首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The role of intracellular Ca2+ as essential activator of the Na+-Ca2+ exchange carrier was explored in membrane vesicles containing 67% right-side-out and 10% inside-out vesicles, isolated from squid optic nerves. Vesicles containing 100 microM free calcium exhibited a 2-fold increase in the initial rate of Na+i-dependent Ca2+ uptake as compared with vesicles where intravesicular calcium was chelated by 2 mM EGTA or 10 mM HEDTA. The activatory effect exerted by intravesicular Ca2+ on the reverse mode of Na+-Ca2+ exchange (i.e. Na+i-Ca2+o exchange) is saturated at about 100 microM Ca2+i and displays an apparent K 1/2 of 12 microM. Intravesicular Ca2+ produced activation of Na+i-Ca2+i exchange activity rather than an increase in Ca2+ uptake due to Ca2+-Ca2+ exchange. The presence of Ca2+i was essential for the Na+i-dependent Na+ influx, a partial reaction of the Na+-Ca2+ exchanger. In fact, the Na+ influx levels in vesicles loaded with 2 mM EGTA were close to those expected from diffusional leak while in vesicles containing Ca2+i an additional Na+-Na+ exchange was measured. The results suggest that in nerve membrane vesicles Ca2+ at the inner aspect of the membrane acts as an activator of the Na+-Ca2+ exchange system.  相似文献   

2.
Monensin enhanced 2-deoxyglucose uptake and 3-O-methyl glucose transport in mouse thymocytes, but had no effect on L-glucose transport. Cytochalasin B inhibited monensin induced as well as basal glucose uptake. The enhanced 2-deoxyglucose uptake was time and dose-dependent. The increase in the rate of 2-deoxyglucose uptake induced by monensin was more rapid than that of Na+ uptake. Ouabain did not inhibit monensin-enhanced 2-deoxyglucose uptake. Monensin failed to stimulate 2-deoxyglucose uptake at low concentrations of Na+ (13 mM) or K+ (17 mM), higher concentrations of either cation were required for stimulation. Monensin enhanced glucose uptake also in Ca2+-free medium. The data indicate that the stimulation of 2-deoxyglucose uptake by monensin results from activation of carrier-mediated transport.  相似文献   

3.
(Na,K)-ATPase is thought to maintain the transmembrane electrochemical sodium gradient which powers secondary active sodium-coupled transport of a variety of solutes including amino acids and bile acids. However, little is known regarding the effect of sodium-coupled solute transport on intracellular sodium concentration ( [Na]ic) and on (Na,K)-ATPase-mediated cation pumping in the intact cell. In order to address this question, we have measured 22Na uptake rate, steady state 22Na content, and ouabain-suppressible 86Rb uptake rate in primary cultures of adult rat hepatocytes under a variety of conditions. Compared with control conditions (sodium uptake rate = 6.00 +/- 0.40 nmol X min-1 X mg-1; [Na]ic = 11.96 +/- 0.54 mM; cation pumping = 2.53 +/- 0.18 nmol X min-1 X mg-1), cation pumping was increased by taurocholate (less than or equal to 158%), alanine (less than or equal to 246%), monensin (less than or equal to 400%), and cold exposure (less than or equal to 525%), and this increase was accompanied by increases in Na uptake and [Na]ic. In contrast, preincubation in low sodium medium decreased all three variables. These changes in cation pumping were blocked in the absence of extracellular sodium and were not accompanied by changes in ouabain-suppressible ATP hydrolysis measured in cell homogenate. An overall plot of cation pumping versus [Na]ic yielded a sigmoid-shaped curve. Values for KNa (17.8 +/- 1.4 mM) and Vmax (8.98 +/- 0.62 nmol X min-1 X mg-1) for cation pumping were estimated assuming three sodium sites per pump unit. These findings indicate that: 1) uptake of alanine and taurocholate is associated with a rapid increase in (Na,K)-ATPase cation pumping; 2) this increase probably results from an increase in pumping per pump unit rather than an increase in the total number of pump units, and it appears to be mediated via an increase in sodium influx and [Na]ic; 3) [Na]ic under control conditions is close to the apparent KNa of cation pumping, implying that substrate availability may be the mechanism whereby sodium uptake is tightly linked to (Na,K)-ATPase cation pumping in intact hepatocytes.  相似文献   

4.
In the presence of Na, K, Mg and Ca at physiological pH, complexing agents can affect cation binding by rat liver microsomes in a manner not always readily predictable simply from a knowledge of individual formation constants. Increasing concentrations (0 to 20 mM) of the strong nonbiological complexing agent, ethylenediaminetetraacetate (EDTA), produced a sharp decrease almost to zero in bound Ca, an increase to a high plateau in bound Na and K and an initial increase followed by a sharp decrease in bound Mg. Increasing concentrations of the Ca-preferring analogue of EDTA, ethylene bisglycol (β-aminoethylether) tetraacetate (EGTA), produced similar changes except that bound Mg increased and remained elevated, indicating that this agent complexes Mg very weakly at physiological pH. The biological complexing agent, adenosine triphosphate (ATP), caused a gradual rectilinear and parallel decrease in bound Mg and Ca and a concomitant and parellel increase in bound Na and K at about 4°C and pH 6.4. Results with EDTA and EGTA suggest, however, that under different conditions, enhancement by ATP of divalent cation binding may be possible. Reactions of this nature may be of significance in ATP stimulated divalent cation uptake by subcellular particles.  相似文献   

5.
Decreasing the K+ concentration of the medium from 5 mM to 0.59 mM decreased the K+ content of chick embryo fibroblasts to 22% of control values and increased the Na+ content to 820% of control values. The alteration of monovalent cation content occurred within two hours but had no effect on the rate of DNA synthesis, as measured by 3H-thymidine incorporation, for at least 16 hours. By decreasing the Na+ concentration in the medium, a 50% reduction in cellular Na+ could be obtained with no effect on thymidine incorporation. Since these changes in cellular Na+ or K+ are much larger than any known to occur under physiological conditions but have no effect on thymidine incorporation, we conclude that Na+ and K+ do not play a critical role in determining multiplication rate. Addition of 1.8 mEGTA to cells in media containing 1.7 mM Ca2+ and 0.8 mM Mg2+ inhibited thymidine incorporation and sharply decreased cellular K+ and increased cellular Na+ content. However, there was no reduction in total cellular Ca2+ levels. Likewise, decreasing the Ca2+ concentration of the medium below 0.01 mM inhibited thymidine incorporation, decreased cellular K+ and Mg2+, and increased cellular Na+ but did not affect total cellular Ca2+ levels. Inhibition of DNA synthesis, therefore, could not be correlated with changes in cellular Ca2+ levels.  相似文献   

6.
Insulin (0.1 microM) and 1 microM epinephrine each increased the uptake and phosphorylation of 2-deoxyglucose by the perfused rat heart by increasing the apparent Vmax without altering the Km. Isoproterenol (10 microM), 50 microM methoxamine and 10 mM CaCl2 also increased uptake. Lowering of the perfusate Ca2+ concentration from 1.27 to 0.1 mM Ca2+, addition of the Ca2+ channel blocker nifedipine (1 microM) or addition of 1.7 mM EGTA decreased the basal rate of uptake of 2-deoxyglucose and prevented the stimulation due to 1 microM epinephrine. Stimulation of 2-deoxyglucose uptake by 0.1 microM insulin was only partly inhibited by Ca2+ omission, nifedipine or 1 mM EGTA. Half-maximal stimulation of 2-deoxyglucose uptake by insulin occurred at 2 nM and 0.4 nM for medium containing 1.27 and 0.1 mM Ca2+, respectively. Maximal concentrations of insulin (0.1 microM) and epinephrine (1 microM) were additive for glucose uptake and lactate output but were not additive for uptake of 2-deoxyglucose. Half-maximal stimulation of 2-deoxyglucose uptake by epinephrine occurred at 0.2 microM but maximal concentrations of epinephrine (e.g., 1 microM) gave lower rates of 2-deoxyglucose uptake than that attained by maximal concentrations of insulin. The addition of insulin increased uptake of 2-deoxyglucose at all concentrations of epinephrine but epinephrine only increased uptake at sub-maximal concentrations of insulin. The role of Ca2+ in signal reversal was also studied. Removal of 1 microM epinephrine after a 10 min exposure period resulted in a rapid return of contractility to basal values but the rate of 2-deoxyglucose uptake increased further and remained elevated at 20 min unless the Ca2+ concentration was lowered to 0.1 mM or nifedipine (1 microM) was added. Similarly, removal of 0.1 microM insulin after a 10 min exposure period did not affect the rate of 2-deoxyglucose uptake, which did not return to basal values within 20 min unless the concentration of Ca2+ was decreased to 0.1 mM. Insulin-mediated increase in 2-deoxyglucose uptake at 0.1 mM Ca2+ reversed upon hormone removal. It is concluded that catecholamines mediate a Ca2+-dependent increase in 2-deoxyglucose transport from either alpha or beta receptors. Insulin has both a Ca2+-dependent and a Ca2+-independent component. Reversal studies suggest an additional role for Ca2+ in maintaining the activated transport state when activated by either epinephrine or insulin.  相似文献   

7.
The effects of monovalent cations on calcium uptake by fragmented sarcoplasmic reticulum have been clarified. Homogenization of muscle tissue in salt-containing solutions leads to contamination of this subcellular fraction with actomyosin and mitochondrial membranes. When, in addition, inorganic cations are contributed by the microsomal suspension and in association with nucleotide triphosphate substrates there is an apparent inhibition of the calcium transport system by potassium and other cations. However, when purified preparations were obtained after homogenization in sucrose medium followed by centrifugation on a sucrose density gradient in a zonal rotor, calcium uptake and the associated adenosine triphosphatase activity were considerably activated by potassium and other univalent cations. When plotted against the log of the free calcium concentration there was only a slight increase in calcium uptake and ATPase activity in the absence of potassium ions but sigmoid-shaped curves were obtained in 100 mM K+ with half-maximal stimulation occurring at 2 muM Ca2+ for both calcium uptake and ATPase activity. The augmentation in calcium uptake was not due to an ionic strength effect as Tris cation at pH 6.6 was shown to be inactive in this respect. Other monovalent cations were effective in the order K+ greater than Na+ greater than NH4+=Rb+=Cs+ greater than Li+ with half-maximal stimulation in 11 mM K+, 16 mM Na+, 25 mM NH4+, Rb+, and Cs+ and in 50 mM Li+. There was nos synergistic action between K+ AND Na+ ions and both calcium uptak and associated ATPase were insensitive to ouabain. Thallous ions stimulate many K+-requiring enzymes and at one-tenth the concentration were nearly as effective as K+ ions in promoting calcium uptake. The ratio of Ca2+ ions transported to P1 released remained unchanged at 2 after addition of K+ ions indicating an effect on the rate of calcium uptake rather than an increased efficiency of uptake. In support of this it was found that during the stimulation of calcium uptake by Na+ ions there was a reduction in the steady state concentration of phosphorylated intermediate formed from [gamma-32P]ATP. It is considered that there is a physiological requirement for potassium ions in the relaxation process.  相似文献   

8.
Calcium efflux from ejaculated bovine spermatozoa occurred upon incubation in Ca2+/EGTA buffers with Ca2+ ion concentrations ranging from 0.1 microM to 1 nM. Both total cellular calcium and cytosol free Ca2+ concentrations, the latter measured with Quin 2, were inversely correlated with the Ca2+ activity of the medium. An influx of radioactive 45Ca2+ parallel to a net efflux of calcium took place in spermatozoa incubated in 45Ca2+/EGTA buffers with 45Ca2+ activity of 0.01 microM or 0.1 microM. The uptake of the radioactive isotope was higher in spermatozoa incubated at pH 7.8 than that found at pH 6.8, increased in the presence of acetate or amiloride but decreased when ammonium chloride or monensin was added to the incubation mixture. Addition of acetate produced a decrease of the cytoplasmic pH, determined with the indicator carboxyfluorescein, whereas addition of NH4Cl or monensin caused a pH increase. Addition of either nigericin or monensin to spermatozoa suspended in a choline medium containing low concentrations of Na+, K+ and Ca2+ produced a cytosolic acidification, the subsequent addition of Ca2+ caused a cytosolic alkalinization parallel to an increase of the cytosolic free Ca2+. Addition of CaCl2 to EGTA-pretreated spermatozoa resuspended in a poorly buffered medium induced an evident decrease of extracellular pH suggesting a cellular proton extrusion. Both monensin and nigericin caused an increase of the calcium transport in spermatozoa suspended in a choline medium containing a physiological concentration of 1.5 mM CaCl2. Taken together the present results indicate that, under the experimental conditions used, a delta pH-driven Ca2+ uptake occurs in ejaculated bovine spermatozoa and suggest that Ca2+ is taken up in exchange with H+.  相似文献   

9.
Calcium and EDTA fluxes in dialyzed squid axons   总被引:9,自引:9,他引:0       下载免费PDF全文
Ca efflux in dialyzed squid axons was measured with 45Ca as a function of internal ionized Ca in the range 0.005-10 muM. Internal Ca stores were depleted by treatment with CN and dialysis with media free of high energy compounds. The [Ca]iota was stabilized with millimolar concentrations of EDTA, EGTA, or DTPA. Nonspecific leak of chelated Ca was measured with [14C]-EDTA and found to be 0.02 pmol/cm2s/mM EDTA. Correction of the measured Ca efflux for this leak of chelated calcium was made when appropriate. Ca efflux was roughly linear with internal free Ca in the range 0.005-0.1 muM. Above 0.1 muM, efflux was less than proportional to concentration but did not saturate at the highest concentration studied. Ca efflux was reduced about 50% by replacement of external Na with Li at Caiota approximately 1 muM, but was insensitive to such replacement for Ca less than 0.1 muM. Ca efflux was insensitive to internal Mg in the range 0-4 mM, indicating that the Ca pump favors Ca over Mg by a factor of about 10(6). Ca efflux was reduced about 60% by increasing internal Na from 1 to 80 mM. This effect could represent weak interference of a Ca carrier by Na or a loss of driving force because of a reduction in ENa - Em occasioned by an increase in Naiota. A few measurements were made of Ca influx in intact and in dialyzed fibers. In both cases, Ca influx increased when external Na was replaced by Li.  相似文献   

10.
Uptake and release of 45Ca by Myxicola axoplasm   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding and release of 45Ca by axoplasm isolated from Myxicola giant axons were examined. Two distinct components of binding were observed, one requiring ATP and one not requiring ATP. The ATP- dependent binding was largely prevented by the addition of mitochondrial inhibitors, whereas the ATP-independent component was unaffected by these inhibitors. The ATP-independent binding accounted for roughly two-thirds of the total 45Ca uptake in solutions containing an ionized [Ca2+] = 0.54 microM and was the major focus of this investigation. This fraction of bound 45Ca was released from the axoplasm at a rate that increased with increasing concentrations of Ca2+ in the incubation fluid. The ions Cd2+ and Mn2+ were also able to increase 45Ca efflux from the sample, but Co2+, Ni2+, Mg2+, and Ba2+ had no effect. The concentration-response curves relating the 45Ca efflux rate coefficients to the concentration of Ca2+, Cd2+, and Mn2+ in the bathing solution were S-shaped. The maximum rate of efflux elicited by one of these divalent ions could not be exceeded by adding a saturating concentration of a second ion. Increasing EGTA concentration in the bath medium from 100 to 200 microM did not increase 45Ca efflux; yet increasing the concentration of the EGTA buffer in the uptake medium from 100 to 200 microM and keeping ionized Ca2+ constant caused more 45Ca to be bound by the axoplasm. These results suggest the existence of high-affinity, ATP-independent binding sites for 45Ca in Myxicola axoplasm that compete favorably with 100 microM EGTA. The 45Ca efflux results are interpreted in terms of endogenous sites that interact with Ca2+, Cd2+, or Mn2+.  相似文献   

11.
Ouabain-sensitive 86Rb+ uptake by isolated rat hepatocytes was studied to elucidate how Ca2+-mobilizing hormones stimulate the Na+-pump. Stimulation of this uptake was observed with concentrations of vasopressin ([8-arginine]vasopressin, AVP), angiotensin II, and norepinephrine which elicited Ca2+ mobilization and phosphorylase activation. These results suggested that changes in cytosolic Ca2+, mediated by inositol trisphosphate, might trigger sodium pump stimulation by AVP. However, in hepatocytes incubated in Ca2+-free Krebs-Henseleit buffer, Na+-pump activity was not altered over 15 min by either 1.5 mM EGTA or 1.5 mM Ca2+. Furthermore, incubation of cells in 5 mM EGTA for 15-30 min drastically impaired the ability of AVP to increase cytosolic Ca2+, but only modestly attenuated AVP-stimulated Na+-pump activity. Two tumor promoters, phorbol myristate acetate (PMA) and mezerein, stimulated Na+/K+-ATPase-mediated transport activity. Similarly, addition of synthetic diacylglycerols or of exogenous phospholipase C from Clostridium perfringens to increase endogenous diacylglycerol levels also resulted in a stimulation of the Na+-pump in the absence of changes in cytosolic or total cellular Ca2+ levels. Stimulation of the Na+-pump by the combination of maximal concentrations of PMA and AVP did not produce an additive response, and both agents displayed a transient time course, suggesting that the two agents share a common mechanism. Stimulation of the Na+-pump by AVP and PMA was not blocked by amiloride analogs which inhibit Na+/H+ exchange, but these compounds blocked the action of insulin. These data suggest that the elevated Na+/K+-ATPase-mediated transport activity observed in hepatocytes following exposure to Ca2+-mobilizing hormones is a consequence of stimulated diacylglycerol formation and may involve protein kinase C.  相似文献   

12.
Rat liver basolateral plasma membrane (blLPM) vesicles resuspended in 5 mM Mg2(+)-, Ca2(+)-, Mn2(+)- or Co2(+)-containing media exhibited a markedly lower rate of Na(+)-stimulated L-alanine transport. Divalent cation inhibition of L-alanine uptake was dose dependent, and was observed only when the vesicles were pre-loaded with the divalent cations. The presence or absence of the metal ions in the extravesicular incubation media had no effect on L-alanine transport. Conversely, pretreatment of the vesicles with 0.2 mM of either EGTA or EDTA resulted in higher initial rates of L-alanine transport. This stimulation was overcome by addition of excess divalent cation to the vesicle suspension solution. Since these blLPM vesicles are primarily oriented right-side-out, the divalent cation inhibition of L-alanine transport appears to be a result of their interaction with cytosolic components of the cell membrane. Total Na+ flux as measured with 22Na+ was not affected by intravesicular 5 mM Mg2+ or Ca2+, indicating that the inhibition was not due to dissipation of the Na+ gradient. These observations suggest that intracellular divalent cations may serve to modulate L-alanine transport across the liver cell plasma membrane.  相似文献   

13.
Calcium efflux has been studied in barnacle muscle fibres under internal dialysis conditions. Prolonged dialysis of these fibres, with a medium free of ATP and containing 2 mM cyanide and 1 mM iodoacetate, causes the ATP in the perfusion effluent to fall to less than 20 micrometer. The mean calcium efflux from fibres dialyzed with EGTA buffered solution containing 0.3 micrometer ionized Ca and and no ATP is 0.6 pmol-cm-2-s-1. A two-fold stimulation of the calcium efflux is observed when ATP is added to fibres previously dialyzed with an ATP-free medium. Withdrawal of Na+ and Ca2+ from the external medium causes a marked drop in the Ca2+ efflux in the presence of internal ATP.  相似文献   

14.
The effect of high potassium, 60 mM KCl, on the cellular action of arginine vasopressin (AVP) was studied in rat renal papillary collecting tubule cells in culture. In the presence of 0.5 mM 3-isobutyl-1-methylxanthine AVP-induced cAMP production was enhanced by pretreatment of the cells with 60 mM KCl. Such an enhancement was not found in cells pretreated with Ca(2+)-free medium containing 1 mM EGTA or in Na(+)-free medium, which rather reduced AVP-induced cAMP production. Similar results were obtained with the blockers of cellular Ca2+ uptake, 1 x 10(-4) M verapamil and 1 x 10(-5) M nifedipine. The 60 mM KCl elevated the cellular sodium concentration ([Na+]i) from 15.1 to 18.8 mM, cellular pH (pHi) from 7.18 to 7.32, and basal cellular free calcium concentration ([Ca2+]i). These results indicate that high potassium promptly augments AVP-induced cAMP production in renal papillary collecting tubule cells. This effect is based on the alkalinized pHi and the increased [Ca2+]i.  相似文献   

15.
Insulin (0.1 μM) and 1 μM epinephrine each increased the uptake and phosphorylation of 2-deoxyglucose by the perfused rat heart by increasing the apparent Vmax without altering the Km. Isoproterenol (10 μM), 50 μM methoxamine and 10 mM CaCl2 also increased uptake. Lowering of the perfusate Ca2+ concentration from 1.27 to 0.1 mM Ca2+, addition of the Ca2+ channel blocker nifedipine (1 μM) or addition of 1.7 mM EGTA decreased the basal rate of uptake of 2-deoxyglucose and prevented the stimulation due to 1 μM epinephrine. Stimulation of 2-deoxyglucose uptake by 0.1 μM insulin was only partly inhibited by Ca2+ omission, nifedipine or 1 mM EGTA. Half-maximal stimulation of 2-deoxyglucose uptake by insulin occurred at 2 nM and 0.4 nM for medium containing 1.27 and 0.1 mM Ca2+, respectively. Maximal concentrations of insulin (0.1 μM) and epinephrine (1 μM) were additive for glucose uptake and lactate output but were not additive for uptake of 2-deoxyglucose. Half-maximal stimulation of 2-deoxyglucose uptake by epinephrine occurred at 0.2 μM but maximal concentrations of epinephrine (e.g., 1 μM) gave lower rates of 2-deoxyglucose uptake than that attained by maximal concentrations of insulin. The addition of insulin increased uptake of 2-deoxyglucose at all concentrations of epinephrine but epinephrine only increased uptake at sub-maximal concentrations of insulin. The role of Ca2+ in signal reversal was also studied. Removal of 1 μM epinephrine after a 10 min exposure period resulted in a rapid return of contractility to basal values but the rate of 2-deoxyglucose uptake increased further and remained elevated at 20 min unless the Ca2+ concentration was lowered to 0.1 mM or nifedipine (1 μM) was added. Similarly, removal of 0.1 μM insulin after a 10 min exposure period did not affect the rate of 2-deoxyglucose uptake, which did not return to basal values within 20 min unless the concentration of Ca2+ was decreased to 0.1 mM. Insulin-mediated increase in 2-deoxyglucose uptake at 0.1 mM Ca2+ reversed upon hormone removal. It is concluded that catecholamines mediate a Ca2+-dependent increase in 2-deoxyglucose transport from either α or β receptors. Insulin has both a Ca2+-dependent and a Ca2+-independent component. Reversal studies suggest an additional role for Ca2+ in maintaining the activated transport state when activated by either epinephrine or insulin.  相似文献   

16.
The transport of Cd2+ and the effects of this ion on secretory activity and metabolism were investigated in beta cell-rich pancreatic islets isolated from obese-hyperglycemic mice. The endogenous cadmium content was 2.5 mumol/kg dry wt. After 60 min of incubation in a Ca2+-deficient medium containing 2.5 microM Cd2+ the islet cadmium content increased to 0.18 mmol/kg dry wt. This uptake was reduced by approx. 50% in the presence of 1.28 mM Ca2+. The incorporation of Cd2+ was stimulated either by raising the concentration of glucose to 20 mM or K+ to 30.9 mM. Whereas D-600 suppressed the stimulatory effect of glucose by 75%, it completely abolished that obtained with high K+. Only about 40% of the incorporated cadmium was mobilized during 60 min of incubation in a Cd2+-free medium containing 0.5 mM EGTA. It was possible to demonstrate a glucose-induced suppression of Cd2+ efflux into a Ca2+-deficient medium. Concentrations of Cd2+ up to 2.5 microM did not affect glucose oxidation, whereas, there was a progressive inhibition when the Cd2+ concentration was above 10 microM. Basal insulin release was stimulated by 5 microM Cd2+. At a concentration of 160 microM, Cd2+ did not affect basal insulin release but significantly inhibited the secretory response to glucose. It is concluded that the beta cell uptake of Cd2+ is facilitated by the activation of voltage-dependent Ca2+ channels. Apparently, the accumulation of Cd2+ mimics that of Ca2+ also involving a component of intracellular sequestration promoted by glucose.  相似文献   

17.
Sodium influx in serum-deprived human fibroblasts in a nominally Ca-free, Mg-free medium is significantly higher (17.8 ± 1.9 μmole/g prot/min) than that measured in a medium containing 1.8 mM Ca and 1 mM Mg (10.9 ± 0.7 μmole/g prot/min), and is stimulated dramatically (44.1 ± 6.1 μmole/g prot/min) by the addition of 10% fetal bovine serum (FBS), suggesting that an enhanced influx of Ca ions is not a necessary condition for serum activation of the amiloride-sensitive Na influx pathway. The addition of 2 mM ethylenediaminetetraacetic acid (EDTA) to serum-deprived cells in a low Ca, low Mg medium also results in a dramatic stimulation of Na influx (40.4 ± 3.7 μmole/g prot/min), while the addition of EDTA to cells assayed in a low Ca, low Mg medium in the presence of FBS has no significant effect on Na influx (45.3 ± 4.1 μmole/g prot/min). Thus, the stimulatory effects of FBS and EDTA are not additive. Kinetic analysis in the presence of varying amiloride concentrations indicate that the EDTA-stimulated Na influx occurs via the amiloride-sensitive Na pathway. The activation of Na influx in cells rinsed free of Ca and Mg Can be readily reversed by the addition of Ca or Mg to the assay medium. The Ca concentration required to give 50% inhibition of Na influx is 52 ± 7.6 μM (n = 3) for cells assayed in serum-free medium and 272 ± 29 μM (n = 3) for cells assayed in the presence of 10% FBS. At physiological Ca concentrations (1.8 mM) the Na influx is maximally inhibited by Ca both in the presence and absence of serum. Since Na influx in 1.8 mM Ca medium is 2.5-fold higher in the presence of serum than in its absence, these data suggest that the serum-induced change in the K, for Ca modulation of the amiloride-sensitive Na transport pathway is not sufficient to explain the serum stimulation of Na influx in human fibroblats.  相似文献   

18.
Net hepatic Ca2+ efflux, K+ uptake and glycogen breakdown in response to the alpha 1-adrenergic agonist phenylephrine were studied. Rat livers were perfused with CO2/bicarbonate-buffered solutions containing 10 microM Ca2+ and different amounts of Mg2+. K+-free medium and/or ouabain were used to block (Na+ + K+)-ATPase-dependent K+ uptake. In some experiments a sharp increase in extracellular Ca2+ concentrations was produced by infusing CaCl2 into the medium entering the liver. Perfusion with K+-free medium and ouabain enhanced the phenylephrine-induced Ca2+ efflux and diminished the glycogenolytic response, indicating a dissociation of Ca2+ release and glycogenolysis. Exogenous Ca2+ had practically no effect if livers were perfused with regular medium containing 1.2 mM Mg2+. In the presence of phenylephrine and if extracellular Mg2+ concentrations were lowered by omitting Mg2+ from the medium or by preperfusion with EGTA, exogenous Ca2+ was glycogenolytically effective and also produced a transient K+ uptake. Increased extracellular concentrations of Mg2+ inhibited the effects of exogenous Ca2+. In the presence of phenylephrine, higher concentrations of Mg2+ were needed than in the absence of alpha 1-adrenergic agonist to achieve a similar degree of inhibition. In one respect ouabain effects were comparable to those of phenylephrine: the glycoside also increased the metabolic response to exogenous Ca2+ and diminished the sensitivity towards Mg2+. Phenylephrine and ouabain may both enhance the permeability of plasma membranes for Ca2+.  相似文献   

19.
To assess the possibility of stimulating Ca2+-activated K+ channels, marine fish erythrocytes were incubated at 20-22 degrees C in saline containing a Ca2+-ATPase inhibitor (orthovanadate), a Ca2+ ionophore (A23187), propranolol or Pb2+. Incubation of the cells for up to 2 h under control conditions or in the presence of 5 mM NH4VO3 and 1 mM Ca2+ did not affect the intracellular K+ and Na+ concentrations. About 50% cellular K+ was lost from erythrocytes incubated in the presence of 0.01 mM A23187, 1 mM EGTA and 0.4-1.0 mM Ca2+. There was a significant loss of cellular K+ after the addition of 0.05-0.2 mM propranolol to the incubation medium. The stimulatory effect of propranolol on the K+ efflux was independent of external Ca2+. Blockers of Ca2+ transport, verapamil and Co2+, caused only a small decrease in the K+ loss induced by propranolol. The treatment of erythrocytes with 1-2 microM Pb2+ led to a minor K+ loss, but at a Pb2+ concentration of 20-50 microM, about 70% cellular K+ was lost. The K+ efflux induced by propranolol or Pb2+ was completely blocked by 1 mM quinine. The induced K+ loss from the erythrocytes was accompanied by a slight increase in the intracellular Na+ concentration. These data indicate the possibility of inducing Ca2+- and Pb2+-activated potassium channels in erythrocytes of S. porcus. A distinctive feature of the cells is a high sensitivity to propranolol, which activates K+ channels in the absence of external Ca2+.  相似文献   

20.
HeLa cells had their normal medium replaced by an isosmotic medium containing 80 mM K+, 70 mM Na+ and 100 microM ouabain. The cellular contents of K+ first increased and then decreased to the original values, that is, the cells showed a regulatory decrease (RVD) in size. The initial increase was not inhibited by various agents except by substitution of medium Cl- with gluconate. In contrast, the regulatory decrease was inhibited strongly by addition of either 1 mM quinine, 10 microM BAPTA-AM without medium Ca2+, or 0.5 mM DIDS, and partly by either 1 mM EGTA without medium Ca2+, 10 microM trifluoperazine, or substitution of medium Cl- with NO3-. Addition of DIDS to the NO3(-)-substituted medium further suppressed the K+ loss but the effect was incomplete. Intracellular Ca2+ showed a transient increase after the medium replacement. These results suggest that the initial increase in cell K+ is a phenomenon related to osmotic water movement toward Donnan equilibrium, whereas the regulatory K+ decrease is caused by K+ efflux through Ca(2+)-dependent K+ channels. The K+ decrease induced a decrease in cellular water, i.e., RVD. The K+ efflux may be more selectively associated with Cl- efflux through DIDS-sensitive channels than the efflux of other anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号