首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The embryonic hatching process in the toad, Bufo japonicus , consists of two phases: rupture of the outer jelly strings at stage 20 (neural tube) and an escape from the inner jelly layers and fertilization coat (FC) of individual embryos at stage 23 (tailbud). SDS-PAGE analyses of FCs revealed that, of the eight major protein bands, two components with 58 K and 62 K in molecular weight gradually decreased from stage 18–19 on and totally disappeared at stage 22. When the FCs were treated with a hatching medium prepared by culturing denuded prehatching embryos, both 58 K and 62 K components of the FCs were solubilized, and in the solubilized materials 18 K and 31 K components appeared. Electron microscopy showed that a meshwork of filament bundles present in the FCs before stage 17 became dissociated at stage 19–20, and completely disappeared at stage 23, just before the hatching of embryos. Hatching gland cells (HGCs), an epidermal cell with numerous secretory granules, were first identified at stage 19, and underwent active secretion of the granules during stage 19–23. These results indicate that the hydrolytic degradation of 58K and 62 K components in FCs effected by the hatching enzyme constitutes the basic mechanism of embryonic hatching during both the first and second phases.  相似文献   

2.
The embryo of the sea urchin Strongylocentrotus purpuratus hatches from the fertilization envelope (FE) via synthesis and secretion of a hatching enzyme and by ciliary activity. Although the basic characteristics of the hatching enzyme are known, little is understood about changes in the FE during hatching. We have studied the biochemical changes in FEs during hatching. Polyacrylamide gel analysis revealed an increasingly complex polypeptide spectrum of the extractable fraction of FEs isolated during development. Immunoblotting of these polypeptides (using antiserum against the soluble polypeptides extracted from FEs isolated at 30 minutes postinsemination) revealed a decrease in the soluble FE components during hatching. Immunochemical analysis of hatching medium showed a strong correlation between the soluble FE components released and the hatching interval. Immunoblotting of hatching media indicated the presence of soluble FE polypeptides of similar and lower molecular weights than those obtained for extracts of FEs. These results imply that the hatching-associated changes in the FE of S purpuratus occur via proteolysis of FE components, which are derived from the paracrystalline protein fraction, a subset of cortical granule proteins.  相似文献   

3.
Bovine beta-lactoglobulin was hydrolyzed with trypsin or chymotrypsin in the course of heat treatment at 55, 60 and 65 degrees C at neutral pH. At these temperatures beta-lactoglobulin undergoes significant but reversible structural changes. In the conditions used in the present study, beta-lactoglobulin was virtually insensitive to proteolysis by either enzyme at room temperature, but underwent extensive proteolysis when either protease was present during the heat treatment. High-temperature proteolysis occurs in a progressive manner. Mass spectrometry analysis of some large-sized breakdown intermediates formed in the early steps of hydrolysis indicated that both enzymes effectively hydrolyzed some regions of beta-lactoglobulin that were transiently exposed during the physical treatments and that were not accessible in the native protein. The immunochemical properties of the products of beta-lactoglobulin hydrolysis were assessed by using various beta-lactoglobulin-specific antibodies, and most epitopic sites were no longer present after attack of the partially unfolded protein by the two proteases.  相似文献   

4.
Interacting egg envelope and sperm surface components were identified for Xenopus laevis using blotting methods. Sperm were extracted with sodium dodecyl sulfate (SDS), the extracted proteins separated by gel electrophoresis and blotted, and the blots treated with 125I-labeled heat solubilized envelopes. The converse experiment was also performed where envelope components were separated by gel electrophoresis, blotted, and the blots treated with 125I-labeled sperm components. Blotted sperm components with apparent molecular weights of 14K, 19K, 25K, and 35K selectively bound the solubilized envelopes. All of the envelope binding components were found to be localized on the sperm surface by radioiodinating intact sperm using Iodo-Gen. The blotted egg envelope component with an apparent molecular weight of 37K selectively bound to solubilized sperm components, and this binding was due to the protein moiety of the glycoprotein. 125I-labeled heat solubilized envelopes from unfertilized and fertilized eggs showed the same pattern of binding to blotted sperm components. Selected sulfated carbohydrates (fucoidan, dextran sulfate, and heparin, but not chondroitin sulfate) inhibited fertilization and binding of 125I-labeled heat solubilized envelopes to blotted sperm extract. Thus, the binding of heat solubilized envelopes to electrophoretically separated and blotted sperm proteins may reflect cellular interactions.  相似文献   

5.
The hatching enzyme is an embryo-secreted enzyme(s) which digests the egg envelope, allowing the embryo to emerge at the time of hatching. The hatching enzyme of the fish, Oryzias latipes, has recently been found to consist of two kinds of proteases which may digest the inner layer of chorion (egg envelope) cooperatively [Yasumasu, S. et al. (1988) Zool. Sci. 5, 191-195]. In the present study, one of them, high choriolytic (egg envelope digesting) enzyme (HCE) was purified and some biochemical and enzymological properties were examined. The enzyme was a basic protein with a molecular weight of about 24 kDa, and exhibited choriolytic activity as well as proteolytic (caseinolytic) activity. The results of inhibitor studies and metal analyses strongly suggested that it was a zinc-protease. The purified HCE consisted of two probable isomers, HCE-1 and HCE-2. Both of them were markedly similar in amino acid composition, specific activities of choriolysis and proteolysis, and substrate specificity as determined using MCA-peptides. Moreover, they were not separable on SDS-PAGE, electrofocusing PAGE, or ultracentrifugal analysis, but were discriminated only on HPLC with a CM-300 column. Thus, the mixture of HCE-1 and HCE-2 could be regarded as almost a single enzyme, HCE. When it acted on an intact chorion, the purified HCE caused a remarkable swelling of its inner layer with concomitant release of peptides from it. Once the inner layer of chorion was swollen, the enzyme hardly digested it.  相似文献   

6.
Using an anti-(glutathione S-transferase-UVS.2 cDNA) Ig and uterine egg vitelline envelope (UEVE) protein of Xenopus laevis as probes, the hatching enzyme (HE) from Xenopus was solubilized in hatching medium and purified by gel-filtration and ion-exchange chromatography, and characterized in terms of its molecular mass and enzymatic properties. The hatching medium solubilized the UEVE and contained molecules reactive to the anti-(GST UVS.2) Ig against Xenopus HE. It was found that the HE had a molecular mass of 60 kDa, and often preparations also contained a 40-kDa form. The 60-kDa HE had a high hydrolytic and UEVE-solubilizing activity, and its activities against Boc-Leu-Gly-Arg-7-amino-4-methylcoumarin (-NH-Mec) and UEVE were inhibited by anti-(GST UVS.2) Ig in a dose-dependent manner. The 60-kDa form was easily autodigested into a 40-kDa form. The 40-kDa molecule alone had no detectable UEVE-solubilizing activity, even it still had high hydrolytic activity. It probably represents the main protease domain of the 60-kDa form after loss of two CUB repeats during autodigestion or digestion. The autodigestion of the 60-kDa molecule into 40-kDa molecule is probably a congenital behavior for successfully dissolving the embryo envelope during the hatching process. The two molecules may play different roles at different stages of the hatching process, during which they co-ordinate with each other to achieve complete solubilization of the embryo envelope, similar to the high and low choriolytic enzymes in medaka (Oryzias latipes). Their hydrolytic activity against Boc-Leu-Gly-Arg-NH-Mec was optimal at pH of 7.4, and with an apparent Km value of 200 micromol.L-1 at 30 degrees C. The HE is very sensitive to trypsin-specific inhibitors such as leupeptin, (4-amidino-phenyl)methane sulfonyl fluoride, diisopropyl fluorophosphate (DFP) and N-alpha-tosyl-L-lysylchloromethane (Tos-Lys-CH2Cl), indicates that it is a trypsin-type protease. The results on EDTA and some metal ions, combined with the occurrence of a astacin family metalloprotease-specific 'HExHxxGFxHE' sequence in the deduced HE amino-acid sequence, indicates that this HE is a Zn2+ metalloprotease.  相似文献   

7.
A simple two-step model is proposed to describe the kinetics of the two lytic systems examined in the preceding article. The model predicts concentrations of yeast solids, soluble proteins, peptides, and carbohyrates. In the first reaction step, yeast cell mass is solubilized; in the second, the released protein can be hydrolyzed to peptides. Kinetics for both yeast lysis and the subsequent protein breakdown are based on Michaelis-Menten expressions. Terms have been included for competitive inhibition of yeast lysis by substances in the Cytophaga enzyme preparation, and for incomplete hydrolysis of cells by the Oerskovia enzyme system. Parameters have been independently determined for all reactions except Oerskovia proteolysis, where they were fit by a leastsquares method to data from model test runs. The model has been verified for yeast concentrations between 0.7 and 70 g/L yeast (dry basis) and 4-40% crude enzyme solution.  相似文献   

8.
The intracellular hatching enzyme was confirmed to be particulate-bound in the sea urchin, Hemicentrotus pulcherrimus. The enzyme was solubilized most effectively by sonication in buffer containing 12.5 mM CaCl2, and 0.5 M KCl. The intracellular hatching enzyme is suggested to be activated by an antipain- or elastatinal-susceptible protease(s) on its solubilization. Since the intracellular hatching enzyme solubilized in the absence of protease inhibitors was inhibited by phenylmethylsulfonyl fluoride (PMSF) and chymostatin, the active hatching enzyme is concluded to be a chymostatin-sensitive serine protease. The enzyme required CaCl2, and KCl or NaCl for both stability and activity. The preference of the enzyme of anions as sodium salts was as follows: Cl > NO3 > I > SCN. The apparent molecular weights of the intracellular hatching enzyme (IHE) and the hatching enzyme secreted from the blastula with or without the fertilization envelope (SHE or dSHE) were estimated as 89,000, 135,000, 80,000, respectively. On incubations with isolated fertilization envelopes as an enzyme substrate, the apparent molecular weights of dSHE and IHE increased to 128,000 and 105,000, respectively.  相似文献   

9.
The coelomic egg envelope (CE) of the frog Lepidobatrachus laevis has a network of fibrillar bundles which disperse after transit through the oviduct. Following oviposition, the egg vitelline envelope (VE) has an additional amorphous zone on the exterior surface. The fertilization envelope (FE) formed after fertilization, appears to be very similar to the VE. The CEs, VEs, FEs and hatched envelopes (FEh) were manually isolated. The CE, VE and FE were solubilized at 100° using denaturing conditions, but were only partially solubilized in phosphate buffer, pH 7.0. All envelopes and several purified polypeptides from the VE and FE were analyzed using gel electrophoresis and one-dimensional peptide mapping. Each of the envelopes contained 9 major polypeptides ranging from 118.5 to 22 kD and 8–12 minor polypeptides. Several envelope components were added/removed in the conversions based on the results of experiments in which preparations were incubated with activated egg exudate and crude hatching enzyme; some of these transformations were mimicked by tryptic and chymotryptic digestions. Therefore, serine proteases may be involved in envelope processing in vivo. Lepidobatrachus CE polypeptides and several major components from the VE, FE and FEh were crossreactive with antibodies against Xenopus VE*.  相似文献   

10.
Elastolytic strains of Prevotella intermedia were isolated from pus samples of adult periodontal lesions. Elastase was found to associate with envelope, and it could be solubilized with guanidine-HCl. The enzyme was purified to homogeneity by sequential procedures including ion-exchange chromatography, gel filtration, and hydrophobic interaction chromatography. This elastase was a serine protease, and its mass was 31 kDa. It hydrolyzed elastin powder, but collagen and azodye-conjugated proteins were not degraded by this enzyme. Both synthetic substrates for human pancreatic (glutaryl-L-alanyl-L-alanyl-L-prolyl-L-leucine p-nitroanilide) and leukocyte elastase (methoxy succinyl-L-alanyl-alanyl-L-prolyl-L-valine p-nitroanilide) were hydrolyzed.  相似文献   

11.
Quantitative measurement of active polysomes of developing chick muscle   总被引:1,自引:0,他引:1  
The hatching process in embryos of the toad Xenopus laevis consists of two temporally distinct phases. In phase 1, the embryo escapes sequentially from the two outermost jelly layers, J3 and J2, and during phase 2 the embryo hatches from the last remaining jelly coat layer J1 and the fertilization envelope. Phase 1 hatching appears to be a physical process caused by water inbibition of jelly coat layer J1 and dynamic changes in the volume enclosed by the fertilization envelope. The combined turgor pressure ruptures jelly coat layers J3 and J2. The subsequent phase 2 hatching is a result of both physical and chemical processes. Phase 1 hatching exposes layer J1 to the medium which, in contrast to jelly layers J2 and J3 is partially soluble, and permits its gradual dissolution during Phase 2. The embryo secretes a proteolytic enzyme from the frontal region which partially digests the fertilization envelope; subsequent embryo movement ruptures the weakened envelope and completes the hatching process.  相似文献   

12.
Endoglycoceramidase catalyzes the hydrolysis of the linkage between oligosaccharides and ceramides of various glycosphingolipids. We found that a bacterial strain Corynebacterium sp., isolated from soil, produced endoglycoceramidase both intracellularly and extracellularly. The intracellular enzyme bound to the cell membrane was solubilized with 1% Triton X-100 and purified to homogeneity about 170-fold with 60% recovery. The molecular mass of the enzyme was approximately 65 kDa. The enzyme is most active at pH 5.5-6.5 and stable at pH 3.5-8.0. Various neutral and acidic glycosphingolipids were hydrolyzed by the enzyme in the presence of 0.1% Triton X-100. Ganglio- and lacto-type glycosphingolipids were readily hydrolyzed, but globo-type glycosphingolipids were hydrolyzed slowly.  相似文献   

13.
The Xenopus laevis egg envelope is composed of six or more glycoproteins, three of which have been cloned and identified as the mammalian homologs ZPA (ZP2), ZPB (ZP1) and ZPC (ZP3). The remaining glycoproteins are a triplet of high molecular weight components that are selectively hydrolyzed by the hatching enzyme. We have isolated one of these proteins and cloned its cDNA. The mRNA for the protein was found to be expressed only in early stage oocytes, as are other envelope components. From the deduced amino acid sequence, it was indicated to be a secreted glycoprotein with a characteristic ZP domain in the C-terminal half of the molecule. The N-terminal half was unrelated to any known glycoprotein. Comparative sequence analysis of the ZP domain indicated that it was derived from an ancestor of ZPA and ZPB, with the greatest identity to ZPA. This envelope component has been designated ZPAX.  相似文献   

14.
Egg envelope conversion following fertilization in Bufo japonicus   总被引:4,自引:0,他引:4  
The envelope of the Bufo japonicus egg becomes impenetrable to sperm following fertilization. Electrophoretic analysis of envelopes showed that two glycoprotein components with apparent molecular weights of 65,000 and 61,000 were hydrolyzed during fertilization to 62,000 and 58,000, respectively. These two envelope components were structurally related as shown by peptide mapping and deglycosylation studies. Hardening of the envelope following egg activation was also observed, as detected by an increase in the envelope melting temperature. The involvement of proteolytic activities in the envelope hydrolysis and hardening reactions was demonstrated using protease inhibitors, and was verified for the hydrolysis reaction by observing a loss of mass in deglycosylated envelope components obtained before and after fertilization. A low ionic strength medium (less than 50 mM) was required for both the hardening and hydrolysis reactions. Envelopes from eggs activated in a high ionic strength medium were resistant to lysin from sperm, indicating that neither hydrolysis nor hardening was necessary to block lysin activity on the envelope. Both envelope hydrolysis and hardening could be effected in the absence of sperm (i.e., when eggs were activated by electric shock) and after egg jelly had been removed, indicating that neither sperm nor jelly factors were required for the envelope modifications. In addition, when eggs were activated in the presence of NH4Cl to suppress cortical granule exocytosis, envelope hardening and hydrolysis were still observed, indicating that a cortical granule-derived factor may not be involved.  相似文献   

15.
Exposed regions of the alpha- and beta-subunits of membrane-bound Na+,K+-ATPase were in turn hydrolyzed with trypsin. Resistance of the beta-subunit to proteolysis was shown to be due mainly to the presence of disulfide bridge(s) in the molecule. A model for the spatial organisation of the enzyme in the membrane was proposed on the basis of detailed structural analysis of extramembrane regions of both subunits.  相似文献   

16.
17.

Background  

Hatching enzyme, belonging to the astacin metallo-protease family, digests egg envelope at embryo hatching. Orthologous genes of the enzyme are found in all vertebrate genomes. Recently, we found that exon-intron structures of the genes were conserved among tetrapods, while the genes of teleosts frequently lost their introns. Occurrence of such intron losses in teleostean hatching enzyme genes is an uncommon evolutionary event, as most eukaryotic genes are generally known to be interrupted by introns and the intron insertion sites are conserved from species to species. Here, we report on extensive studies of the exon-intron structures of teleostean hatching enzyme genes for insight into how and why introns were lost during evolution.  相似文献   

18.
19.
Egg white lysozyme was rapidly and extensively hydrolyzed by chymotrypsin in the presence of negatively charged phospholipid vesicles. The extent of hydrolysis of lysozyme by chymotrypsin depended on the amount of phospholipid present. The optimum amount of phospholipid varied with the amounts of both lysozyme and chymotrypsin. The proteolysis was strongly inhibited at high ionic strength. The amidolytic activity of chymotrypsin against a synthetic substrate was inhibited by phospholipid. Purified phosphatidic acid and phosphatidylethanolamine from egg yolk induced susceptibility of lysozyme to chymotrypsin, whereas synthetic dimyristoyl phosphatidylcholine did not. The extent of the hydrolysis was smaller with phosphatidic acid and phosphatidylethanolamine than with phospholipid mixture, indicating that vesicles of phospholipid mixture were more effective than those of phosphatidic acid or phosphatidylethanolamine in enhancing the proteolysis of lysozyme by chymotrypsin.  相似文献   

20.
Localization of chlorophyllase in the chloroplast envelope   总被引:9,自引:0,他引:9  
Chlorophyllase catalyzes the first step in the catabolic pathway of chlorophyll. It is a constitutive enzyme located in chloroplast membranes. In isolated plastids the hydrolysis of the endogenous chlorophyll does not take place unless the membranes are solubilized in the presence of detergent. The structural latency of chlorophyllase activity appears to be due to the differential locations of substrate and enzyme within the plastids. Envelope membranes prepared from both chloroplasts and gerontoplasts contain chlorophyllase activity. The isolation of envelopes is associated with a marked increase in chlorophyllase activity per unit of protein. Yields of chlorophyllase and of specific envelope markers in the final preparations are similar, suggesting that the enzyme may be located in the envelope. It is hypothesized that the breakdown of chlorophyll during leaf senescence requires a mechanism that mediates the transfer of chlorophyll from the thylakoidal pigment-protein complexes to the sites of catabolic reactions in the envelope.Abbreviations ACT acyl CoA thioesterase - Chl chlorophyll - Chlide chlorophyllide - PC phosphatidylcholine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号