首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y. Z. Yacobi 《Freshwater Biology》2003,48(10):1850-1858
1. Pigment composition was measured in natural phytoplankton samples from Lake Kinneret, Israel. From March through June 1998, the dinoflagellate Peridinium gatunense Nygaard mostly contributed more than 95% of the algal biomass. Peak densities were found in April, close to the water surface, with >109 cells m?3, chlorophyll (Chl) a concentration of 380 mg m?3 and areal Chl‐a density of >1300 mg m?2. 2. Cellular concentrations of Chl‐a changed between 201 and 282 pg cell?1, but did not show a defined temporal fluctuation. 3. The mass ratio of Chl‐c to Chl‐a changed from March to June between 0.16 and 0.22, and the peridinin to Chl‐a ratio changed from 0.25 to 0.41. Neither ratio showed a clear pattern of seasonal change. Conversely, there was a progressive increase in diadinoxanthin and β‐carotene ratios to Chl‐a through the season, parallel to the increase in photon flux impinging upon the lake surface. The diadinoxanthin to Chl‐a ratio changed from 0.11 to 0.28 and the β‐carotene to Chl‐a ratio varied from 0.03 to 0.08 from March through June. 4. Diatoxanthin was not detected in natural samples. However, it was present in experiments with P. gatunense cultures, when concentration of diatoxanthin increased rapidly, concurrent with a decrease in diadinoxanthin and β‐carotene concentrations, while Chl‐c and peridinin ratios to Chl‐a were almost stable with photon flux increase. 5. The seasonal variation in cellular pigmentation of P. gatunense in Lake Kinneret suggests that accumulation of photoprotective pigments is essential for optimisation of photosynthetic activity of this large dinoflagellate.  相似文献   

2.
The ratio of two biosynthetic pathways was estimated, the C5 and Shemin pathways, to δ‐aminolevulinic acid (ALA, a biosynthetic intermediate of tetrapyrrole) from the 13C‐enrichment ratios (13C‐ER) at the carbon atoms of chl a (after conversion to methyl pheophorbide a) biosynthesized by Euglena gracilis G. A. Klebs when l ‐[3‐13C]alanine was used as a carbon source. On the basis of these estimations, we confirmed that ALA was efficiently biosynthesized via both the C5 and Shemin pathways in the plastids of E. gracilis, and we determined that the ratio of ALA biosynthesis via the Shemin pathway was increased in the ratio of 14%–67%, compared with that in our previous d ‐[1‐13C]glucose feeding experiment ( Iida et al. 2002 ). This carbon source dependence of the contributions of the two biosynthetic pathways might be related to activation of gluconeogenesis by the amino acid substrate. The methoxy carbon of the methoxycarbonyl group at C‐132 of chl a was labeled with the 13C‐carbon of l ‐[methyl13C]methionine derived from l ‐[3‐13C]alanine via [2‐13C]acetyl coenzyme A (CoA), through the atypical tricarboxylic acid (TCA) cycle, gluconeogenesis, and l‐ [3‐13C]serine. The phytyl moiety of chl a was also labeled on C‐P2, C‐P31, C‐P4, C‐P6, C‐P71, C‐P8, C‐P10, C‐P111, C‐P12, C‐P14, C‐P151, and C‐P16 from 13C‐isoprene (2‐[1,2‐methyl,3‐13C3]methyl‐1,3‐butadiene) generated from l ‐[3‐13C]alanine via [2‐13C]acetyl CoA.  相似文献   

3.
One of the abiotic stress factors affecting plant metabolism is ultraviolet-B (UV-B) radiation. 5-Aminolevulinic acid (ALA), a key precursor of porphyrin biosynthesis, promotes plant growth and crop yields. To investigate the alleviating effects of exogenous ALA on the damages caused by UV-B exposure, two different concentrations [10 ppm (ALA1) and 25 ppm (ALA2)] of ALA were applied to lettuce seedlings for 24 h and then they were exposed to 3.3 W m?2 UV-B. Results showed that UV-B treatment significantly decreased chlorophyll a and b (Chl a and b) concentration, enhanced the activity of antioxidant enzymes, total phenolic concentration, soluble sugar contents, expression of phenylalanine ammonia lyase (PAL) and γ-tocopherol methyltransferase (γ-TMT) genes, the concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), and the rate of superoxide radical (\({\text{O}}_{2}^{ - }\)) generation in the lettuce seedlings when compared to the control. Pre-treatment with exogenous ALA significantly enhanced UV-B stress tolerance in lettuce seedlings by decreasing the reactive oxygen species. On the other hand, ALA application caused more increases in the PAL and γ-TMT gene expression, antioxidant enzymes activities, Chl a and b concentration, total phenolic content, antioxidant capacity and the concentrations of soluble sugars. Obtained results indicated that UV-B radiation exerts an adverse effect on lettuce seedlings, and some of the negative effects of UV-B radiation can be alleviated by exogenous ALA.  相似文献   

4.
Herein, we report the development of a microbial bioprocess for high‐level production of 5‐aminolevulinic acid (5‐ALA), a valuable non‐proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5‐ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5‐ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl‐CoA for enhanced 5‐ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high‐level 5‐ALA biosynthesis from glycerol (~30 g L?1) under both microaerobic and aerobic conditions, achieving up to 5.95 g L?1 (36.9% of the theoretical maximum yield) and 6.93 g L?1 (50.9% of the theoretical maximum yield) 5‐ALA, respectively. This study represents one of the most effective bio‐based production of 5‐ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio‐based production.  相似文献   

5.
Helga Kasemir  Hans Mohr 《Planta》1981,152(4):369-373
Chlorophyll a (Chl a) accumulation in the cotyledons of Scots pine seedlings (Pinus sylvestris L.) is much higher in the light than in darkness where it ceases 6 days after germination. When these darkgrown seedlings are treated with continuous white light (3,500 lx) a 3 h lag phase appears before Chl a accumulation is resumed. The lag phase can be eliminated by pretreating the seedlings with 7 h of weak red light (0.14 Wm-2) or with 14 red light pulses separated by relatively short dark periods (<100 min). The effect of 15s red light pulses can be fully reversed by 1 min far-red light pulses. This reversibility is lost within 2 min. In addition, the amount of Chl a formed within 27 h of continuous red light is considerably reduced by the simultaneous application of far-red (RG 9) light. It is concluded that phytochrome (Pfr) is required not only for the elimination of the lagphase but also to maintain a high rate of Chl a accumulation in continuous light. Since accumulation of 5-aminolevulinate (ALA) responds in the same manner as Chl a accumulation to a red light pretreatment it is further concluded that ALA formation is the point where phytochrome regulates Chl biosynthesis in continuous light. No correlation has been found between ALA and Chl a formation in darkness. This indicates that in a darkgrown pine seedling ALA formation is not rate limiting for Chl a accumulation.Abbreviations Chl chlorophyll(ide) - PChl protochlorophyll(ide) - ALA 5-aminolevulinate - Pr the red absorbing form of phytochrome - Pfr the far-red absorbing form of phytochrome - Ptot total phytochrome ([Pr]+[Pfr])  相似文献   

6.
To explore the mechanisms of 5‐aminolevulinic acid (ALA)‐improved plant salt tolerance, strawberries (Fragaria × ananassa Duch. cv. ‘Benihoppe’) were treated with 10 mg l?1 ALA under 100 mmol l?1 NaCl stress. We found that the amount of Na+ increased in the roots but decreased in the leaves. Laser scanning confocal microscopy (LSCM) observations showed that ALA‐induced roots had more Na+ accumulation than NaCl alone. Measurement of the xylem sap revealed that ALA repressed Na+ concentrations to a large extent. The electron microprobe X‐ray assay also confirmed ALA‐induced Na+ retention in roots. qRT‐PCR showed that ALA upregulated the gene expressions of SOS1 (encoding a plasma membrane Na+/H+ antiporter), NHX1 (encoding a vacuolar Na+/H+ antiporter) and HKT1 (encoding a protein of high‐affinity K+ uptake), which are associated with Na+ exclusion in the roots, Na+ sequestration in vacuoles and Na+ unloading from the xylem vessels to the parenchyma cells, respectively. Furthermore, we found that ALA treatment reduced the H2O2 content in the leaves but increased it in the roots. The exogenous H2O2 promoted plant growth, increased root Na+ retention and stimulated the gene expressions of NHX1, SOS1 and HKT1. Diphenyleneiodonium (DPI), an inhibitor of H2O2 generation, suppressed the effects of ALA or H2O2 on Na+ retention, gene expressions and salt tolerance. Therefore, we propose that ALA induces H2O2 accumulation in roots, which mediates Na+ transporter gene expression and more Na+ retention in roots, thereby improving plant salt tolerance.  相似文献   

7.
The effects of a high temperature (3 h, 40°C) and water deficit (45 h on 3% PEG 6000) on the pool of chlorophyllous pigments in the leaves of 4-, 7-, and 11-day-old barley (Hordeum vulgare L.) seedlings were studied. Heating resulted in a decrease in the total content of chlorophylls (Chl) (a + b) in 4-day-old plants but not in the older leaves. Water deficit induced an increase in the pigment content in young seedlings but reduced it in the leaves of 11-day-old plants. In young seedlings, hyperthermia and dehydration affected similarly Chl (a + b) degradation, leading to a marked inhibition of the chlorophyllase (Chlase) activity hydrolyzing Chl to chlorophyllides and phytol. In old leaves, an activation of this enzyme was observed. The stress factors under study affected different stages of pigment biosynthesis. High temperature inhibited the activity of dark and light stages of Chl(a + b) biosynthesis. Dehydration did not change markedly the resynthesis of protochlorophyllide, while the enzymes of the light stage of Chl biosynthesis were activated in young but inhibited in old barley leaves. The results thus obtained allowed us to conclude that heat treatment and dehydration specifically affected the Chl biosynthesis. At the same time, the Chlase response was nonspecific.  相似文献   

8.
A method is described for rapid enzymatic isolation of mesophyll protoplasts and cells from the crassulacean acid metabolism (CAM) plant Notonia grandiflora DC. The mesophyll protoplasts exhibited high rates of 14CO2 fixation both in the light (45 μmol of CO2 fixed mg?1 Chl h?1) and in the dark (20 μmol of CO2 fixed mg?1 Chl h?1). The protoplasts also showed O2 evolution (40 μmol of O2 evolved mg?1 Chl h?1) without added bicarbonate. Exogenously added bicarbonate had no stimulating effect on the O2 evolution. Analyses of early photosynthetic products in the light showed the formation of both C3 and C4 acids. Aspartate was found to be a predominant photosynthate.  相似文献   

9.
The turnover of chlorophyll a (chl a) was investigated in the diatom Thalassiosira weissflogii (Grunow) Fryxell and Hasle using a new method based on the incorporation of 14C into chl a. The alga was maintained in its exponential growth phase under continuous light; 14C was supplied as bicarbonate. The time course of label accumulation into the tetrapyrrole ring and the phytol side chain was determined for time periods equivalent to 1–2 cell doublings. The labeling kinetics of the tetrapyrrole ring and the phytol side chain were described satisfactorily by a simple precursor-pigment model with two free parameters, the precursor turnover rate and the pigment turnover rate, both having dimensions of time?1. The model was fit to the experimental data to determine the values of these two free parameters. The turnover rates of the tetrapyrrole ring and the phytol side chain were not significantly different, ranging from 0.01 to 0.1 per day. These rates are equivalent to turnover times ranging from days to weeks. Growth rate-normalized turnover rates did not vary with irradiance (7.5–825 μE · m?2· s?1). The precursor turnover rates of the tetrapyrrole ring and the phytol side chain differed by an order of magnitude. These results indicate that chl a is not degraded significantly in cultures of T. weissflogii grown under continuous light. Neither irradiance nor growth rate affected growth rate-normalized chlorophyll turnover rates. Our results are inconsistent with the hypothesis that steady-state cellular concentrations of chl a are maintained by a dynamic equilibrium between rates of synthesis and degradation.  相似文献   

10.
Acclimation to periodic high‐light stress was studied in tree seedlings from a neotropical forest. Seedlings of several pioneer and late‐succession species were cultivated under simulated tree‐fall gap conditions; they were placed under frames covered with shade cloth with apertures of different widths that permitted defined periods of daily leaf exposure to direct sunlight. During direct sun exposure, all plants exhibited a marked reversible decline in potential photosystem II (PSII) efficiency, determined by means of the ratio of variable to maximum Chl a fluorescence (Fv/Fm). The decline in Fv/Fm under full sunlight was much stronger in late‐succession than in pioneer species. For each gap size, all species exhibited a similar degree of de‐epoxidation of violaxanthin in direct sunlight and similar pool sizes of xanthophyll cycle pigments. Pool sizes increased with increasing gap size. Pioneer plants possessed high levels of β‐carotene that also increased with gap size, whereas α‐carotene decreased. In contrast to late‐succession plants, pioneer plants were capable of adjusting their Chl a/b ratio to a high value in wide gaps. The content of extractable UV‐B‐absorbing compounds was highest in the plants acclimated to large gaps and did not depend on the successional status of the plants. The results demonstrate a better performance of pioneer species under high‐light conditions as compared with late‐succession plants, manifested by reduced photoinhibition of PSII in pioneer species. This was not related to increased pool size and turnover of xanthophyll cycle pigments, nor to higher contents of UV‐B‐absorbing substances. High β‐carotene levels and increased Chl a/b ratios, i.e. reduced size of the Chl a and b binding antennae, may contribute to photoprotection in pioneer species.  相似文献   

11.
The effect of irradiance and temperature on the photosynthesis of the red alga, Pyropia tenera, was determined for maricultured gametophytes and sporophytes collected from a region that is known as one of the southern limits of its distribution in Japan. Macroscopic gametophytes were examined using both pulse‐amplitude modulated fluorometry and/or dissolved oxygen sensors. A model of the net photosynthesis–irradiance (P‐E) relationship of the gametophytes at 12°C revealed that the net photosynthetic rate quickly increased at irradiances below the estimated saturation irradiance of 46 μmol photons m?2 s?1, and the compensation irradiance was 9 μmol photons m?2 s?1. Gross photosynthesis and dark respiration for the gametophytes were also determined over a range of temperatures (8–34°C), revealing that the gross photosynthetic rates of 46.3 μmol O2 mgchl‐a?1 min?1 was highest at 9.3 (95% Bayesian credible interval (BCI): 2.3–14.5)°C, and the dark respiration rate increased at a rate of 0.93 μmol O2 mgchl‐a?1 min?1°C?1. The measured dark respiration rates ranged from ?0.06 μmol O2 mgchl‐a?1 min?1 at 6°C to ?25.2 μmol O2 mgchl‐a?1 min?1 at 34°C. The highest value of the maximum quantum yield (Fv/Fm) for the gametophytes occurred at 22.4 (BCI: 21.5–23.3) °C and was 0.48 (BCI: 0.475–0.486), although those of the sporophyte occurred at 12.9 (BCI: 7.4–15.1) °C and was 0.52 (BCI: 0.506–0.544). This species may be considered well‐adapted to the current range of seawater temperatures in this region. However, since the gametophytes have such a low temperature requirement, they are most likely close to their tolerable temperatures in the natural environment.  相似文献   

12.
1. Oligotrophic Lake Waikaremoana, New Zealand, is used for hydroelectric power generation and the lake levels are manipulated within an operating range of 3 m. There was concern that rapidly changing water levels adversely affected the littoral zone by decreasing light availability in two ways: local turbidity caused by shoreline erosion at low water levels; and decreased light penetration to the deep littoral zone caused by high water levels in summer. 2. The littoral zone was dominated by native aquatic plants with vascular species to 6 m and a characean meadow below this to 16 m. The biomass and heights of the communities in the depth zone 0–6 m were reduced at a site exposed to wave action relative to those at a sheltered site. However, the community structure below 6 m was similar at exposed and sheltered sites. The lower boundary of the littoral zone was sharply delimited at 16 m and this bottom boundary remained constant throughout the year despite large seasonal changes in solar radiation and the 3 m variation in lake level. 3. There was evidence that the deep-water community consisting of Chara corallina had adapted physiologically to low-light conditions. Net light saturated photosynthesis (CO2 exchange) per unit chlorophyll a (Chl a) was reduced to 1.7 μg C (μg Chl a)?1 h?1 at the lower boundary, half of that recorded at 5 m. The concentration of Chi a per gram of biomass (dry weight), was considerably greater at the lower boundary than higher in the profile [c. 7 mg Chl a (g dry wt)?1 at 16 m vs. 4 mg Chl a (g dry wt)?1 at 5 m]. Chl b also increased with depth and there was no change in the ratio of Chl a and Chl b with increasing depth. The saturation light intensity (Ik) of the community at the lower boundary was only 78 μmol photons m?2 s?1. Photosynthetic parameters (Ik and α) as well as the Chl a content remained relatively constant throughout the seasonal and short-term changes in radiation. 4. The photosynthetic characteristics of the littoral community were therefore not greatly affected by the lake level change caused by the present hydroelectric operations. However, the sharpness of the lower boundary and its extreme shade characteristics imply that the deep-water community would be sensitive to any further changes in underwater light availability.  相似文献   

13.
The toxigenic diatom Pseudo‐nitzschia cuspidata, isolated from the U.S. Pacific Northwest, was examined in unialgal batch cultures to evaluate domoic acid (DA) toxicity and growth as a function of light, N substrate, and growth phase. Experiments conducted at saturating (120 μmol photons · m?2 · s?1) and subsaturating (40 μmol photons · m?2 · s?1) photosynthetic photon flux density (PPFD), demonstrate that P. cuspidata grows significantly faster at the higher PPFD on all three N substrates tested [nitrate (NO3?), ammonium (NH4+), and urea], but neither cellular toxicity nor exponential growth rates were strongly associated with one N source over the other at high PPFD. However, at the lower PPFD, the exponential growth rates were approximately halved, and the cells were significantly more toxic regardless of N substrate. Urea supported significantly faster growth rates, and cellular toxicity varied as a function of N substrate with NO3?‐supported cells being significantly more toxic than both NH4+‐ and urea‐supported cells at the low PPFD. Kinetic uptake parameters were determined for another member of the P. pseudodelicatissima complex, P. fryxelliana. After growth of these cells on NO3? they exhibited maximum specific uptake rates (Vmax) of 22.7, 29.9, 8.98 × 10?3 · h?1, half‐saturation constants (Ks) of 1.34, 2.14, 0.28 μg‐at N · L?1, and affinity values (α) of 17.0, 14.7, 32.5 × 10?3 · h?1/(μg‐at N · L?1) for NO3?, NH4+ and urea, respectively. These labo‐ratory results demonstrate the capability of P. cuspidata to grow and produce DA on both oxidized and reduced N substrates during both exponential and stationary growth phases, and the uptake kinetic results for the pseudo‐cryptic species, P. fryxelliana suggest that reduced N sources from coastal runoff could be important for maintenance of these small pennate diatoms in U.S. west coast blooms, especially during times of low ambient N concentrations.  相似文献   

14.
1. Chlorophyll a (Chl a) distribution across a 0.36 km2 restored floodplain (Cosumnes River, California) was analysed throughout the winter and spring flood season from January to June 2005. In addition, high temporal‐resolution Chl a measurements were made in situ with field fluorometers in the floodplain and adjacent channel. 2. The primary objectives were to characterise suspended algal biomass distribution across the floodplain at various degrees of connection with the channel and to correlate Chl a concentration and distribution with physical and chemical gradients across the floodplain. 3. Our analysis indicates that periodic connection and disconnection of the floodplain with the channel is vital to the functioning of the floodplain as a source of concentrated suspended algal biomass for downstream aquatic ecosystems. 4. Peak Chl a levels on the floodplain occurred during disconnection, reaching levels as high as 25 μg L?1. Chl a distribution across the floodplain was controlled by residence time and local physical/biological conditions, the latter of which were primarily a function of water depth. 5. During connection, the primary pond on the floodplain exhibited low Chl a (mean = 3.4 μg L?1) and the shallow littoral zones had elevated concentrations (mean = 4.6 μg L?1); during disconnection, shallow zone Chl a increased (mean = 12.4 μg L?1), but the pond experienced the greatest algal growth (mean = 14.7 μg L?1). 6. Storm‐induced floodwaters entering the floodplain not only displaced antecedent floodplain waters, but also redistributed floodplain resources, creating complex mixing dynamics between parcels of water with distinct chemistries. Incomplete replacement of antecedent floodplain waters led to localised hypoxia in non‐flushed areas. 7. The degree of complexity revealed in this analysis makes clear the need for high‐resolution spatial and temporal studies such as this to begin to understand the functioning of dynamic and heterogeneous floodplain ecosystems.  相似文献   

15.
Chloroplasts observed, by electron microscopy, to be intact and uncontaminated, with high rates of light-dependent protein synthesis and CO2 fixation were isolated from cells grown on low-vitamin-B12 medium in the light or from cells grown in the same medium in the dark and then exposed to light for 36 h. Both types of chloroplasts were active but less variability was encountered with developing chloroplasts from 36-h cells. The 36-h chloroplasts showed good light-dependent incorporation of 5-amino-levulinic acid (ALA) or l-glutamic acid into chlorophyll (Chl) a which was linear for approx. 1 h. The specific activity of the Chl a remained the same after conversion to pheophytin a, methylpheophorbide a or pyromethylpheophorbide a and rechromatography, indicating that the label was in the tetrapyrrole. Incorporation of ALA was inhibited by levulinic acid, and by chloramphenicol and other inhibitors of translation of 70S-type chloroplast ribosomes at concentrations which did not appreciably inhibit photosynthesis but which blocked plastid protein synthesis nearly completely. Cycloheximide, an inhibitor of translation on 87S cytoplasmic ribosomes of Euglena, was without effect. The 70S inhibitors did not block uptake of labeled ALA. Although labeled glycine was taken up by the plastids, no incorporation into Chl a was observed. Thus the developing chloroplasts appear to contain all of the enzymatic machinery necessary to convert glutamic acid to Chl via the C5 pathway of ALA formation but the Shemin pathway from succinyl coenzyme A and glycine to ALA appears to be absent. The requirement for plastid protein synthesis concomitant with Chl synthesis indicates a regulatory interaction and also indicates that at least one protein influencing Chl synthesis is synthesized on 70S-type plastid ribosomes and is subject to metabolic turnover.Abbreviations ALA 5-aminolevulinic acid - Chl chlorophyll  相似文献   

16.
The last steps of chlorophyll (Chl) biosynthesis were studied at different light intensities and temperatures in dark‐germinated ginkgo (Ginkgo biloba L.) seedlings. Pigment contents and 77 K fluorescence emission spectra were measured and the plastid ultrastructure was analysed. All dark‐grown organs contained protochlorophyllide (Pchlide) forms with similar spectral properties to those of dark‐grown angiosperm seedlings, but the ratios of these forms to each other were different. The short‐wavelength, monomeric Pchlide forms were always dominating. Etioplasts with small prolamellar bodies (PLBs) and few prothylakoids (PTs) differentiated in the dark‐grown stems. Upon illumination with high light intensities (800 μmol m?2 s?1 photon flux density, PFD), photo‐oxidation and bleaching occurred in the stems and the presence of 1O2 was detected. When Chl accumulated in plants illuminated with 15 μmol m?2 s?1 PFD it was significantly slower at 10°C than at 20°C. At room temperature, the transformation of etioplasts into young chloroplasts was observed at low light, while it was delayed at 10°C. Grana did not appear in the plastids even after 48 h of greening at 20°C. Reaccumulation of Pchlide forms and re‐formation of PLBs occurred when etiolated samples were illuminated with 200 μmol m?2 s?1 PFD at room temperature for 24 h and were then re‐etiolated for 5 days. The Pchlide forms appeared during re‐etiolation had similar spectral properties to those of etiolated seedlings. These results show that ginkgo seedlings are very sensitive to temperature and light conditions during their greening, a fact that should be considered for ginkgo cultivation.  相似文献   

17.
Two clones of Hevea brasiliensis (RRII 105 and PB 235) were grown for one year in two distinct agroclimatic locations (warmer and colder, W and C) in peninsular India. We simultaneously measured gas exchange and chlorophyll (Chl) fluorescence on fully mature intact leaves at different photosynthetic photon flux densities (PPFDs) and ambient CO2 concentrations (C a) and at constant ambient O2 concentration (21 %). Net photosynthetic rate (P N), apparent quantum yield for CO2 assimilation (Φc), in vivo carboxylation efficiency (CE), and photosystem 2 quantum yield (ΦPS2) were low in plants grown in C climate and these reductions were more predominant in RRII 105 than in PB 235 which was also reflected in their growth. We estimated in these clones the partitioning of photosynthetic electrons between CO2 reduction (JA) and processes other than CO2 reduction (J*) at low and high PPFDs and C a. At high C a (700 µmol mol−1) most of the photosynthetic electrons were used for CO2 assimilation and negligible amount went for other processes when PPFD was low (200–300 µmol m−2 s−1) both in the C and W climates. But at high PPFD (900-1 100 µmol m−2 s−1), J* was appreciably high even at a high C a. Hence at normal ambient C a and high irradiance, electrons can be generated in the photosynthetic apparatus far in excess of what can be safely utilised for photosynthetic CO2 reduction. However, at high C a there was increased diversion of electrons to photosynthetic CO2 reduction which resulted in improved photosynthetic parameters even in plants grown in C climate.  相似文献   

18.
The cancerostatic 5‐fluorouridine (5‐FUrd; 1 ) was sequentially sugar‐protected by introduction of a 2′,3′‐O‐heptylidene ketal group (→ 2 ), followed by 5′‐O‐monomethoxytritylation (→ 3 ). This fully protected derivative was submitted to Mitsunobu reactions with either phytol ((Z and E)‐isomer) or nerol ((Z)‐isomer) to yield the nucleoterpenes 4a and 4b . Both were 5′‐O‐deprotected with 2% Cl2CHCOOH in CH2Cl2 to yield compounds 5a and 5b , respectively. These were converted to the 5′‐O‐cyanoethyl phosphoramidites 6a and 6b , respectively. Moreover, the 2′,3′‐O‐(1‐nonyldecylidene) derivative, 7a , of 5‐fluorouridine was resynthesized and labelled at C(5′) with an Eterneon‐480 fluorophor® (→ 7b ). The resulting nucleolipid was studied with respect to its incorporation in an artificial bilayer, as well as to its aggregate formation. Additionally, two oligonucleotides carrying terminal phytol‐alkylated 5‐fluorouridine tags were prepared, one of which was studied concerning its incorporation in an artificial lipid bilayer.  相似文献   

19.
The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll (BChl) 663, was isolated at high purity by an improved purification procedure from a crude reaction center complex, and the molecular structure was determined by fast atom bombardment mass spectroscopy (FAB-mass), 1H- and 13C-NMR spectrometry, double quantum filtered correlation spectroscopy (DQF-COSY), heteronuclear multiple-quantum coherence (HMQC) and heteronuclear multiple-bond correlation (HMBC) spectral measurements. BChl 663 was 2.0 mass units smaller than plant Chl a. The NMR spectra showed that the macrocycle was identical to that of Chl a. In the esterifying alcohol, a singlet P71 signal was observed at the high-field side of the singlet P31 signal in BChl 663, while a doublet peak of P71 overlapped that of P111 in Chl a. A signal of P7-proton, seen in Chl a, was lacking, and the P6-proton appeared as a triplet signal near the triplet P2-proton signal in BChl 663. These results indicate the presence in BChl 663 of a C=C double bond between P6 and P7 in addition to that between P2 and P3. The structure of BChl 663 was hence concluded to be Chl a esterified with 2,6-phytadienol instead of phytol. In addition to BChl 663, two molecules of the 132-epimer of BChl a, BChl a′, were found to be present per reaction center, which may constitute the primary electron donor. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
To understand the ecophysiological adaptation mechanisms of Calligonum roborovskii to altitude variation, this study analyzed chlorophyll a (Chl a), chlorophyll b (Chl b), Chl (a + b), carotenoid (Car), malondialdehyde (MDA), ascorbate (AsA), proline (Pro), membrane permeability (MP), reactive oxygen species (ROS), specific leaf area (SLA), leaf mass per area (LMA), leaf nitrogen content based on mass (Nmass), and the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) in leaves of plants inhabiting different altitudes (A1: 2100 m, A2: 2350 m, A3: 2600 m) on the northern slope of the Kunlun Mountains. The results showed that Chl a, Chl b, Chl (a + b), SLA, Nmass, and the activity of CAT increased with increasing altitude. LMA, MP, MDA, Car, Pro, AsA, O2, H2O2 and the activities of SOD, POD, and APX decreased with increasing altitude. The test results also showed that, changes in venvironmental factors along an altitudinal gradient are not obvious. Soil water content is the main ecological factor. With increasing altitude, soil water content increased significantly. More non-enzymatic and enzymatic antioxidants played an important role in eliminating intracellular ROS. They kept the cell membrane in a stable state and ensured the normal growth of C. roborovskii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号