首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Amino acid conversion to aroma compounds by Lactococcus lactis is limited by the low production of α-ketoglutarate that is necessary for the first step of conversion. Recently, glutamate dehydrogenase (GDH) activity that catalyzes the reversible glutamate deamination to α-ketoglutarate was detected in L. lactis strains isolated from a vegetal source, and the gene responsible for the activity in L. lactis NCDO1867 was identified and characterized. The gene is located on a 70-kb plasmid also encoding cadmium resistance. In this study, gdh gene inactivation and overexpression confirmed the direct impact of GDH activity of L. lactis on amino acid catabolism in a reaction medium at pH 5.5, the pH of cheese. By using cadmium resistance as a selectable marker, the plasmid carrying gdh was naturally transmitted to another L. lactis strain by a mating procedure. The transfer conferred to the host strain GDH activity and the ability to catabolize amino acids in the presence of glutamate in the reaction medium. However, the plasmid appeared unstable in a strain also containing the protease lactose plasmid pLP712, indicating an incompatibility between these two plasmids.  相似文献   

2.
A β-phosphoglucomutase (β-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of β-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h−1, while the deletion of β-PGM resulted in a maximum specific growth rate of 0.05 h−1 on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as β-glucose 1-phosphate in the medium. Furthermore, the β-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of α-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the β-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded β-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.  相似文献   

3.
The first step of amino acid degradation in lactococci is a transamination, which requires an α-keto acid as the amino group acceptor. We have previously shown that the level of available α-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding α-ketoglutarate to cheese curd. In this study we introduced a heterologous catabolic glutamate dehydrogenase (GDH) gene into Lactococcus lactis so that this organism could produce α-ketoglutarate from glutamate, which is present at high levels in cheese. Then we evaluated the impact of GDH activity on amino acid conversion in in vitro tests and in a cheese model by using radiolabeled amino acids as tracers. The GDH-producing lactococcal strain degraded amino acids without added α-ketoglutarate to the same extent that the wild-type strain degraded amino acids with added α-ketoglutarate. Interestingly, the GDH-producing lactococcal strain produced a higher proportion of carboxylic acids, which are major aroma compounds. Our results demonstrated that a GDH-producing lactococcal strain could be used instead of adding α-ketoglutarate to improve aroma development in cheese.  相似文献   

4.
It remains unclear how α-ketoisocaproate (KIC) and leucine are metabolized to stimulate insulin secretion. Mitochondrial BCATm (branched-chain aminotransferase) catalyzes reversible transamination of leucine and α-ketoglutarate to KIC and glutamate, the first step of leucine catabolism. We investigated the biochemical mechanisms of KIC and leucine-stimulated insulin secretion (KICSIS and LSIS, respectively) using BCATm−/− mice. In static incubation, BCATm disruption abolished insulin secretion by KIC, d,l-α-keto-β-methylvalerate, and α-ketocaproate without altering stimulation by glucose, leucine, or α-ketoglutarate. Similarly, during pancreas perfusions in BCATm−/− mice, glucose and arginine stimulated insulin release, whereas KICSIS was largely abolished. During islet perifusions, KIC and 2 mm glutamine caused robust dose-dependent insulin secretion in BCATm+/+ not BCATm−/− islets, whereas LSIS was unaffected. Consistently, in contrast to BCATm+/+ islets, the increases of the ATP concentration and NADPH/NADP+ ratio in response to KIC were largely blunted in BCATm−/− islets. Compared with nontreated islets, the combination of KIC/glutamine (10/2 mm) did not influence α-ketoglutarate concentrations but caused 120 and 33% increases in malate in BCATm+/+ and BCATm−/− islets, respectively. Although leucine oxidation and KIC transamination were blocked in BCATm−/− islets, KIC oxidation was unaltered. These data indicate that KICSIS requires transamination of KIC and glutamate to leucine and α-ketoglutarate, respectively. LSIS does not require leucine catabolism and may be through leucine activation of glutamate dehydrogenase. Thus, KICSIS and LSIS occur by enhancing the metabolism of glutamine/glutamate to α-ketoglutarate, which, in turn, is metabolized to produce the intracellular signals such as ATP and NADPH for insulin secretion.  相似文献   

5.
In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of α-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced α-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.  相似文献   

6.
Minute amounts of oxygen were supplied to a continuous cultivation of Lactococcus lactis subsp. cremoris MG1363 grown on a defined glucose-limited medium at a dilution rate of 0.1 h−1. More than 80% of the carbon supplied with glucose ended up in fermentation products other than lactate. Addition of even minute amounts of oxygen increased the yield of biomass on glucose by more than 10% compared to that obtained under anaerobic conditions and had a dramatic impact on catabolic enzyme activities and hence on the distribution of carbon at the pyruvate branch point. Increasing aeration caused carbon dioxide and acetate to replace formate and ethanol as catabolic end products while hardly affecting the production of either acetoin or lactate. The negative impact of oxygen on the synthesis of pyruvate formate lyase was confirmed. Moreover, oxygen was shown to down regulate the protein level of alcohol dehydrogenase while increasing the enzyme activity levels of the pyruvate dehydrogenase complex, α-acetolactate synthase, and the NADH oxidases. Lactate dehydrogenase and glyceraldehyde dehydrogenase enzyme activity levels were unaffected by aeration.  相似文献   

7.
Minimal Requirements for Exponential Growth of Lactococcus lactis   总被引:7,自引:0,他引:7       下载免费PDF全文
A minimal growth medium containing glucose, acetate, vitamins, and eight amino acids allowed for growth of Lactococcus lactis subsp. lactis, with a specific growth rate in batch culture of μ = 0.3 h-1. With 19 amino acids added, the growth rate increased to μ = 0.7 h-1 and the exponential growth phase proceeded until high cell concentrations were reached. We show that morpholinepropanesulfonic acid (MOPS) is a suitable buffer for L. lactis and may be applied in high concentrations.  相似文献   

8.
Lactic acid bacteria, such as Lactococcus lactis, are attractive hosts for the production of plant-bioactive compounds because of their food grade status, efficient expression, and metabolic engineering tools. Two genes from strawberry (Fragaria x ananassa), encoding an alcohol acyltransferase (SAAT) and a linalool/nerolidol synthase (FaNES), were cloned in L. lactis and actively expressed using the nisin-induced expression system. The specific activity of SAAT could be improved threefold (up to 564 pmol octyl acetate h−1 mg protein−1) by increasing the concentration of tRNA1Arg, which is a rare tRNA molecule in L. lactis. Fermentation tests with GM17 medium and milk with recombinant L. lactis strains expressing SAAT or FaNES resulted in the production of octyl acetate (1.9 μM) and linalool (85 nM) to levels above their odor thresholds in water. The results illustrate the potential of the application of L. lactis as a food grade expression platform for the recombinant production of proteins and bioactive compounds from plants.  相似文献   

9.
Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an α-keto acid such as α-ketoglutarate (α-KG) as the amino group acceptor, and produced α-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces α-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without α-KG addition. In the presence of α-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced α-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from α-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an α-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the α-keto acid conversion to acids in L. helveticus and S. thermophilus is an α-keto acid dehydrogenase that produces acyl coenzymes A.  相似文献   

10.
Two strains of mesophilic lactic acid bacteria, Streptococcus cremoris AM2 and Leuconostoc lactis CNRZ 1091, were grown in pure and mixed cultures in the presence or absence of citrate (15 mM) and at controlled (pH 6.5) or uncontrolled pH. Microbial cell densities at the end of growth, maximum growth rates, the pH decrease of the medium resulting from growth, and the corresponding acidification rates were determined to establish comparisons. The control of pH in pure cultures had no effect on L. lactis CNRZ 1091 populations. The final populations of S. cremoris AM2, however, were at least five times higher than when the pH was not controlled (4 × 108 vs. 2 × 109 CFU · ml−1). The pH had no effect on the growth rate of either strain. That of S. cremoris AM2 (0.8 h−1) was about twice that of L. lactis CNRZ 1091. When the pH fell below 5, the growth of both strains decreased or stopped altogether. Citrate had no effect on S. cremoris AM2, while final populations of L. lactis CNRZ 1091 were two to three times higher (3 × 108 CFU · ml−1); it had no effect on the maximum growth rates of the two strains. Citrate attenuated the pH decrease of the medium and reduced the maximum acidification rate of the culture by 50%, due to the growth of S. cremoris AM2. Acidification due to L. lactis CNRZ 1091, however, was very slight. Regardless of the conditions of pH and citrate, the total bacterial population in mixed culture was lower (by 39%) than that of the sum of each pure culture. Mixed culture improved the maximum growth rate of L. lactis CNRZ 1091 (0.6 h−1) by 50%, while that of S. cremoris AM2 was unaffected. The acidification rate of the growth medium in mixed culture, affected by the presence of citrate, resulted from the development and activity of S. cremoris AM2.  相似文献   

11.
Lactococcus lactis subsp. lactis biovar diacetylactis strains are utilized in several industrial processes for producing the flavoring compound diacetyl or its precursor α-acetolactate. Using random mutagenesis with nitrosoguanidine, we selected mutants that were deficient in α-acetolactate decarboxylase and had low lactate dehydrogenase activity. The mutants produced large amounts of α-acetolactate in anaerobic milk cultures but not in aerobic cultures, except when the medium was supplemented with catalase, yeast extract, or hemoglobin.  相似文献   

12.
A semidefined medium based on Casamino Acids allowed Lactococcus lactis ATCC 19435 to grow in the presence of oxygen at a slow rate (0.015 h−1). Accumulation of H2O2 in the culture prevented a higher growth rate. Addition of asparagine to the medium increased the growth rate, whereby H2O2 accumulated only temporarily during the lag phase. H2O2 is an inhibitor for several glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase being the most sensitive. Strain ATCC 19435 contained NADH oxidase (maximum specific rate under aerobic conditions, 426 nmol of NADH min−1 mg of protein−1), which reduced oxygen to water, whereby superoxide was formed as a by-product. H2O2 originated from the dismutation of superoxide by superoxide dismutase. Although H2O2 was rapidly destroyed under high metabolic fluxes, neither NADH peroxidase nor any other enzymatic H2O2-reducing activity was detected. However, pyruvate, the end product of glycolysis, reacted nonenzymatically and rapidly with H2O2 and hence was a potential alternative for scavenging of this oxygen metabolite intracellularly. Indeed, intracellular concentrations of up to 93 mM pyruvate were detected in aerobic cultures growing at high rates. It is hypothesized that self-generated pyruvate may serve to protect L. lactis strain ATCC 19435 from H2O2.  相似文献   

13.
A high yield of lactic acid per gram of glucose consumed and the absence of additional metabolites in the fermentation broth are two important goals of lactic acid production by microrganisms. Both purposes have been previously approached by using a Kluyveromyces lactis yeast strain lacking the single pyruvate decarboxylase gene (KlPDC1) and transformed with the heterologous lactate dehydrogenase gene (LDH). The LDH gene was placed under the control the KlPDC1 promoter, which has allowed very high levels of lactate dehydrogenase (LDH) activity, due to the absence of autoregulation by KlPdc1p. The maximal yield obtained was 0.58 g g−1, suggesting that a large fraction of the glucose consumed was not converted into pyruvate. In a different attempt to redirect pyruvate flux toward homolactic fermentation, we used K. lactis LDH transformant strains deleted of the pyruvate dehydrogenase (PDH) E1α subunit gene. A great process improvement was obtained by the use of producing strains lacking both PDH and pyruvate decarboxylase activities, which showed yield levels of as high as 0.85 g g−1 (maximum theoretical yield, 1 g g−1), and with high LDH activity.  相似文献   

14.
Four distinct isozymes of aspartate-α-ketoglutarate transaminase in a spinach (Spinacia oleracea L.) leaf extract were separated by starch gel electrophoresis. Of the total aspartate-α-ketoglutarate transaminase activity, approximately 45% was represented by the chloroplast isozyme, 26% by the cytosol isozyme, 19% by the mitochondrial isozyme, and 3 to 10% by the peroxisomal isozyme. The aspartate-α-ketoglutarate transamination activity in the four subcellular compartments behaved similarly. It was freely reversible and α-ketoglutarate was preferred to pyruvate or glyoxylate as the amino group acceptor. With glutamate as the amino group donor, oxaloacetate was superior to pyruvate or glyoxylate as the acceptor in chloroplasts, mitochondria, and cytosol, while pyruvate or glyoxylate was preferred to oxaloacetate as the acceptor in peroxisomes.  相似文献   

15.
Euglena gracilis cells synthesize the key tetrapyrrole precursor, δ-aminolevulinic acid (ALA), by two routes: plastid ALA is formed from glutamate via the transfer RNA-dependent five-carbon route, and ALA that serves as the precursor to mitochondrial hemes is formed by ALA synthase-catalyzed condensation of succinyl-coenzyme A and glycine. The biosynthetic source of succinyl-coenzyme A in Euglena is of interest because this species has been reported not to contain α-ketoglutarate dehydrogenase and not to use succinyl-coenzyme A as a tricarboxylic acid cycle intermediate. Instead, α-ketoglutarate is decarboxylated to form succinic semialdehyde, which is subsequently oxidized to form succinate. Desalted extract of Euglena cells catalyzed ALA formation in a reaction that required coenzyme A and GTP but did not require exogenous succinyl-coenzyme A synthetase. GTP could be replaced with ATP. Cell extract also catalyzed glycine-and α-ketoglutarate-dependent ALA formation in a reaction that required coenzyme A and GTP, was stimulated by NADP+, and was inhibited by NAD+. Succinyl-coenzyme A synthetase activity was detected in extracts of dark- and light-grown wild-type and nongreening mutant cells. In vitro succinyl-coenzyme A synthetase activity was at least 10-fold greater than ALA synthase activity. These results indicate that succinyl-coenzyme A synthetase is present in Euglena cells. Even though the enzyme may play no role in the transformation of α-ketoglutarate to succinate in the atypical tricarboxylic acid cycle, it catalyzes succinyl-coenzyme A formation from succinate for use in the biosynthesis of ALA and possibly other products.  相似文献   

16.
17.
The nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (l-glutamate:NAD+ oxidoreductase, EC 1.4.1.2) of Chlorella sorokiniana was purified 1,000-fold to electrophoretic homogeneity. The native enzyme was shown to have a molecular weight of 180,000 and to be composed of four identical subunits with a molecular weight of 45,000. The N-terminal amino acid was determined to be lysine. The pH optima for the aminating and deaminating reactions were approximately 8 and 9, respectively. The Km values for α-ketoglutarate, NADH, NH4+, NAD+, and l-glutamate were 2 mm, 0.15 mm, 40 mm, 0.15 mm, and 60 mm, respectively. Whereas the Km for α-ketoglutarate and l-glutamate increased 10-fold, 1 pH unit above or below the pH optima for the aminating or deaminating reactions, respectively, the Km values for NADH and NAD+ were independent of change in pH from 7 to 9.6. By initial velocity, product inhibition, and equilibrium substrate exchange studies, the kinetic mechanism of enzyme was shown to be consistent with a bi uni uni uni ping-pong addition sequence. Although this kinetic mechanism differs from that reported for any other glutamate dehydrogenase, the chemical mechanism still appears to involve the formation of a Schiff base between α-ketoglutarate and an ε-amino group of a lysine residue in the enzyme. The physical, chemical, and kinetic properties of this enzyme differ greatly from those reported for the NH4+-inducible glutamate dehydrogenase in this organism.  相似文献   

18.
The possibility of using the nutritionally versatile bacterium Pseudomonas cepacia to produce poly-β-hydroxyalkanoic acid was evaluated. Chemostat culture showed that growth of P. cepacia became nitrogen limited when the molar carbon-to-nitrogen ratio of the medium fed into the fermentor was above 15. When grown under nitrogen limitation in batch culture with fructose as the sole source of carbon, P. cepacia accumulated poly-β-hydroxybutyric acid (PHB) in excess of 50% of the dry weight of its biomass. In batch culture, almost no PHB was produced until the onset of nitrogen limitation. After this point, PHB was produced at a linear rate of 0.12 g liter−1 h−1 (from a constant value of 1.6 g of cellular protein liter−1). PHB produced by P. cepacia had a weight-average molecular weight of 5.37 × 105 g mol−1 and a polydispersivity index of 3.9. Poly(β-hydroxybutyric acid-β-hydroxyvaleric acid) copolymer was produced with a poly-β-hydroxybutyric acid-poly-β-hydroxyvaleric acid ratio of up to 30% by weight when propionic acid was added to the medium.  相似文献   

19.
1. Aerobically grown yeast having a high activity of glyoxylate-cycle, citric acid-cycle and electron-transport enzymes was transferred to a medium containing 10% glucose. After a lag phase of 30min. the yeast grew exponentially with a mean generation time of 94min. 2. The enzymes malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase and NADH–cytochrome c oxidoreductase lost 45%, 17%, 27% and 46% of their activity respectively during the lag phase. 3. When growth commenced pyruvate kinase, pyruvate decarboxylase, alcohol dehydrogenase, glutamate dehydrogenase (NADP+-linked) and NADPH–cytochrome c oxidoreductase increased in activity, whereas aconitase, isocitrate dehydrogenase (NAD+- and NADP+-linked), α-oxoglutarate dehydrogenase, fumarase, malate dehydrogenase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase, NADH oxidase, NADPH oxidase, cytochrome c oxidase, glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, isocitrate lyase and glucose 6-phosphate dehydrogenase decreased. 4. During the early stages of growth the loss of activity of aconitase, α-oxoglutarate dehydrogenase, fumarase and glucose 6-phosphate dehydrogenase could be accounted for by dilution by cell division. The lower rate of loss of activity of isocitrate dehydrogenase (NAD+- and NADP+-linked), glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, NADPH oxidase and cytochrome c oxidase implies their continued synthesis, whereas the higher rate of loss of activity of malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase and NADH oxidase means that these enzymes were actively removed. 5. The mechanisms of selective removal of enzyme activity and the control of the residual metabolic pathways are discussed.  相似文献   

20.
A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号