首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of a single intraventricular injection of kainic acid (KA) in a dose of 0.1 microgram per rat on the activity of different brain neurotransmitter systems were investigated. A decreased level of norepinephrine at 3 and 24 h and acceleration of its utilization at 3 h after application of KA were observed. These changes were also accompanied by a decreased level of dopamine at 24 h, increased utilization of dopamine at 3 h, increased levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid at 3 and 24 h, as well as by shortened time of the turnover of 5-hydroxytryptamine. No disturbances in the function of the aminergic systems were noted at 120 h after injection of KA. Lowered activity of glutamic acid decarboxylase in the striatum, hippocampus, hypothalamus and cerebellum was observed at 24 h after administration of KA. At 480 h following application of KA, this lowering persisted in the hippocampus only. The most prominent changes in the level of gamma-aminobutyric were observed at 120 h in the striatum, hippocampus and cerebellum. A decreased level of gamma-aminobutyric acid was found in the striatum and cerebellum at 480 h following injection of KA. The observed changes in the dynamic equilibrium between various neurotransmitter systems may be a consequence of the direct or indirect influence of KA.  相似文献   

2.
Abstract— The effects of exposure to an antithyroid drug, methimazole, on brain tyrosine hydroxylase and tryptophan hydroxylase activity, as well as the levels of norepinephrine, dopamine, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid have been investigated in maturing brain. Daily treatment of neonatal rats with methimazole for 30 days induced chemical thyroidectomy as evidenced by significant impairment of body and brain growth. The activities or brain tyrosine hydroxylase and tryptophan hydroxylase and the levels of norepinephrine, dopamine and 5-hydroxytryptamine were markedly altered in a dose- and time-dependent manner in methimazole-treated rats. Conversely, the concentration of brain 5-hydroxyindoleacetic acid was elevated (46%) by methimazole administration. Treatment with the antithyroid drug failed to exert any significant effect on the endogenous levels of brain tryptophan, as well as on the activity of the deaminating enzyme, monoamine oxidase. Administration of triiodothyronine (25 or 100 μg/100 g) to hypothyroid rats for 30 days did not produce any appreciable effect upon the neurochemical parameters related to either norepinephrine or 5-hydroxytryptamine mctabolism. However, increasing the dose of triiodothyronine to 250 μg/100 g significantly elevated the levels of norepinephrine and 5-hydroxytryplamine as well as the activities of the two synthesizing enzymes, tyrosine hydroxylase and tryptophan hydroxylase. Brain 5-hydroxyindoleacetic acid levels were restored to normal values in thyroid hormone-deficient rats treated with this higher dose of triiodothyronine. Evidencc also was obtained to show that chemical thyroidectomy suppressed the spontancous locomotor activity in neonatal rats; the changes being apparent at 15 days of age. Our data support the view that thyroid hormone in neonatal life displays an important regulatory effect on the metabolism of norepinephrine, dopamine and 5-hydroxytryptamine. Since certain amines have been known to be implicated as the neurochemical substrates for behavioural arousal, it is conceivable that the observed hypoactivity in methimazolc-treated rats may, at least in part, be related to impaired maturation of norepinephrine and dopamine-synthesizing systems in brains of cretinous rats.  相似文献   

3.
1. Earlier reports from this and other laboratories have indicated that wide variations exist in estimates of the concentrations of norepinephrine in the brain and heart of the snail Helix aspersa. This is a report on investigations of norepinephrine concentrations in Helix aspersa tissues using high-performance liquid chromatography with electrochemical detection. In addition, the effects of treatment with some amino acid precursors or enzyme inhibitors on the concentrations of norepinephrine, dopamine, 5-hydroxytryptamine, and some of their metabolites were investigated. 2. The levels of norepinephrine in the brain were low (46 ng/g) in comparison to dopamine (2.1) micrograms/g) and 5-hydroxytryptamine (2.6 micrograms/g). Epinephrine was not observed in either snail heart of snail nervous tissue. 3. Administration of L-3,4-dihydroxyphenylalanine resulted in elevated snail brain dopamine, while 3,4-dihydroxyphenylserine treatment increased norepinephrine. Treatment with blockers of tyrosine hydroxylase and aromatic-L-amino acid decarboxylase reduced dopamine concentrations without affecting 5-hydroxytryptamine. 4. The dopamine metabolite 3,4-dihydroxyphenylacetic acid was observed only after administration of L-3,4-dihydroxyphenylalanine or dopamine and then only in very small amounts. At no time was the dopamine metabolite homovanillic acid or the 5-hydroxytryptamine metabolite 5-hydroxyindoleacetic acid observed in brain, heart, or whole-body extracts of the snail. 5. Incubation of nervous tissue with either dopamine or 5-hydroxytryptamine resulted in the production of electrochemically active metabolites which were identified by oxidation characteristics and cochromatography with synthesized standards as the gamma-glutamyl conjugates of the amines. Treatment of snails with 5-hydroxytryptamine or dopamine also resulted in the production of gamma-glutamyl conjugates. 6. The present experiments show that great care must be exercised when measuring monoamines and their metabolites in gastropod tissues by high-performance liquid chromatography with electrochemical detection.  相似文献   

4.
1. The 4-fluoro analogue of the monoamine oxidase-inhibiting antidepressant tranylcypromine was compared to the parent drug with regard to the following: inhibition of monoamine oxidases A and B in vitro and ex vivo; levels of both drugs in brain, liver, and blood after injection of equimolar doses; and effects on brain levels of the amines 2-phenylethylamine, tryptamine, norepinephrine, dopamine, and 5-hydroxytryptamine. 2. 4-Fluorotranylcypromine was found to be 10 times more potent than tranylcypromine at inhibiting monoamine oxidases A and B in vitro in rat brain homogenates. 3. After administration (0.1 mmol/kg, ip), 4-fluorotranylcypromine attained higher brain and liver levels and provided greater availability than did tranylcypromine after the injection of an equimolar amount. 4. At the dose employed, the ex vivo monoamine oxidases A and B inhibitory profiles in brain and liver over a 24-hr period following tranylcypromine and 4-fluorotranylcypromine treatment were not different from each other. 5. Although the drugs had similar effects on inhibition of brain MAO ex vivo, they differed from one another at several time intervals in the increases in concentrations of 2-phenylethylamine, tryptamine, norepinephrine, dopamine, and 5-hydroxytryptamine produced in brain. 6. In conclusion, fluorination of tranylcypromine in the 4 position of the phenyl ring produced a drug which was more potent than the parent drug at inhibiting MAO in vitro and attained higher levels in brain than did tranylcypromine itself after intraperitoneal injection of equimolar amounts of the drugs. 4-Fluorotranylcypromine increased the concentrations of trace amines, catecholamines, and 5-hydroxytryptamine in brain at most time intervals following intraperitoneal injection, and at some time intervals there were differences from tranylcypromine with regard to the amine concentrations produced.  相似文献   

5.
(1) The treatment of choice for Parkinson’s disease (PD) is 3,4-dihydroxyphenylalanine (L-DOPA) with peripheral decarboxylase inhibitor, but long-term therapy leads to motor and psychiatric complications. In the present study we investigated 5-hydroxytryptamine (5-HT) and dopamine concentrations in serotonergic and dopaminergic nuclei following chronic administration of L-DOPA to find whether the neurotransmitter synthesis in these brain areas are compensated. (2) Rats were administered L-DOPA (250 mg/kg) and carbidopa (25 mg/kg) daily for 59 and 60 days, and killed on the 60th day, respectively at 24 h and 30 min after the last dose. L-DOPA, norepinephrine, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), dopamine, homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in striatum, nucleus raphe dorsalis (NRD), nucleus accumbens (NAc), substantia nigra, cerebellum, and cortex employing HPLC-electrochemical procedure. (3) Prolonged treatment of L-DOPA caused depression in the animals as revealed in a forced swim test. Serotonin content was significantly decreased in all brain regions studied 30 min after long-term L-DOPA, except in NAc. The cortex and striatum showed lowered levels of this indoleamine 24 h after 59 doses of L-DOPA. Dopamine, HVA, and DOPAC concentrations were significantly higher in all the regions studied after 30 min, and in the cerebellum after 24 h of L-DOPA. The levels of DOPAC were elevated in all the brain areas studied 24 h after prolonged L-DOPA treatment. (4) The present results suggest that long-term L-DOPA treatment results in significant loss of 5-HT in serotonergic and dopaminergic regions of the brain. Furthermore, while L-DOPA metabolism per se was uninfluenced, dopamine synthesis was severely impaired in all the regions. The imbalance of serotonin and dopamine formation may be the cause of overt cognitive, motor, and psychological functional aberrations seen in parkinsonian patients following prolonged L-DOPA treatment.  相似文献   

6.
EFFECTS OF LESIONS AND DRUGS ON BRAIN TRYPTAMINE   总被引:3,自引:2,他引:1  
Abstract— The effects of various drugs and lesions on rat brain 5-hydroxytryptamine and tryptamine were determined. Monoamine oxidase inhibition caused a proportionately greater increase in tryptamine than in 5-hydroxytryptamine, reserpine depleted 5-hydroxytryptamine but had no effect on tryptamine while p -chlorophenylalanine lowered 5-hydroxytryptamine but increased tryptamine. α-Methyl- p -tyrosine reduced striatal dopamine with no effect on either 5-hydroxytryptamine or tryptamine. Increasing brain tryptophan by amphetamine administration. 24 h food deprivation or giving L-tryptophan did not increase brain tryptamine. However a high dose of L-tryptophan (100 or 200mg/kg) together with a monoamine oxidase inhibitor caused a proportionately much greater increase in tryptamine than in 5-hydroxytryptamine. Raphe lesions reduced 5-hydroxytryptamine by 64 per cent and tryptamine by only 29 per cent while intraventricular 6-hydroxydopamine lowered striatal dopamine (56 per cent), had no effect on 5-hydroxytryptamine but reduced tryptamine by 24 per cent, suggesting that tryptamine can be formed in both 5-HT and catecholaminergic neurones.
The results are discussed in relation to the formation, distribution, storage and possible transmitter function of tryptamine in rat brain.  相似文献   

7.
8.
Previous investigators have detected unknown oxidized forms of 5-hydroxytryptamine (5-HT) in the CSF of Alzheimer's disease (AD) patients. Furthermore, an unidentified autoxidation product of this neurotransmitter is an inhibitor of acetylcholinesterase (AChE), an enzyme compromised in the Alzheimer brain. In this study it is demonstrated that the major product of autoxidation of 5-HT is 5,5'-dihydroxy-4,4'-bitryptamine (DHBT). Central administration of DHBT to mice at a dose of 40 micrograms (free base) evokes profound behavioral responses, which persist until the animals die (approximately 24 h). One hour after central administration of DHBT, the levels of norepinephrine, dopamine, 5-HT, and acetylcholine and their metabolites in whole brain are greatly elevated. Disturbances to the catecholaminergic and serotonergic systems were still evident shortly before the death of animals. DHBT is also shown to be a noncompetitive inhibitor of AChE in vitro. These observations suggest that if DHBT is formed as an aberrant metabolite of 5-HT in the human brain, it could potentially be neurotoxic and contribute to the neuronal degeneration and other neurochemical and neurobiochemical changes associated with AD or perhaps other neurodegenerative diseases.  相似文献   

9.
10.
To date, UCM707, (5Z,8Z,11Z,14Z)-N-(3-furylmethyl)eicosa-5,8,11,14-tetraenamide, has the highest potency and selectivity in vitro and in vivo as inhibitor of the endocannabinoid uptake. Its biochemical, pharmacological and therapeutic properties have been intensely studied recently, but the information on its capability to modify neurotransmitter activity, which obviously underlies the above properties, is still limited. In the present study, we conducted a time-course experiment in rats aimed at examining the neurochemical effects of UCM707 in several brain regions following a subchronic administration (5 injections during 2.5 days) of this inhibitor in a dose of 5 mg/kg weight. In the hypothalamus, the administration of UCM707 did not modify GABA contents but reduced norepinephrine levels at 5 h after administration, followed by an increase at 12 h. Similar trends were observed for dopamine, whereas serotonin content remained elevated at 1 and, in particular, 5 and 12 h after administration. In the case of the basal ganglia, UCM707 reduced GABA content in the substantia nigra but only at longer (5 or 12 h) times after administration. There were no changes in serotonin content, but a marked reduction in its metabolite 5HIAA was recorded in the substantia nigra. The same pattern was found for dopamine, contents of which were not altered by UCM707 in the caudate-putamen, but its major metabolite DOPAC exhibited a marked decrease at 5 h. In the cerebellum, UCM707 reduced GABA, serotonin and norepinephrine content, but only the reduction found for norepinephrine at 5 h reached statistical significance. The administration of UCM707 did not modify the contents of these neurotransmitters in the hippocampus and the frontal cortex. Lastly, in the case of limbic structures, the administration of UCM707 markedly reduced dopamine content in the nucleus accumbens at 5 h, whereas GABA content remained unchanged in this structure and also in the ventral-tegmental area and the amygdala. By contrast, norepinephrine and serotonin content increased at 5 h in the nucleus accumbens, but not in the other two limbic structures. In summary, UCM707 administered subchronically modified the contents of serotonin, GABA, dopamine and/or norepinephrine with a pattern strongly different in each brain region. So, changes in GABA transmission (decrease) were restricted to the substantia nigra, but did not appear in other regions, whereas dopamine transmission was also altered in the caudate-putamen and the nucleus accumbens. By contrast, norepinephrine and serotonin were altered by UCM707 in the hypothalamus, cerebellum (only norepinephrine), and nucleus accumbens, exhibiting biphasic effects in some cases.  相似文献   

11.
Abstract— Pigeons working on a multiple fixed ratio 50, fixed interval 10 schedule for food reinforcement were killed at 0, 50, 90, 150 and 240 min after an i.m. injection of 300mg/kg l -tryptophan. The levels of tryptophan, 5-hydroxytryptophan, 5-hydroxytryptamine, 5-hydroxyindole acetic acid, tyrosine, dopamine and norepinephrine were concurrently measured in crude nerve ending fractions (P2) isolated from the telencephalon, diencephalon plus mesencephalon and pons plus medulla-oblongata of each pigeon. Increases in 5-hydroxytryptamine levels in the nerve ending fraction from the telencephalon were correlated with the onset of the decreased response rates, whereas a return to baseline responding was correlated with a return to normal serotonin levels in this fraction. Changes in dopamine or norepinephrine were not related to the onset of or recovery from the decreased response rate. One group of pigeons were found which did not display any behavioral disruption even though each had received an injection of l -tryptophan; the content of 5-hydroxytryptophan, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the nerve ending fraction isolated from the telencephalon of these birds did not differ from control values.  相似文献   

12.
(1) Huperzine A, a promising therapeutic agent for Alzheimer’s disease (AD), was tested for its effects on cholinergic and monoaminergic dysfunction induced by injecting β-amyloid peptide-(1–40) into nucleus basalis magnocellularis of the rat. (2) Bilateral injection of 10 μg β-amyloid peptide-(1–40) into nucleus basalis magnocellularis produced local deposits of amyloid plaque and functional abnormalities detected by microdialysis. In medial prefrontal cortex, reductions in the basal levels and stimulated release of acetylcholine, dopamine, norepinephrine, and 5-hydroxytryptamine were observed. However, oral huperzine A (0.18 mg/kg, once daily for 21 consecutive days) markedly reduced morphologic abnormalities at the injection site in rats infused with β-amyloid peptide-(1–40). Likewise, this treatment ameliorated the β-amyloid peptide-(1–40)-induced deficits in extracellular acetylcholine, dopamine, and norepinephrine (though not 5-hydroxytryptamine) in medial prefrontal cortex, and lessened the reduction in nicotine or methoctramine-stimulated release of acetylcholine and K+-evoked releases of acetylcholine and dopamine. (3) The present results provide the first direct evidence that huperzine A acts to oppose neurotoxic effects of β-amyloid peptide on cholinergic, dopaminergic, and noradrenergic systems of the rat forebrain.  相似文献   

13.
T F Burks  G C Rosenfeld 《Life sciences》1979,24(12):1067-1073
Subcutaneous (sc) injections of morphine (10 mg/kg) caused transient falls in body temperature of rats. The hypothermic responses to morphine were inhibited by the prior intracerebroventricular (icv) administration of methysergide or phentolamine. Methysergide treatment also prevented hypothermic responses to icv 5-hydroxytryptamine (5-HT), but not responses to icv norepinephrine or dopamine. Phentolamine inhibited responses to icv norepinephrine and dopamine, but not to 5-HT. Haloperidol, which inhibited responses to icv dopamine, did not alter the hypothermia induced by sc or icv morphine. The results indicate that both 5-HT and norepinephrine participate as central mediators of morphine-induced hypothermia.  相似文献   

14.
The acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) on mouse locomotor activity and striatal dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were investigated. A single dose of either MPTP (10-30 mg/kg, i.p.) or MPP+ (5-20 ug/mouse, i.c.v.) decreased locomotor activity 10-40 min after injection: this locomotor effect was significantly suppressed by either pretreatment with nomifensine or 1-deprenyl alone, or by the combination of desmethylimipramine and 6-hydroxydopamine. Pretreatment with clorgyline did not suppress this behavior and a single dose of haloperidol enhanced the effect. The striatal levels of DA, 3-methoxytyramine and 5-HT increased in parallel with the decrease in locomotor activity caused by MPTP or MPP+. In contrast, levels of 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid were decreased by injection of either MPTP or MPP+. Possible mechanism(s) of the behavioral and biochemical changes caused by the acute actions of MPTP and MPP+ with respect to their neurotoxic effects on the nigrostriatal DA system are discussed.  相似文献   

15.
The effects of long treatment with dexamethasone 21-acetate and corticosterone on the glucocorticoid receptor in rat liver cytosol were compared. Dexamethasone acetate (5 micrograms/ml or 10 micrograms/ml water) or corticosterone (100 micrograms/ml water) was given to adrenalectomized animals as drinking solution for 6 days, and glucocorticoid receptor concentration was determined at 0, 12, 24, 48 and 72 h after steroid withdrawal. Dexamethasone acetate caused a dose dependent depletion of cytosol receptor. There was no measurable binding at time 0; the values of Bmax for the glucocorticoid receptor with decreased at 12, 24 and 48 h after the steroid withdrawal. Increased dissociation constant (Kd) were calculated for 12 and 24 h samples. The effect of corticosterone on receptor depletion was less pronounced. Bmax for the receptor was decreased at 0, 12, 24 h after steroid withdrawal with no change in Kd. The extent of steroids-induced receptor depletion showed good correlation with the induction of tyrosine aminotransferase (TAT), however, maximum TAT activity measured immediately after withdrawal of dexamethasone acetate was lower than that found after a single injection of dexamethasone acetate. We conclude that both steroids cause down regulation of the glucocorticoid receptor in rat liver cytosol, with both the extent and the duration of depletion being dependent on the biopotency of the glucocorticoid.  相似文献   

16.
1. The extracts of brains (cerebral ganglion) of the tobacco hornworm larvae contain octopamine, dopamine and 5-hydroxytryptamine, but not norepinephrine via analysis using a 16-channel electrochemical array HPLC system.2. A comprehensive daily analysis reveals the patterns of biogenic amine levels in the brain during larval—pupal metamorphosis.3. Monoamine oxidase-based amine metabolites are not present at detectable levels. N-β-Alanyldopamine is the predominant metabolite of dopamine present in the brain during the postwandering phase of the last larval stadium.  相似文献   

17.
Alterations in regional brain concentration of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their metabolites were investigated in male BALB/c mice injected intraperitoneally with bacterial lipopolysaccharide (LPS, 2 mg kg(-1)) or recombinant murine tumor necrosis factor alpha (TNFalpha, 0.1 mg kg(-1)) at 2, 6, 12 and 24 h after the injection. At 2 h post-injection the LPS administration resulted in hypothermia, which was not apparent at later time points. No consistent effects were observed by either LPS or TNFalpha on peripheral leukocyte counts or plasma transaminase levels. Both LPS and TNFalpha slightly elevated NE metabolism in the striatum at 2-12 h. Concentrations of DA and its metabolites were significantly elevated only in the hypothalamus following TNFalpha at 24 h. Tumor necrosis factor alpha exerted pronounced effects on 5-HT metabolism in most brain regions at 2 h. Results suggest that the effect of LPS is more complex compared with TNFalpha because of the endogenous production of other cytokines including the TNFalpha.  相似文献   

18.
Evidence has been presented that alterations in thyroidal status produce marked changes in the metabolism of several biogenic amines in developing brain. Neonatal hypothyroidism induced either by 131I or by an anti-thyroid agent, methimazole, markedly decreased the concentrations of norepinephrine, dopamine and 5-hydroxytryptamine and the activity of their rate-limiting enzymes, tyrosine hydroxylase and tryptophan hydroxylase. However, the levels of 5-hydroxyindoleacetic acid, the chief metabolite of 5-hydroxytryptamine were elevated in several regions of the brain. Whereas thyroid deficiency in early life produced no appreciable change in whole brain monoamine oxidase activity, it was increased in mid brain and decreased in the hypothalamus. Brain acetylcholine levels were significantly elevated and the activity of acetylcholinesterase remained unchanged in rats made hypothyroid at 1 day of age. Delaying thyroidectomy for 20 days after birth produced less appreciable changes in norepinephrine and 5-hydroxytryptamine metabolism. Thyroid deficiency suppressed the ontogenesis of behavioural arousal and spontaneous locomotor activity. The administration of L-triiodothyronine to hypothyroid animals in early life restored the metabolism of various neurohumors virtually to the normal limits. However, when the replacement therapy was postponed until adulthood, L-triiodothyronine failed to produce any restorative effects, suggesting that a critical period exists in early life during which thyroid hormone must be present to permit normal developmental pattern of central amines. Data also have been obtained demonstrating that neonatal hyperthyroidism induced by daily administration of L-triiodothyronine results in an increased turnover of norepinephrine and 5-hydroxytryptamine. These amine changes were accompanied by a marked rise in the spontaneous locomotor activity in hyperthyroid rats. Finally, chronic treatment with lithium, an antimanic drug, also known to suppress thyroid hormone production, significantly decreased not only the spontaneous locomotor activity, but also changes in the turnover of 5-hydroxytryptamine and norepinephrine in neonatally hyperthyroid rats.  相似文献   

19.
Abstract— Pigeons working on a multiple lixed-ratio 50, fixed interval 10 schedule of food reinforcement were injected with l -tryptophan (300mg/kg; I.M.) and killed at various times before, during and after the period of behavioural depression following the administration of this amino acid (0, 25, 50, 90, 170 and 230 min). The levels of tryptophan, 5-hydroxytryptophan, 5-hydroxytryptamine, 5-hydroxyindoleacetic acid, tyrosine, dopamine and norepinephrine were concurrently measured in 4 specific areas of the brain (telencephalon, diencephalon plus mesencephalon, pons plus medulla-oblongata and cerebellum). The course of the increases in the level of 5-hydroxytryptamine in the telencephalon, and subsequent return to pre-injection levels, was temporally related to the onset of the decreased responding and gradual return to normal rates of responding. Changes in dopamine and norepinephrine were not correlated with the onset of and recovery from the decreased response rates. The data in this paper are discussed in terms of (a) the previously reported work with 5-hydroxytryptophan and (b) the importance of the telencephalic serotonergic system in certain types of behavioural depression.  相似文献   

20.
王欢  王淑敏  陈长宝  李玉 《菌物学报》2020,39(5):917-922
黄绿卷毛菇Floccularia luteovirens异名为黄绿蜜环菌Armillaria luteovirens,是我国珍稀的食药用菌。为探究其镇痛、抗炎和抗偏头痛的药理作用,本研究初步探究了黄绿卷毛菇水提物(water extract of F. luteovirens,FLW)对硝酸甘油诱导的偏头痛大鼠机体抗炎和镇痛的作用。SD大鼠灌胃给药不同剂量FLW,硝酸甘油诱导造模后,观察行为学变化,并测定偏头痛大鼠血液中一氧化氮NO、白细胞介素-6(interleukin-6,IL-6)、白细胞介素-1β(interleukin-1β,IL-1β)及下丘脑组织中5-羟色胺(5-hydroxytryptamine,5-HT)、多巴胺(dopamine,DA)、去甲肾上腺素(norepinephrine,NE)的水平变化。结果表明,FLW给药组可以显著降低偏头痛大鼠血清中NO、IL-6和IL-1β的水平;同时,可显著提高下丘脑组织中5-HT、DA和NE的水平,对实验性偏头痛大鼠具有良好的抗炎、镇痛作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号