首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Diethyl pyrocarbonate reactivity and thermal denaturation were used to probe potential ribosomal interactions between tRNA and the small 5.8S and 5S rRNAs. Puromycin, an analogue of the terminal aminoacyl-adenosine portion of aminoacyl-tRNA, was observed to increase the accessibility of the 5.8S rRNA, including the highly conserved GAACp sequences. EDTA which releases both tRNA and the 5S rRNA-protein complex resulted in an even greater accessibility in the 5.8S rRNA. The thermal dissociation of whole ribosomes resulted in the release of all three RNAs, with a striking similarity in the denaturation profiles. These results strongly suggest an interdependence in the ribosome-associated structures of the small rRNAs and provide in situ evidence for the various 5S rRNA, 5.8S rRNA, and tRNA containing ribonucleoprotein complexes previously reconstituted through affinity chromatography.  相似文献   

3.
Levels of 2-O-methylation were determined in ribosomal 5·8 S RNAs from whole cells and both the nuclear and cytoplasmic fractions of rat liver, rat kidney cells in culture (NRK) and HeLa cells. All 5·8 S RNA molecules contained the alkali stable Gm-Cp dinucleotide at position 77 but only whole cell rat liver RNA contained large amounts (0·7 mol) of Um at position 14. All nuclear 5·8 S RNA fractions were largely undermethylated at this site. In contrast, cytoplasmic 5.8 S RNA from rat liver and, to a lesser degree, NRK cells contained significantly more Um; up to 80% of the molecules from rat liver contained the methylated residue. These results indicate that mature 5·8 S RNA can be methylated in the cytoplasm. When labeling kinetics were examined in NRK cells, the methylation at residue 14 was found to increase as a function of the time spent in the cytoplasm, confirming that this modification is, unlike other ribosomal RNA methylations, in part or largely cytoplasmic.  相似文献   

4.
The primary nucleotide sequence of Novikoff hepatoma ascites cell 5.8S rRNA (also known as 5.5 or 7S RNA) has been determined to be:
This sequence is 75% homologous with the primary nucleotide sequence of yeast 5.8S rRNA and 100% homologous with oligonucleotide marker fragments from HeLa cell RNA. In constrast, only limited homology is evident with oligonucleotides from 5.8S RNA of several flowering plants and many of the characteristic fragments differ.  相似文献   

5.
6.
7.
R N Nazar  T O Sitz  H Busch 《Biochemistry》1976,15(3):505-508
Oligonucleotide products of complete pancreatic or T1 RNase digestion or partial T1 RNase digestion of HeLa cell (human) and MPC-11 cell (mouse) 5.8S rRNA are identical with those obtained from Novikoff hepatoma (rat) 5.8S rRNA except for minor differences at the termini. pCp is the only major 5' terminus of both human and mouse RNAs; both pGp and pCp 5' termini were found in rat 5.8S RNA. Furthermore, HeLa cells contain C-U-U at the 3' end rather than the C-U terminus of mouse and rat. The results indicate that the nucleotide sequence has been highly conserved during the evolution of mammals and suggest that, as reported for 5S rRNA, this sequence is essentially constant throughout the Mammalia.  相似文献   

8.
9.
10.
Nucleotide sequence study of mouse 5.8S ribosomal RNA.   总被引:4,自引:0,他引:4  
A Hampe  M E Eladari  F Galibert 《Biochimie》1976,58(8):943-951
The primary structure of 5.8S mouse ribosomal RNA has been studied and compared to the structures previously established for other animal species. The results obtained show that mouse 5.8S ribosomal RNA yields pancreatic oligonucleotides with the same nucleotide sequence as the homologous oligonucleotides from rat cells. Furthermore T1 oligonucleotides of 5.8S ribosomal RNA from rat, mouse and human cells behave identically on fingerprinting fractionation and have the same composition as judged by pancreatic digestion. These results strongly suggest that the primary structures of 5.8S ribosomal RNA from rat, mouse and human cells are identical. This identity of structure is also found when the presence of several modified bases (psi and methylated bases) is considered. The findings emphasize the remarkable evolutionary stability of ribosomal gene structure. Comparison of the terminal regional of 5.8S RNA with those of 18S RNA reveals differences which imply a more complex mechanism underlying the maturation of 45S precursor RNA than the finding of identical structure would have suggested.  相似文献   

11.
The lack of colinearity between nucleotide sequence of the lupin 5.8 S rDNA gene (Rafalski, A.J., Wiewiórowski, M. and Soll, D. (1983) FEBS Lett. 152, 241-246) and 5.8 S rRNA of other plants (Erdmann, V.A. and Wolters, J. (1986) Nucleic Acids Res. 14, r1-r59.) prompted us to clarify this point by sequencing the native lupin 5.8 S rRNA. The sequence analysis was carried out using enzymatic and chemical methods. Lupin seed 5.8 S rRNA contains 164 nucleotides, including four modified ones: two residues of 2'-O-methylguanosine, one pseudouridine and one 2'-O-methyladenosine. The nucleotide sequence homology with the other plant 5.8 S rRNAs is approx. 88-96%.  相似文献   

12.
5 S and 5.8 S ribosomal RNA sequences and protist phylogenetics   总被引:1,自引:0,他引:1  
W F Walker 《Bio Systems》1985,18(3-4):269-278
More than 100 5 S 5.8 S rRNA sequences from protists, including fungi, are known. Through a combination of quantitative treeing and special consideration of "signature' nucleotide combinations, the most significant phylogenetic implications of these data are emphasized. Also, limitations of the data for phylogenetic inferences are discussed and other significant data are brought to bear on the inferences obtained. 5 S sequences from red algae are seen as the most isolated among eukaryotics. A 5 S sequence lineage consisting of oomycetes, euglenoids, most protozoa, most slime molds and perhaps dinoflagellates and mesozoa is defined. Such a lineage is not evident from 5.8 S rRNA or cytochrome c sequence data. 5 S sequences from Ascomycota and Basidiomycota are consistent with the proposal that each is derived from a mycelial form with a haploid yeast phase and simple septal pores, probably most resembling present Taphrinales. 5 S sequences from Chytridiomycota and Zygomycota are not clearly distinct from each other and suggest that a major lineage radiation occurred in the early history of each. Qualitative biochemical data clearly supports a dichotomy between an Ascomycota-Basidiomycota lineage and a Zygomycota-Chytridiomycota lineage.  相似文献   

13.
Hybridization of purified, 32p-labeled 5.8S ribosomal RNA from Xenopus laevis to fragments generated from X. laevis rDNA by the restriction endonuclease, EcoRI, demonstrates that the 5.8S rRNA cistron lies within the transcribed region that links the 18S and 28S rRNA cistrons.  相似文献   

14.
We report the primary structure of 5.8 S rRNA from the crustacean Artemia salina. The preparation shows length heterogeneity at the 5'-terminus, but consists of uninterrupted RNA chains, in contrast to some insect 5.8 S rRNAs, which consist of two chains of unequal length separated in the gene by a short spacer. The sequence was aligned with those of 11 other 5.8 S rRNAs and a general secondary structure model derived. It has four helical regions in common with the model of Nazar et al. (J. Biol. Chem. 250, 8591-8597 (1975)), but for a fifth helix a different base pairing scheme was found preferable, and the terminal sequences are presumed to bind to 28 S rRNA instead of binding to each other. In the case of yeast, where both the 5.8 S and 26 S rRNA sequences are known, the existence of five helices in 5.8 S rRNA is shown to be compatible with a 5.8 S - 26 S rRNA interaction model.  相似文献   

15.
16.
We have characterized the rRNA gene repeat in Schizosaccharomyces pombe. This repeat, which does not contain the 5S RNA gene, is found in a 10.4 kb HindIII DNA fragment. We have determined the nucleotide sequences of the S. pombe 5.8S RNA gene and intergenic spacers from two different 10.4 kb DNA fragments. Analysis of isolated total cellular 5.8S RNA revealed the presence of eight species of 5.8S RNA, differing in the number of nucleotides at the 5'-end. The eight 4.8S RNA species vary in length from 158 to 165 nucleotides. Apart from the heterogeneity observed at the 5'-end, the sequence of the eight 5.8S RNA species appears to be identical and is the same sequence as coded for by the 5.8S genes. The gene sequence shows great homology to the 5.8S RNA genes or S. cerevisiae and N. crassa. Most of the base differences are confined to the highly variable stem though to be involved in co-axial helix stacking with the 25S RNA, where base pairing is nearly identical despite the sequence differences. Secondary structure models are examined in light of 5.8S RNA oligonucleotide conservation across species from yeasts to higher eukaryotes.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号