = 0.17 +/- 0.01 microM; normal = 0.29 +/- 0.02 microM) and more Ca(2+) to half-maximally inhibit ryanodine binding (K(I,Ca): MHS = 519.3 +/- 48.7 microM; normal = 293.3 +/- 24.2 microM). The apparent Mg(2+) affinity constants of the MHS RyR1 A- and I-sites were approximately twice those of the A- and I-sites of the normal RyR1 (K(A,Mg): MHS = 44.36 +/- 4.54 microM; normal = 21.59 +/- 1.66 microM; K(I,Mg): MHS = 660.8 +/- 53.0 microM; normal = 299.2 +/- 24.5 microM). Thus, the reduced Mg(2+) inhibition of the MHS RyR1 compared with the normal RyR1 is due to both an enhanced selectivity of the MHS RyR1 A-site for Ca(2+) over Mg(2+) and a reduced Mg(2+) affinity of the I-site.  相似文献   

20.
Plasma membrane vesicles from a glucose-responsive insulinoma exhibited properties consistent with the presence of a membrane Na+/Ca2+ exchange. The exchange was rapid, reversible, and was dependent on the external Ca2+ concentration (Km = 4.1 +/- 1.1 microM). External Na+ inhibited the uptake in a dose-dependent manner (IC50 = 15 mM). Dissipation of the Na+ gradient by 10 microM monensin decreased Na+/Ca2+ exchange from 0.74 +/- 0.17 nmoles/mg protein/s to 0.11 +/- 0.05 nmoles/mg protein/s. Exchange was not influenced by veratridine, tetrodotoxin and ouabain, or by modifiers of cAMP. No effect was seen using the calcium channel blockers, nitrendipine or nifedipine. Glucose had no direct effect on Na+/Ca2+ exchange, while glyceraldehyde, glyceraldehyde-3-phosphate and dihydroxyacetone inhibited the exchange. Na+ induced efflux of calcium was seen in Ca2+ loaded vesicles and was half maximal at [Na+] of 11.1 +/- 0.75 mM. Ca2+ efflux was dependent on [Na+], with a Hill coefficient of 2.7 +/- 0.07 indicating that activation of Ca2+ release involves a minimum of three sites. The electrogenicity of this exchange was demonstrated using the lipophilic cation tetraphenylphosphonium [( 3H]-TPP), a membrane potential sensitive probe. [3H]-TPP uptake increased transiently during Na+/Ca2+ exchange indicating that the exchange generated a membrane potential. These results show that Na+/Ca2+ exchange operates in the beta cell and may be an important regulator of intracellular free Ca2+ concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号