首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We studied breathing and behavioral response to increased arterial CO2 (PaCO2) in 12 fetal sheep between 130 and 145 days of gestation. Of these 12 fetuses, 10 had an increase in PaCO2 through maternal rebreathing of CO2; in the other 2 fetuses CO2 was increased via an endotracheal tube and application of continuous distending airway pressure. We used our window technique to observe and videotape fetal behavior. The experiments consisted of recording breathing activity and behavior during resting conditions (1 low- and high-voltage ECoG cycle) and during administration of CO2. We measured electrocortical activity (ECoG), eye movements (EOG), electromyography of the diaphragm (EMGdi) and neck muscles, tracheal (Ptr), amniotic, and carotid arterial pressures. Administration of CO2 by the rebreathing technique produced an increase in the amplitude of breathing activity as reflected by an increase in Ptr from 5.0 +/- 0.6 to 12 +/- 1.9 mmHg (P less than 0.01) and an increase in SEMGdi from 32 +/- 4 to 77 +/- 8% max (P less than 0.001). Frequency increased due to a decrease in inspiratory (TI) and expiratory duration. Ptr/TI increased from 11.0 +/- 2.0 to 37.4 +/- 9.0 mmHg/s (P less than 0.05) and SEMGdi/TI increased from 67 +/- 7 to 221 +/- 28% max/s (P less than 0.001). Although the response was at times prolonged into the transitional high-voltage zone, it did not persist during established high-voltage ECoG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of nutrient availability on fetal plasma prostaglandin E (PGE) concentrations, on fetal breathing movements and electromyographic (EMG) activities of fetal nuchal and forelimb muscles were investigated in pregnant ewes by varying dietary intake and by manipulation of fetal plasma glucose concentration. The incidence of fetal breathing movements (06.00-10.00 h) decreased with increasing gestational age while fetal arterial concentrations of plasma PGE increased significantly over the same period of gestation. Maternal fasting for 48 h reduced the incidence of fetal breathing movements and the amount of nuchal EMG activity (06.00-10.00 h) in animals older than 130 days but had no effect earlier in gestation. No changes in forelimb EMG activity were observed during fasting at any gestational age. Plasma PGE levels increased significantly during fasts begun both before and after 130 days of gestation. When data from fed and fasted states were combined for all fetuses, irrespective of gestational age, there was a significant inverse correlation between fetal breathing movements incidence and plasma PGE concentration in utero. This relationship was even more pronounced when the fetuses were considered individually. Insulin infusions induced hypoglycaemia, an increase in fetal plasma PGE concentration and a significant reduction in the incidence of fetal breathing movements at all ages. Glucose infusions of fetal breathing movements only after 130 days and had no effect on plasma PGE levels in utero at any gestational age. Neither insulin nor glucose infusions altered the EMG activities of the nuchal and forelimb muscles. The results show that glucose availability is an important factor in determining the incidence of fetal breathing movements in utero and indicate that nutritionally induced changes in fetal breathing movements are mediated in part by PGE. They also suggest that PGE is a physiological regulator of fetal breathing movements in the sheep during late gestation.  相似文献   

3.
Fetal behavior, renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) were studied 1-3 days after surgery in seven fetal sheep (aged 127-136 days). Five behavioral states were defined from chart recordings of electrocortical (electrocorticographic; ECoG) activity and eye, limb, and breathing movements. Most records were of high-voltage ECoG (HV) or low-voltage (LV) ECoG with breathing (LVB); 6.7 +/- 1.7% were LV ECoG with no breathing (LV0). RSNA was lower in LV0 (P < 0.001) and greater in LVB than in HV (P < 0.05). MAP was lower in both LV states than in HV and when the fetuses went from LV to HV (P < 0.001 to P < 0.03). HR was highest in HV (P < 0.001). In HV and LVB and when the fetus went from LV to HV, MAP and HR were inversely related (P = 0.012-0.003). In LVB and from LV to HV there were direct relationships between MAP and RSNA (P = 0.0014, P = 0.08), and when the fetus went from LV to HV there was also an inverse relationship between HR and RSNA (P = 0.02). Thus fetal RSNA, MAP, and HR are affected by behavioral state as is fetal cardiovascular control. The increase in RSNA during fetal breathing showed that there was an altered level of fetal RSNA associated with fetal breathing activity.  相似文献   

4.
We measured fetal breathing movements and fetal carotid arterial prostaglandin E concentrations during adrenocorticotrophin-induced labour in 6 pregnant sheep and in 6 control animals starting at day 127. The 6 ACTH-treated animals went into labour on average 97 h after the onset of infusion and the incidence of fetal breathing movements diminished during the last 12h before the onset of labour. There was a significant negative relationship between the incidence of fetal breathing movements and fetal carotid arterial prostaglandin E concentrations (r = -0.88; P less than 0.001) in ACTH treated animals. These data suggest a role for prostaglandin E in the diminution of fetal breathing movements prior to the onset of labour.  相似文献   

5.
To define the dose response of apnea and breathing to morphine we studied 12 fetuses at 116-141 days of gestation using our window technique. We instrumented the fetus to record electrocortical activity (ECoG), eye movements (EOG), diaphragmatic activity (integral of EMGdi), heart rate, carotid blood pressure, and amniotic pressure. Saline and morphine in doses of 0.03, 0.1, 0.5, 1, and 3 mg/kg were injected in random order in the jugular vein of the fetus during low-voltage ECoG. Fetuses were videotaped for evaluation of fetal behavior. We found 1) that saline did not elicit a response; 2) apnea, associated with a change from low- to high-voltage ECoG, increased from 2.2 +/- 1.5 (SE) min in two fetuses at a dose of 0.03 mg to 20 +/- 6.3 min in seven fetuses at 3 mg/kg (P less than 0.005); 3) the length of the breathing responses, associated with a change from high- to low-voltage ECoG, were 15 +/- 1.8 and 135.9 +/- 18.1 min (P less than 0.0005); 4) integral of EMGdi X frequency, an index equivalent to minute ventilation, increased from 1,763 +/- 317 arbitrary units to 10,658 +/- 1,843 at 1.0 mg/kg and then decreased to 7,997 +/- 1,335 at 3.0 mg/kg. These changes were related to a steady increase in integral of EMGdi, whereas frequency decreased at 3 mg/kg. There was an increase in breathing response to morphine plasma concentrations or morphine doses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In sheep, prostaglandin (PG) E2 inhibits fetal breathing movements and meclofenamate, a PG synthetase inhibitor, causes a marked stimulation of fetal breathing movements; the site of action of these agents is not known. To determine whether these effects are mediated through the peripheral chemoreceptors, we studied 13 fetal sheep at gestational ages of 127 to 138 days. Seven fetuses had bilateral section of the carotid sinus and vagus nerves (denervated); six had sham operations. Beginning at least 6 days after the operation, we infused PGE2 (0.6 microgram X kg-1 X min-1) into five denervated and five sham-operated fetuses and meclofenamate (0.4 mg X kg-1 X h-1) into six denervated and four sham-operated fetuses. Infusions averaged 20 h in duration. During preinfusion control periods, the incidence of fetal breathing movements (% of time) was lower in denervated than in sham-operated fetuses (18.9% vs. 31.5%; P less than 0.005). In both groups, the incidence of fetal breathing movements was decreased by PGE2 and was increased by meclofenamate; when expressed as absolute values, the magnitude of the changes with both agents was greater in sham-operated fetuses than denervated fetuses. However, the effects were similar in both groups when the changes were expressed as a percent of the respective control values. The incidence of fetal breathing movements (% of control) was decreased by PGE2 to 25.4% in denervated and to 28.2% in sham-operated fetuses and was increased by meclofenamate to 297.3% in denervated and to 304.0% in sham-operated fetuses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To examine the relationship between fetal O2 consumption and fetal breathing movements, we measured O2 consumption, umbilical blood flow, and cardiovascular and blood gas data before, during, and after fetal breathing movements in conscious chronically catheterized fetal lambs. During fetal breathing movements, O2 consumption increased by 30% from a control value of 7.7 +/- 0.7 (SE) ml X min-1 X kg-1. Umbilical blood flow was 210 +/- 21 ml X min-1 X kg-1 before fetal breathing movements; in 9 of 16 samples it increased by 52 +/- 12 ml X min-1 X kg-1, while in the other 7 it decreased by 23 +/- 9 ml X min-1 X kg-1. Umbilical arterial and venous O2 partial pressures and pH fell during fetal breathing movements, and the fall was greater when umbilical blood flow was decreased. Partial CO2 pressure rose in both vessels, and again the increase was greatest when umbilical blood flow fell during fetal breathing movements. Also associated with a fall in umbilical blood flow was the transition from low-amplitude irregular to large-amplitude regular fetal breathing movements. It is concluded that fetal breathing movements increase fetal O2 demands and are associated with a transient deterioration in fetal blood gas status, which is most severe during large-amplitude breathing movements.  相似文献   

8.
The effect of indomethacin on the ethanol-induced suppression of fetal breathing movements, low-voltage electrocortical (ECoG) activity, and electro-ocular (EOG) activity was studied in the near-term fetal sheep. Ten conscious instrumented pregnant ewes (between 129 and 131 days of gestation; term, 147 days) received 1-h maternal intravenous infusion of 1 g ethanol/kg total body weight and simultaneous fetal treatment with either indomethacin (2 mg/kg fetal body weight/h) (n = 5) or an equivalent volume of phosphate buffer (n = 5) intravenously for 9 h. Fetal ECoG activity, EOG activity, and fetal breathing movements were monitored continuously over the experimental periods. In animals treated with ethanol and buffer (n = 5), fetal breathing movements were suppressed for 8 h and low-voltage ECoG and EOG activity was suppressed for 2 h below preinfusion levels. In animals treated with ethanol and indomethacin (n = 5), fetal breathing movements were elevated for 13 h but low-voltage ECoG and EOG activity remained suppressed for 3 h below preinfusion levels. The data suggests that indomethacin can antagonize the ethanol-induced suppression of fetal breathing movements, but does not alter the ethanol-induced suppression of ECoG or EOG activity.  相似文献   

9.
Although the administration of 100% O2 alone or combined with umbilical cord occlusion induces continuous breathing and arousal in the fetal sheep (Baier, Hasan, Cates, Hooper, Nowaczyk & Rigatto, 1990a), the individual contribution of O2 and cord occlusion to the response have not been determined. We hypothesized that if O2 is an important factor in the induction of continuous breathing, administration of O2 low enough (10%) to bring fetal arterial PO2 to about 20 torr while the fetus is breathing continuously should reverse these changes. Thus we subjected 12 chronically instrumented fetal sheep to 10% O2 for 10 minutes after the establishment of continuous breathing by O2 (4 fetuses; 137 +/- 1 days) or by O2 plus umbilical cord occlusion (8 fetuses; 134 +/- 1 days). Arterial PO2 decreased from about 250 torr to 20 torr during 10% O2. This induced a significant decrease in breathing output (EMGdi x f) related primarily to a decrease in frequency (f). In 3/5 experiments in 4 fetuses, with O2 alone, apnoea developed within 4 +/- 0.6 min; in 12/13 experiments in 8 fetuses, with added cord occlusion it developed at 5 +/- 0.6 min. With the decrease in PaO2, electrocortical activity (ECoG) switched from low to high-voltage within 6 minutes in 5/5 experiments (O2 alone) and in 11/13 (O2 plus cord occlusion). The findings suggest that umbilical cord occlusion alone is not sufficient to maintain breathing continuously and an increased PaO2 is needed. We speculate that in the fetus there is a vital link between PaO2, breathing and ECoG with low PaO2 inhibiting and high PaO2 favouring breathing and arousal.  相似文献   

10.
In the unanesthetized fetal sheep the administration of morphine causes initial apnoea followed by hyperpnoea. We thought that a section of the brain at midcollicular level might separate these two effects. Therefore we sectioned the brain stem of five fetuses at 132 +/- 1 (SEM) days of gestation and compared their responses to morphine (17 experiments) with that observed in seven intact fetuses at similar gestational ages (15 experiments). Brain stem sections were confirmed morphologically and histologically. Morphine, 1 mg/kg was injected in the fetal jugular vein during low-voltage electrocortical activity (ECoG). We measured ECoG, eye movements, diaphragmatic activity, blood pressure and amniotic pressure. Sectioned fetuses before the administration of morphine had a complete dissociation between ECoG and breathing activity. With the administration of morphine we found: (i) the length of the apnoea was 139.8 +/- 15.5 min in sectioned fetuses and 17.0 +/- 5.8 min in intact fetuses (P less than 0.01); and (ii) there was no hyperpneic response in the sectioned fetus whereas the length of hyperpnoea in the intact group was 99.1 +/- 11.8 min (P less than 0.001). The results support the idea of two central distinct areas of action of morphine in the fetal brain. The absence of hyperpnoea in the sectioned fetuses suggests that neurons inhibiting the 'respiratory neurons' are located rostrally to the mid-collicular line.  相似文献   

11.
The possibility that adenosine mediates hypoxic inhibition of fetal breathing and eye movements was tested in nine chronically catheterized fetal sheep (0.8 term). Intracarotid infusion of adenosine (0.25 +/- 0.03 mg.min-1.kg-1) for 1 h to the fetus increased heart rate and hemoglobin concentration but did not significantly affect mean arterial pressure or blood gases. As with hypoxia, adenosine decreased the incidence of rapid eye movements by 55% and the incidence of breathing by 77% without significantly affecting the incidence of low-voltage electrocortical activity. However, with longer (9 h) administration, the incidence of breathing and eye movements returned to normal during the adenosine infusion. Intravenous infusion of theophylline, an adenosine receptor antagonist, prevented most of the reduction in the incidence of breathing and eye movements normally seen during severe hypoxia (delta arterial PO2 = -10 Torr). It is concluded that 1) adenosine likely depresses fetal breathing and eye movements during hypoxia and 2) downregulation of adenosine receptors may contribute to the adaptation of breathing and eye movements during prolonged hypoxia.  相似文献   

12.
Core temperature of fetal sheep was raised by perfusing warm water through a loop implanted into the abdomen, or into the stomach via the oesophagus. Raising fetal temperature by 0.8-2 degrees C was associated with an increase in amplitude and incidence of breathing movements, and an increase in the proportion of breathing movements that occurred during high voltage electrocortical (ECoG) activity. Fetal hyperthermia was maintained for 8 h, but the augmentation of breathing movements did not last for more than 2-3 h. The results indicate that changes of maternal temperature caused by hot weather, exercise, fever, and possibly diurnal changes of body temperature could alter the amplitude and pattern of fetal breathing movements.  相似文献   

13.
Hypoxia inhibits fetal breathing movements but after birth it stimulates breathing. These differences have long been thought to involve central nervous inhibitory mechanisms. Such mechanisms might exert a tonic inhibition of fetal breathing movements at normal fetal PaO2 and the rise in PaO2 at birth might lift this inhibitory effect. To test this hypothesis 7 fetal sheep were chronically instrumented at 125-130 days for recording electrocortical activity (ECoG), and the electromyograph (EMG) activity of the diaphragm and neck muscles. Catheters were placed in a fetal carotid and a brachial artery and in the fetal trachea. For an extracorporeal membrane oxygenation system a 12 F gauge silastic catheter was placed in the right atrium for draining fetal blood and a 9.6 F gauge catheter was placed in a carotid artery to return oxygenated blood. Three days after operation the fetuses were connected to the extracorporeal membrane oxygenation system and fetal PaO2 was raised to 65.2 +/- 4.4 mmHg (SEM) for 6 to 19 h without changing pH or PaCO2. Neither the incidence of high voltage ECoG (48.5 +/- SEM 2.0% vs 52.8 +/- 3.3%) nor of fetal breathing movements (37.3 +/- 2.6% vs 23.8 +/- 5.9%) changed during the periods of hyperoxia. Since fetal breathing movements did not become continuous, we conclude that the lower PaO2 in the fetus compared to the neonate does not exert a tonic inhibitory influence on fetal breathing movements.  相似文献   

14.
The inability to see the fetus makes the assessment of fetal behavior difficult. To circumvent this problem we implanted a Plexiglas window in the left flank of the ewe. Fetuses were instrumented for measurements of sleep, breathing, and swallowing. Ten fetal sheep were studied on 32 occasions. Six fetuses were delivered through the window at term, and postnatal behavior was compared with intrauterine behavior. Fetuses observed during resting conditions alternated between periods of quiet sleep [high-voltage electrocortical activity (ECoG)] and active or rapid-eye-movement sleep (low-voltage ECoG). In quiet sleep, movements were absent except for periodic generalized electromyographic discharges. Eye and breathing movements were rare or absent. Swallowing was also absent. In active sleep, movements were increased with powerful breathing and swallowing activity. Fetal wakefulness defined by open eyes and purposeful movements of the head was never seen in utero but was clearly observed after delivery. We conclude that fetal wakefulness as defined postnatally was not able to be demonstrated in utero.  相似文献   

15.
Alcohol (ethanol) use during pregnancy can produce a wide spectrum of effects in the developing embryo/fetus that are dependent on the maternal drinking pattern. The effects of chronic ethanol exposure on the developing conceptus are reviewed with primary focus on ethanol teratogenesis, manifesting in the human as the fetal alcohol syndrome or fetal alcohol effects. The effects of acute ethanol exposure on the near-term fetus are described, including suppressed fetal breathing movements, electrocorticographic (ECoG) activity and electrooculographic (EOG) activity. The ethanol-induced suppression of fetal breathing movements is a very sensitive index of acute exposure of the near-term fetus to ethanol, and appears to involve a direct mechanism of action rather than an indirect mechanism involving suppression of electrocortical activity. The disposition of ethanol and its pharmacologically active proximate metabolite, acetaldehyde, and the activity of alcohol dehydrogenase and aldehyde dehydrogenase in the near-term maternal-fetal unit are described, and a pharmacokinetic model is proposed. The effects of short-term ethanol exposure on the near-term fetus include the development of tolerance to the ethanol-induced suppression of fetal breathing movements, low-voltage ECoG activity and EOG activity. The development of tolerance occurs more rapidly to the latter two fetal biophysical activities. The mechanism of tolerance development appears to be pharmacodynamic (functional) in nature, as there is no increase in the rate of ethanol elimination from the maternal-fetal unit. The role of prostaglandins (PGs) in the mechanism of the ethanol-induced suppression of fetal breathing movements is described. In the near-term fetus, there is a direct relationship between fetal blood ethanol concentration and fetal plasma PGE2 concentration, and an inverse relationship between the incidence of fetal breathing movements and each of fetal plasma and fetal cerebrospinal fluid (CSF) PGE2 concentrations. Indomethacin, a PG synthetase inhibitor, selectively blocks and reverses the ethanol-induced suppression of fetal breathing movements. These data support the postulates that the ethanol-induced suppression of fetal breathing movements is mediated by increased PGE2 concentration in the near-term fetus and that the ability of indomethacin to antagonize the ethanol-induced suppression of fetal breathing movements is due to its biochemical action to decrease fetal PGE2 concentration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
We have shown previously that continuous fetal breathing can be induced by 100% O2 alone or combined with umbilical cord occlusion (Baier, Hasan, Cates, Hooper, Nowaczyk & Rigatto, 1990). To know whether it could also be induced by lower O2 concentrations plus cord occlusion, we studied 9 chronically instrumented fetal sheep (16 experiments) using our window model. After a baseline cycle [1 low voltage + 1 high voltage electrocortical activity (ECoG) epoch] the fetal lung was distended via an endotracheal tube to about 30 cm H2O. Inspired N2 (control) and 21 or 30% O2 were given for one cycle each. While on 21% or 30% O2 the umbilical cord was occluded (balloon cuff). In 10 out of 16 experiments breathing output (% maximum of integral of EMGdi x f) increased after cord occlusion from 80 +/- 48 (N2) to 2871 +/- 641 (SEM; P < 0.01); in 7 of them breathing became continuous. Arterial PO2 increased from 14 +/- 1 (N2) to 33.5 +/- 5 Torr (occlusion; P < 0.01). In the other 6 experiments breathing output decreased from 319 +/- 116 (N2) to 86 +/- 38 (occlusion; P < 0.01) and arterial PO2 changed from 18 +/- 1 (N2) to 22 +/- 5 Torr (occlusion; P = 0.4). Arterial PCO2 increased similarly after occlusion in both groups, those which did respond with increased breathing (to 46 +/- 2 Torr) and those which did not respond (to 48 +/- 3 Torr; P = 0.6). The percent low voltage ECoG and the behavioral score increased after occlusion in the responder group only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Isocapnic hypoxaemia (delta PaO2 = -8.0 +/- 0.5 mmHg; delta CaO2 = -2.86 +/- 0.20 ml/dl) was produced in fetal sheep by having the ewe breathe for one hour a gas mixture (v/v) of 10.5% O2 and 1.5% CO2 in N2. Mean fetal heart rate, blood pressure, and incidence of low voltage electrocortical activity were not affected. However, the incidence of rapid-eye-movements and breathing activity was reduced by about 40%. Breathing movements during hypoxaemia had a mean inspiratory time, breath interval, and tracheal pressure amplitude which did not differ significantly from those during control experiments in which the ewe breathed air from the plastic bag. These observations suggest that hypoxia decreases the incidence of breathing movements but does not affect the amplitude or pattern of breathing activity and that it may reduce the incidence of eye movements and breathing activity through a common mechanism.  相似文献   

18.
In fetal sheep, plasma prostaglandin (PG) E2 concentrations are high, and fetal breathing movements (FBM) occur intermittently, primarily during low-voltage fast electrocortical activity (LVFA). There is evidence suggesting that prostaglandins, specifically PGE2, may regulate FBM. To define the physiological role of PGE2 in regulation of FBM, we infused meclofenamate (0.9 mg X kg-1 X h-1), a prostaglandin synthetase inhibitor, into six fetal sheep to suppress endogenous prostaglandin production. Afterward, PGE2 was added in mean doses of 9, 18, 36, and 90 ng X kg-1 X min-1. Meclofenamate decreased PGE2 concentrations and increased FBM, especially during high-voltage slow electrocortical activity (HVSA). Addition of PGE2 reversed the effects of meclofenamate, increasing PGE2 concentrations and decreasing FBM, especially during HVSA. The response to PGE2 was dose dependent; the overall incidence of FBM and incidences of FBM during HVSA and LVFA were inversely correlated with both the infused PGE2 dose and the mean PGE2 concentration. At higher doses of PGE2, FBM occurred intermittently and only during LVFA; thus PGE2 infusion restored the physiological pattern of FBM. These results indicate that PGE2 regulates FBM by inhibiting FBM during HVSA.  相似文献   

19.
We investigated the effects of phrenic nerve section (PNS) on the respiratory system of fetal lambs. Seven ewes, three of which had twin fetuses, were given a general anesthetic. The thoracic phrenic nerves were cut in two singleton fetuses and in one fetus in each set of twins (116-121 days); two singleton fetuses and one fetus in each set of twins underwent the same procedure except for PNS. Fetal arterial blood pressure, heart rate, and arterial pH and blood gas tensions were the same in both groups. Phrenic nerve section eliminated fetal breathing movements and decreased airway fluid volume, lung weight, and total lung DNA (P less than 0.05). However, PNS did not affect production of tracheal fluid or percent dry weight of the lungs. Furthermore, PNS did not affect the concentration of saturated phosphatidylcholine in the lung or its flux in tracheal fluid. We conclude that PNS in fetal lambs retards lung growth but does not affect tracheal fluid production or formation and release of surfactant.  相似文献   

20.
The effects of indomethacin on the ethanol-induced suppression of fetal breathing movements and fetal arterial plasma and cerebrospinal fluid (CSF) PGE2 concentrations and maternal arterial plasma PGE2 concentration were determined in the near-term fetal lamb. Eight conscious instrumented pregnant ewes (between 130 and 133 days of gestation; term, 147 days) received 1-h maternal intravenous infusion of 1 g ethanol/kg total body weight, and the fetus received 6-h intravenous infusion of indomethacin (1 mg/h per kg fetal body weight) commencing 30 min later. Serial fetal and maternal arterial blood samples (n = 8) and fetal CSF samples (n = 5) were collected at selected times throughout the 12-h study for the determination of PGE2 concentration. Fetal breathing movements were monitored continuously throughout the experimental period. Maternal ethanol infusion resulted in initial suppression (P less than 0.05) of fetal breathing movements for 2 h below pretreatment value, followed by a rapid increase in the incidence of fetal breathing movements after the onset of fetal indomethacin treatment. Fetal and maternal plasma PGE2 concentrations and fetal CSF PGE2 concentration were increased (P less than 0.05) above the pre-infusion value during the administration of ethanol and 1 h thereafter. Fetal indomethacin treatment suppressed (P less than 0.05) to undetectable levels fetal plasma and CSF PGE2 concentrations, which then became similar (P greater than 0.05) to pretreatment by 12 h. There was a positive correlation between fetal plasma and CSF PGE2 concentrations. There was an inverse correlation between the incidence of fetal breathing movements and fetal CSF PGE2 concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号