首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Efficient methods for quantifying dissociation constants have become increasingly important for high‐throughput mutagenesis studies in the postgenomic era. However, experimentally determining binding affinity is often laborious, requires large amounts of purified protein, and utilizes specialized equipment. Recently, pulse proteolysis has been shown to be a robust and simple method to determine the dissociation constants for a protein–ligand pair based on the increase in thermodynamic stability upon ligand binding. Here, we extend this technique to determine binding affinities for a protein–protein complex involving the β‐lactamase TEM‐1 and various β‐lactamase inhibitor protein (BLIP) mutants. Interaction with BLIP results in an increase in the denaturation curve midpoint, Cm, of TEM‐1, which correlates with the rank order of binding affinities for several BLIP mutants. Hence, pulse proteolysis is a simple, effective method to assay for mutations that modulate binding affinity in protein–protein complexes. From a small set (n = 4) of TEM‐1/BLIP mutant complexes, a linear relationship between energy of stabilization (dissociation constant) and ΔCm was observed. From this “calibration curve,” accurate dissociation constants for two additional BLIP mutants were calculated directly from proteolysis‐derived ΔCm values. Therefore, in addition to qualitative information, armed with knowledge of the dissociation constants from the WT protein and a limited number of mutants, accurate quantitation of binding affinities can be determined for additional mutants from pulse proteolysis. Minimal sample requirements and the suitability of impure protein preparations are important advantages that make pulse proteolysis a powerful tool for high‐throughput mutagenesis binding studies.  相似文献   

2.
Histamine was immobilized on Sepharose CL‐6B (Sepharose) for use as a ligand of hydrophobic charge induction chromatography (HCIC) of proteins. Lysozyme adsorption onto Histamine‐Sepharose (HA‐S) was studied by adsorption equilibrium and calorimetry to uncover the thermodynamic mechanism of the protein binding. In both the experiments, the influence of salt (ammonium sulfate and sodium sulfate) was examined. Adsorption isotherms showed that HA‐S exhibited a high salt tolerance in lysozyme adsorption. This property was well explained by the combined contributions of hydrophobic interaction and aromatic stacking. The isotherms were well fitted to the Langmuir equation, and the equilibrium parameters for lysozyme adsorption were obtained. In addition, thermodynamic parameters (ΔHads, ΔSads, and ΔGads) for the adsorption were obtained by isothermal titration calorimetry by titrating lysozyme solutions into the adsorbent suspension. Furthermore, free histamine was titrated into lysozyme solution in the same salt‐buffers. Compared with the binding of lysozyme to free histamine, lysozyme adsorption onto HA‐S was characterized by a less favorable ΔGads and an unfavorable ΔSads because histamine was covalently attached to Sepharose via a three‐carbon‐chain spacer. Consequently, the immobilized histamine could only associate with the residues on the protein surface rather than those in the hydrophobic pocket, causing a less favorable orientation between histamine and lysozyme. Further comparison of thermodynamic parameters indicated that the unfavorable ΔSads was offset by a favorable ΔHads, thus exhibiting typical enthalpy‐entropy compensation. Moreover, thermodynamic analyses indicated the importance of the dehydration of lysozyme molecule and HA‐S during the adsorption and a substantial conformational change of the protein during adsorption. The results have provided clear insights into the adsorption mechanisms of lysozyme onto the new HCIC material. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
Ribonuclease A has been immobilized on silica beads through glutaraldeyde-mediated chemical coupling in order to improve the stability of the protein against thermal denaturation. The thermodynamic and binding properties of the immobilized enzyme have been studied and compared with those of the free enzyme. The parameters describing the binding of the inhibitor 3′ -CMP (Ka and ΔH) as monitored by spectrophotometry and calorimetry were not significantly affected after immobilization. Conversely both the stability and unfolding mechanism drastically changed. Thermodynamic analysis of the DSC data suggests that uncoupling of protein domains has occurred as a consequence of the immobilization. The two state approximation of the protein unfolding process is not longer valid for the immobilized RNase. Protein stability strongly depends on the hydrophobicity properties of the support surface as well as on the presence of the inhibitor and pH. For example, after immobilization on a highly hydrophobic surface, the enzyme is partially in the unfolded state. The binding of a ligand is able to reorganize the protein structure into a native-like conformation. The refolding rates are different for the two protein domains and vary as a function of pH and presence of the inhibitor 3′-CMP. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Although the hydrophobic interactions are considered as the main contributors to the protein stability, not much examples of protein stabilization by rational increasing of this type of interactions still can be found in literature. This is partly due to the lack of proper theoretical "measure" of hydrophobic interactions and their changes upon mutations. In the present paper the molecular hydrophobicity potential approach is used to assess how the changes in type and the strength of inter-residue contacts upon single amino acid mutations are correlated with the changes in thermodynamic stability of T4 lysozyme and barnase mutants, and which factors affect these correlations. Mutations changing unfavorable hydrophilic-to-hydrophobic contacts into favorable hydrophobic were found to enhance the thermodynamic stability in more than 81 % of cases, if these mutations do not create steric bumps and do not involve proline residues and hydrogen-bonded side-chains. Mutations increasing hydrophobic contributions (according to molecular hydrophobicity potential formalism) lead to increase of thermodynamic stability in more than 94% of cases for certain type of mutations (i.e., mutations not involving charged residues, Pro and residues with side-chain hydrogen bonds, when these mutations do not introduce steric bumps and do not involve strongly exposed residues and residues situated at helix N- and C-cap positions). For this type of mutations the correlation was found between the change in hydrophobic contributions of mutated residues deltaCphob and thermodynamic parameters deltaTm (change in melting temperature) and deltadeltaG (change in free energy of unfolding). Although the correlation coefficients were larger if the experimental structures of mutants were used for the calculations (correlation coefficients r(exp) deltaC,deltaT = .85 and r(exp) deltaC,deltadeltaG = 0.87) than if the modeled structures were used instead (r(mod) deltaC,deltaT = 0.74 and r(mod)deltaC,deltadeltaG = 0.76), the modelled structures of mutants in the vast majority of cases can be used for qualitative predictition of the protein stabilization. Basing on the analysis of mutations increasing hydrophobic contributions in T4 lysozyme the substitution matrix was derived, which can be used to decide which new residue should be put instead the old one to increase the stability of protein. The estimation shows that the number of potential mutation sites for enhancement of hydrophobic interactions in T4 lysozyme is quite large, and only approximately 10 per cent of them were studied thus far. Basing on the current analysis of T4 lysozyme and barnase mutations the algorithm for increasing of protein stability via increasing of hydrophobic interactions for the proteins with known spatial structure is proposed.  相似文献   

5.
The thermodynamical stability and remained activity of mushroom tyrosinase (MT) fromAgaricus bisporus in 10 mM phosphate buffer, pH 6.8, stored at two temperatures of 4 and 40°C were investigated in the presence of three different amino acids (His, Phe and Asp) and also trehalose as osmolytes, for comparing with the results obtained in the absence of any additive. Kinetics of inactivation obeye the first order law. Inactivation rate constant (kinact) value is the best parameter describing effect of osmolytes on kinetic stability of the enzyme. Trehalose and His have the smallest value of kinact(0.7×10−4s−1) in comparison with their absence (2.5×10−4s−1). Moreover, to obtain effect of these four osmolytes on thermodynamical stability of the enzyme, protein denaturation by dodecyl trimethylammonium bromide (DTAB) and thermal scanning was investigated. Sigmoidal denaturation curves were analysed according to the two states model of Pace theory to find the Gibbs free energy change of denaturation process in aqueous solution at room temperature, as a very good thermodynamic criterion indicating stability of the protein. Although His, Phe and Asp induced constriction of MT tertiary structure, its secondary structure had not any change and the result was a chemical and thermal stabilization of MT. The enzyme shows a proper coincidence of thermodyanamic and structural changes with the presence of trehalose. Thus, among the four osmolytes, trehalose is an exceptional protein stabilizer.  相似文献   

6.
7.
Packing interactions in bacteriophage T4 lysozyme were explored by determining the structural and thermodynamic effects of substitutions for Ala98 and neighboring residues. Ala98 is buried in the core of T4 lysozyme in the interface between two alpha-helices. The Ala98 to Val (A98V) replacement is a temperature-sensitive lesion that lowers the denaturation temperature of the protein by 15 degrees C (pH 3.0, delta delta G = -4.9 kcal/mol) and causes atoms within the two helices to move apart by up to 0.7 A. Additional structural shifts also occur throughout the C-terminal domain. In an attempt to compensate for the A98V replacement, substitutions were made for Val149 and Thr152, which make contact with residue 98. Site-directed mutagenesis was used to construct the multiple mutants A98V/T152S, A98V/V149C/T152S and the control mutants T152S, V149C and A98V/V149I/T152S. These proteins were crystallized, and their high-resolution X-ray crystal structures were determined. None of the second-site substitutions completely alleviates the destabilization or the structural changes caused by A98V. The changes in stability caused by the different mutations are not additive, reflecting both direct interactions between the sites and structural differences among the mutants. As an example, when Thr152 in wild-type lysozyme is replaced with serine, the protein is destabilized by 2.6 kcal/mol. Except for a small movement of Val94 toward the cavity created by removal of the methyl group, the structure of the T152S mutant is very similar to wild-type T4 lysozyme. In contrast, the same Thr152 to Ser replacement in the A98V background causes almost no change in stability. Although the structure of A98V/T152S remains similar to A98V, the combination of T152S with A98V allows relaxation of some of the strain introduced by the Ala98 to Val replacement. These studies show that removal of methyl groups by mutation can be stabilizing (Val98----Ala), neutral (Thr152----Ser in A98V) or destabilizing (Val149----Cys, Thr152----Ser). Such diverse thermodynamic effects are not accounted for by changes in buried surface area or free energies of transfer of wild-type and mutant side-chains. In general, the changes in protein stability caused by a mutation depend not only on changes in the free energy of transfer associated with the substitution, but also on the structural context within which the mutation occurs and on the ability of the surrounding structure to relax in response to the substitution.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Thermodynamics and kinetics of the thermal unfolding of plastocyanin   总被引:2,自引:0,他引:2  
The thermal denaturation of plastocyanin in aqueous solution was investigated by means of DSC, ESR and absorbance techniques, with the aim of determining the thermodynamic stability of the protein and of characterizing the thermally induced conformational changes of its active site. The DSC and absorbance experiments indicated an irreversible and kinetically controlled denaturation path. The extrapolation of the heat capacity and optical data at infinite scan rate made it possible to calculate the kinetic and thermodynamic parameters associated with the denaturation steps. The denaturation pathway proposed, and the parameters found from the calorimetric data, were checked by computer simulation using an equation containing the information necessary to describe the denaturation process in detail. ESR and absorbance measurements have shown that structural changes of the copper environment occur during the protein denaturation. In particular, the geometry of the copper-ligand atoms changes from being tetrahedral to square planar and the disruption of the active site precedes the global protein denaturation. The thermodynamic enthalpic change, the half-width transition temperature, and the value of ΔCp, were used to calculate the thermodynamic stability, ΔG, of the reversible process over the entire temperature range of denaturation. The low thermal stability found for plastocyanin, is discussed in connection with structural factors stabilizing the native state of a protein. Received: 17 July 1997 / Revised version: 22 November 1997 / Accepted: 15 January 1998  相似文献   

9.
Conformational diseases often show defective protein folding efficiency in vivo upon mutation, affecting protein properties such as thermodynamic stability and folding/unfolding/misfolding kinetics as well as the interactions of the protein with the protein homeostasis network. Human phosphoglycerate kinase 1 (hPGK1) deficiency is a rare inherited disease caused by mutations in hPGK1 that lead to loss-of-function. This disease offers an excellent opportunity to explore the complex relationships between protein stability and dynamics because of the different unfolding mechanisms displayed towards chemical and thermal denaturation. This work explores these relationships using two thermostable mutants (p.E252A and p.T378P) causing hPGK1 deficiency and WT hPGK1 using proteolysis and chemical denaturation. p.T378P is degraded ~ 30-fold faster at low protease concentrations (here, the proteolysis step is rate-limiting) and ~ 3-fold faster at high protease concentrations (where unfolding kinetics is rate-limiting) than WT and p.E252A, indicating that p.T378P is thermodynamically and kinetically destabilized. Urea denaturation studies support the decrease in thermodynamic stability and folding cooperativity for p.T378P, as well as changes in folding/unfolding kinetics. The present study reveals changes in the folding landscape of hPGK1 upon mutation that may affect protein folding efficiency and stability in vivo, also suggesting that native state stabilizers and protein homeostasis modulators may help to correct folding defects in hPGK1 deficiency. Moreover, detailed kinetic proteolysis studies are shown to be powerful and simple tools to provide deep insight into mutational effects on protein folding and stability in conformational diseases.  相似文献   

10.
11.
Increasing the conformational stability of proteins is an important goal for both basic research and industrial applications. In vitro selection has been used successfully to increase protein stability, but more often site‐directed mutagenesis is used to optimize the various forces that contribute to protein stability. In previous studies, we showed that improving electrostatic interactions on the protein surface and improving the β‐turn sequences were good general strategies for increasing protein stability, and used them to increase the stability of RNase Sa. By incorporating seven of these mutations in RNase Sa, we increased the stability by 5.3 kcal/mol. Adding one more mutation, D79F, gave a total increase in stability of 7.7 kcal/mol, and a melting temperature 28°C higher than the wild‐type enzyme. Surprisingly, the D79F mutation lowers the change in heat capacity for folding, ΔCp, by 0.6 kcal/mol/K. This suggests that this mutation stabilizes structure in the denatured state ensemble. We made other mutants that give some insight into the structure present in the denatured state. Finally, the thermodynamics of folding of these stabilized variants of RNase Sa are compared with those observed for proteins from thermophiles.  相似文献   

12.
The Gp2 domain is a 45 amino-acid scaffold that has been evolved for specific, high-affinity binding towards multiple targets and was proven useful in molecular imaging and biological antagonism. It was hypothesized that Gp2 may benefit from increased hydrophilicity for improved physiological distribution as well as for physicochemical robustness. We identified seven exposed hydrophobic sites for hydrophilic mutations and experimentally evaluated single mutants, which yielded six mutations that do not substantially hinder expression, binding affinity or specificity (to epidermal growth factor receptor), and thermal stability. Eight combinations of these mutations improved hydrophilicity relative to the parental Gp2 clone as assessed by reverse-phase high-performance liquid chromatography (p < 0.05). Secondary structures and refolding abilities of the selected single mutants and all multimutants were unchanged relative to the parental ligand. A variant with five hydrophobic-to-hydrophilic mutations was identified with enhanced solubility as well as reasonable binding affinity ( K d = 53–63 nM), recombinant yield (1.3 ± 0.8 mg/L), and thermal stability ( T m = 53 ± 3°C). An alternative variant with a cluster of three leucine-to-hydrophilic mutations was identified with increased solubility, nominally increased binding affinity ( K d = 13–28 nM) and reasonable thermal stability ( T m = 54.0 ± 0.6°C) but reduced yield (0.4 ± 0.3 mg/L). In addition, a ≥7°C increase in the midpoint of thermal denaturation was observed in one of the single mutants (T21N). These mutants highlight the physicochemical tradeoffs associated with hydrophobic-to-hydrophilic mutation within a small protein, improve the solubility and hydrophilicity of an existent molecular imaging probe, and provide a more hydrophilic starting point for discovery of new Gp2 ligands towards additional targets.  相似文献   

13.
BackgroundDifferential scanning calorimetry is a powerful method that provides a complete thermodynamic characterization of the stability of a protein as a function of temperature. There are, however, circumstances that preclude a complete analysis of DSC data. The most common ones are irreversible denaturation transitions or transitions that take place at temperatures that are beyond the temperature limit of the instrument. Even for a protein that undergoes reversible thermal denaturation, the extrapolation of the thermodynamic data to lower temperatures, usually 25 °C, may become unreliable due to difficulties in the determination of ΔCp.MethodsThe combination of differential scanning calorimetry and isothermal chemical denaturation allows reliable thermodynamic analysis of protein stability under less than ideal conditions.Results and conclusionsThis paper demonstrates how DSC can be used in combination with chemical denaturation to address three different scenarios: 1) estimation of an accurate ΔCp value for a reversible denaturation using as a test system the envelope HIV-1 glycoprotein gp120; 2) determination of the Gibbs energy of stability in the region in which thermal denaturation is irreversible using HEW lysozyme at different pH values; and, 3) determination of Gibbs energy of stability for a thermostable protein, thermolysin. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

14.
A class of temperature-sensitive (ts) mutants of T4 lysozyme with reduced activity at 30 degrees C and no activity at 43 degrees C has been selected. These mutants, designated "tight" ts mutants, differ from most other T4 lysozyme mutants that are active at 43 degrees C, but only manifest their ts lesion by a reduced halo size around phage plaques after exposure of the growth plates to chloroform vapors. For example, in the series of T4 lysozyme mutants at position 157, the original randomly selected mutant, T1571, is the least stable of the series, yet, apart from the halo assay and subsequent in vitro protein stability measurements, this mutant is indistinguishable from wild type (WT) even at 43 degrees C. Two mutants were identified: L91P and L66P. Both insert proline residues into alpha-helical regions of the WT protein structure. The stabilities (delta delta G) as determined by urea denaturation are 8.2 kcal/mol for L91P and 7.1 kcal/mol for L66P. CD spectra indicate that no major conformational changes have occurred in the mutant structures. The structures of the mutants were modeled with a 40-ps molecular dynamics simulation using explicit solvent. For L91P, the reduction of stability appears to be due to an unsatisfied hydrogen bond in the alpha-helix and to a new buried cavity. For L66P, the reduction of stability appears to be due to a disruption of the interdomain alpha-helix, at least two unsatisfied hydrogen bonds, and a newly formed solvent-filled pocket that protrudes into the hydrophobic core, possibly reducing the stabilizing contribution of a partially buried intrachain salt bridge.  相似文献   

15.
A sequence alignment of yeast cytochrome-c (y-cyt-c) with mammalian cyts-c shows that the yeast protein has a five residue long N-terminal extension. A question arises: Does this N-terminal extension play any roles in the stability, structure, and folding of the yeast protein? To answer this question, in silico and in vitro studies were carried out on the wild type (WT) protein and its five deletants (Δ(?5/?5), Δ(?5/?4), Δ(?5/?3), Δ(?5/?2), and Δ(?5/?1) where Δ denotes the deletion and the numbers refer to the residues deleted, e.g. Δ(?5/?1) denotes the deletion of residues numbered from ?5 to ?1 (TEFKA), while Δ(?5/?2) denotes the deletion of resides numbered from ?5 to ?2 (TEFK) and so on). The main conclusion of the in silico study is that the order of stability of deletants and WT protein is Δ(?5/?4) > WT > Δ(?5/?3) > Δ(?5/?5) > Δ(?5/?1) ~ Δ(?5/?2). In vitro studies involved (i) measurements of thermodynamic stability of all proteins by differential scanning calorimetry and from sigmoidal curves of two different structural properties ([θ]222, a probe for detecting change in secondary structure, and Δε405, a probe for detecting alteration in the heme environment), and (ii) characterization of all proteins by various spectral properties. The main conclusions of the in vitro studies are as follows: (i) The order of thermodynamic stability of all proteins is in excellent agreement with that predicted by in silico studies, and (ii) A sequential deletion of the N-terminal extension has no effects on protein structure and folding.  相似文献   

16.
An overview is presented of some of the major insights that have come from studies of the structure, stability, and folding of T4 phage lysozyme. A major purpose of this review is to provide the reader with a complete tabulation of all of the variants that have been characterized, including melting temperatures, crystallographic data, Protein Data Bank access codes, and references to the original literature. The greatest increase in melting temperature (Tm) for any point mutant is 5.1°C for the mutant Ser 117 → Val. This is achieved in part not only by hydrophobic stabilization but also by eliminating an unusually short hydrogen bond of 2.48 Å that apparently has an unfavorable van der Waals contact. Increases in Tm of more than 3–4°C for point mutants are rare, whereas several different types of destabilizing substitutions decrease Tm by 20°C or thereabouts. The energetic cost of cavity creation and its relation to the hydrophobic effect, derived from early studies of “large‐to‐small” mutants in the core of T4 lysozyme, has recently been strongly supported by related studies of the intrinsic membrane protein bacteriorhodopsin. The L99A cavity in the C‐terminal domain of the protein, which readily binds benzene and many other ligands, has been the subject of extensive study. Crystallographic evidence, together with recent NMR analysis, suggest that these ligands are admitted by a conformational change involving Helix F and its neighbors. A total of 43 nonisomorphous crystal forms of different monomeric lysozyme mutants were obtained plus three more for synthetically‐engineered dimers. Among the 43 space groups, P212121 and P21 were observed most frequently, consistent with the prediction of Wukovitz and Yeates.  相似文献   

17.
X‐ray crystallography is the most powerful method for determining three‐dimensional structures of proteins to (near‐)atomic resolution, but protein crystallization is a poorly explained and often intractable phenomenon. Differential Scanning Calorimetry was used to measure the thermodynamic parameters (ΔG, ΔH, ΔS) of temperature‐driven unfolding of two globular proteins, lysozyme, and ribonuclease A, in various salt solutions. The mixtures were categorized into those that were conducive to crystallization of the protein and those that were not. It was found that even fairly low salt concentrations had very large effects on thermodynamic parameters. High concentrations of salts conducive to crystallization stabilized the native folded forms of proteins, whereas high concentrations of salts that did not crystallize them tended to destabilize them. Considering the ΔH and TΔS contributions to the ΔG of unfolding separately, high concentrations of crystallizing salts were found to enthalpically stabilize and entropically destabilize the protein, and vice‐versa for the noncrystallizing salts. These observations suggest an explanation, in terms of protein stability and entropy of hydration, of why some salts are good crystallization agents for a given protein and others are not. This in turn provides theoretical insight into the process of protein crystallization, suggesting ways of predicting and controlling it. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 642–652, 2016.  相似文献   

18.
A key point of protein stability engineering is to identify specific target residues whose mutations can stabilize the protein structure without negatively affecting the function or activity of the protein. Here, we propose a method called RiSLnet (Rapid i dentification of Smart mutant Library using residue network) to identify such residues by combining network analysis for protein residue interactions, identification of conserved residues, and evaluation of relative solvent accessibility. To validate its performance, the method was applied to four proteins, that is, T4 lysozyme, ribonuclease H, barnase, and cold shock protein B. Our method predicted beneficial mutations in thermal stability with ~62% average accuracy when the thermal stability of the mutants was compared with the ones in the Protherm database. It was further applied to lysine decarboxylase (CadA) to experimentally confirm its accuracy and effectiveness. RiSLnet identified mutations increasing the thermal stability of CadA with the accuracy of ~60% and significantly reduced the number of candidate residues (~99%) for mutation. Finally, combinatorial mutations designed by RiSLnet and in silico saturation mutagenesis yielded a thermally stable triple mutant with the half-life (T 1/2) of 114.9 min at 58°C, which is approximately twofold higher than that of the wild-type.  相似文献   

19.
Differential scanning microcalorimetry was used to investigate the enthalpy (ΔHd) and the temperature (td) of thermal denaturation of normal (nondeuterated) (H-PC) and deuterated (D-PC) phycocyanins in D2O solvent. Values of td in D-PC are about 5–7°C lower than those in H-PC. The magnitudes of ΔHd in D-PC are only 21–32% of those in H-PC. During the protein unfolding, the heat-capacity changes (ΔCp) in D-PC are also lower than those in H-PC. CD was employed to evaluate the secondary structure and the urea denaturation of these proteins in D2O solvent. These proteins have about the same α-helix content. D-PC is less resistant to the denaturant urea than is H-PC. In general, the apparent free-energy change in the process of protein unfolding at zero denaturant concentration is higher in H-PC than in D-PC. Comparisons of the present results for D2O solvent with those previously reported for H2O reveal that solvent isotope effect essentially does not change the α-helix content in H-PC and D-PC. However, D-PC or H-PC has a higher random-coil content in its secondary structure in D2O than in H2O. Substitution of H2O with D2O as the solvent increases td in both D-PC and H-PC, lowers ΔHd in H-PC, and greatly lowers ΔHd in D-PC. The deuterium solvent isotope effect does not change ΔCp in H-PC but lowers ΔCp in D-PC. In the urea denaturation, the magnitudes of (Cu)1/2 in H-PC and D-PC are not affected by such a solvent effect, whereas those of ΔG are greatly increased. These results are correlated with the structure and stability of the proteins.  相似文献   

20.
The native - denatured (N U) structural transition in lysozyme (mucopeptide N-acetylmuramoylhydrolase, EC 3.2.1.17), β-lactoglobulin and caseins have been studied by proteolysis using immobilized Streptomyces griseus proteases (pronase) as a probe. A diverse range of susceptibility to urea denaturation was revealed by evaluation of initial rates and pseudo first-order rate constants for hydrolysis of these proteins. Comparison of the rate of hydrolysis of lysozyme vis-à-vis performic acid oxidized-lysozyme showed that the degree of backbone accessibility for native lysozyme, even in concentrated urea solutions, was less than that of the oxidized protein. At pH 7.5, native lysozyme appeared to possess the most stable structure, followed by β-lactoglobulin and, finally, the caseins. It is postulated that the proteolytic rate depends upon accessibility of a susceptible bond(s) or subtle conformational changes in the least stable domain. Following cleavage of this bond(s), KD increases thus exposing more backbone. Use of pronase immobilized on porous succinamidopropyl-glass beads resulted in increased enzyme stability and eliminated autolysis. Consequently, immobilized proteases are an excellent probe of structural transitions of protein substrates in denaturants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号