首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Milk-clotting enzyme from Bacillus licheniformis 5A1 was immobilized on Amberlite IR-120 by ionic binding. Almost all the enzyme activity was retained on the support. The immobilized milk-clotting enzyme was repeatedly used to produce cheese in a batch reactor. The production of cheese was repeated 5 times with no loss of activity. The specific activity calculated on a bound-protein basis was slightly higher than that of free enzyme. The free and immobilized enzyme were highly tolerant to repeated freezing and thawing. The optimum temperature for milk-clotting activity was 70 °C with the free enzyme whereas, it was ranged from 70 to 80 °C with the immobilized milk-clotting enzyme. The activation energy (E A) of the immobilized milk-clotting enzyme was lower than the free enzyme (E A = 1.59 and 1.99 Kcal mol−1 respectively). The immobilized milk-clotting enzyme exhibited great thermal stability. The milk-clotting optimum pH was 7.0 for both free and immobilized enzyme. The Michaelis constant K m of the immobilized milk-clotting enzyme was slightly lower than the free enzyme.  相似文献   

2.
Purification and matrix-assisted refolding of recombinant His-tagged polyhydroxyalkanoate (PhaZ) depolymerase from Pseudomonas putida KT2442 was carried out. His-tagged enzyme was overproduced as inclusion bodies in recombinant E. coli M15 (pREP4, pPAZ3), which were denatured by 8 M urea, immobilized on Ni2+-nitrilotriacetate-agarose matrix, and refolded by gradual removal of the chaotropic agent. The refolded enzyme could not be eluted with 1 M imidazole buffer, leading to an immobilized biocatalyst where PhaZ depolymerase was homogeneously distributed in the agarose support as shown by confocal scanning microscopy. Polyhydroxyoctanoate could not be hydrolyzed by this novel immobilized biocatalyst, whereas the attached enzyme was active in the hydrolysis of p-nitrophenyl alkanoate esters, which differed in their alkyl chain length. Taking advantage of the observed esterase activity on p-nitrophenylacetate, functional characterization of immobilized PhaZ depolymerase was carried out. The immobilized enzyme was more stable than its soluble counterpart and showed optimal hydrolytic activity at 37°C and 50 mM phosphate buffer pH 8.0. Kinetic parameters were obtained with both p-nitrophenylacetate and p-nitrophenyloctanoate, which had not been described so far for the soluble enzyme, representing an attractive and alternative chromogenic assay for the study of this paradigmatic enzyme.  相似文献   

3.
Summary The lipase from Candida cylindracea was immobilized by its adsorption on the internal surface of hydrophobic microporous poly(styrene-divinylbenzene) supports prepared by the concentrated emulsion polymerization method. The prepared supports have a surface area of the order of 200 m2/g. The immobilized enzyme catalyst is used for the hydrolysis of triacylglycerides. The effects of the amounts of surfactant and divinylbenzene used in the preparation of the hydrophobic support on the adsorption capacity for lipase and on the activity of the immobilized lipase have been investigated. The activity of the immobilized enzyme per enzyme molecule can be higher than that of the free lipase.  相似文献   

4.
A new method for immobilization of acetylcholinesterase (AChE) to alginate gel beads by activating the carbonyl groups of alginate using carbodiimide coupling agent has been successfully developed. Maximum reaction rate (V max) and Michaelis–Menten constant (K m) were determined for the free and binary immobilized enzyme. The effects of pH, temperature, storage stability, reuse number and thermal stability on the free and immobilized AChE were also investigated. For the free and binary immobilized enzyme on the Ca–alginate gel beads, optimum pH values were found to be 7 and 8, respectively. Optimum temperatures for the free and immobilized enzyme were observed to be 30 and 35 °C, respectively. Upon 60 days of storage the preserved activity of free and immobilized enzyme were found as 4 and 68%, respectively. In addition, reuse number, and thermal stability of the free AChE were increased by as a result of binary immobilization.  相似文献   

5.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

6.
Xylanase from Aspergillus tamarii was covalently immobilized on Duolite A147 pretreated with the bifunctional agent glutaraldehyde. The bound enzyme retained 54.2% of the original specific activity exhibited by the free enzyme (120 U/mg protein). Compared to the free enzyme, the immobilized enzyme exhibited lower optimum pH, higher optimum reaction temperature, lower energy of activation, higher Km (Michaelis constant), lower Vmax (maximal reaction rate). The half-life for the free enzyme was 186.0, 93.0, and 50.0 min for 40, 50, and 60°C, respectively, whereas the immobilized form at the same temperatures had half-life of 320, 136, and 65 min. The deactivation rate constant at 60°C for the immobilized enzyme is about 6.0 × 10−3, which is lower than that of the free enzyme (7.77 × 10−3 min). The energy of thermal deactivation was 15.22 and 20.72 kcal/mol, respectively for the free and immobilized enzyme, confirming stabilization by immobilization. An external mass transfer resistance was identified with the immobilization carrier (Duolite A147). The effect of some metal ions on the activity of the free and immobilized xylanase has been investigated. The immobilized enzyme retained about 73.0% of the initial catalytic activity even after being used 8 cycles.  相似文献   

7.
Glucoamylase from Aspergillus awamori466 was immobilized on various supports. The enzyme sorption depends on its amount, the type of support, and immobilization conditions. The kinetics of acidic inactivation of the native and immobilized enzyme was studied. The immobilized enzyme was more resistant to temperature and pH. The mechanism of the enzyme binding to the support was investigated by IR spectroscopy.  相似文献   

8.
The kinetics of the reversible fumarase reaction of immobilized Brevibacterium ammoniagenes cells and the decay behavior of enzyme activity were investigated in a plug flow system. The time course of the reaction in the immobilized cell column was well explained by the time-conversion equation including the apparent kinetic constants of the immobilized cell enzyme. The decay rate of fumarase activity was faster in the upper sections of the column (inlet side of the substrate solution) compared with the lower sections when 1M sodium fumarate (pH 7.0) was continuously passed through the column at 37°C. It was shown that the decay rate of the fumarase activity in the immobilized cell column depends on the flow rate of the substrate solution. The effect of flow rate on the decay rate of enzyme activity was considered to be related to the rate of contamination of enzyme with poisonous substances derived from the substrate solution or to the rate of leakage of enzyme stabilizers and/or enzyme itself from the immobilized cells.  相似文献   

9.
Pectinase was immobilized onto thermo-sensitive amphiphilic block copolymers poly(styrene-b-Nisopropylacrylamide) PS-b-poly(N-isopropylacrylamide) (PNIPAM) by covalent attachment. Biochemical studies have found that the stability of the PS-b-PNIPAM support is not impeded by the bound proteins despite that up to 242.5 mg of enzyme is immobilized per gram of carrier particles. The immobilized enzyme retained nearly 65% of its initial activity over 30 days, and the optimum temperature and pH also increased to the range of 60 ∼ 70°C and 4.0 ∼ 6.0, respectively. The immobilized enzyme also exhibited great operational stability, and more than 60% residual activity was observed in the immobilized enzyme after 10 batch reactions. Moreover, the lower critical solution temperature of the PS-b-PNIPAM support could be switched on or off by a small change in solution temperature. Thus, the immobilized pectinase could be recovered and showed durable activity during the recycle process.  相似文献   

10.
Sporopollenin is a natural polymer obtained from Lycopodium clavatum, which is highly stable with constant chemical structure and has high resistant capacity to chemical attack. In this study, immobilization of lipase from Candida rugosa (CRL) on sporopollenin by adsorption method is reported for the first time. Besides this, the enzyme adsorption capacity, activity and thermal stability of immobilized enzyme have also been investigated. It has been observed that under the optimum conditions (Spo-E(0.3)), the specific activity of the immobilized lipase on the sporopollenin by adsorption was 16.3 U/mg protein, which is 0.46 times less than that of the free lipase (35.6 U/mg protein). The pH and temperature of immobilized enzyme were optimized, which were 6.0 and 40 °C respectively. Kinetic parameters Vmax and Km were also determined for the immobilized lipase. It was observed that there is an increase of the Km value (7.54 mM) and a decrease of the Vmax value (145.0 U/mg-protein) comparing with that of the free lipase.  相似文献   

11.
Summary Biotransformation of daunomycinone into 13-dihydrodaunomycinone was performed using immobilized cells, immobilized cell homogenate and immobilized enzymes, extract of the microorganism Streptomyces aureofaciens B-96. The whole cells and the homogenate were incorporated into a gelatine matrix by cross-linking with glutaraldehyde, while the enzyme extract was immobilized on modified bead cellulose. The highest level of conversion of daunomycinone into 13-dihydrodaunomycinone was achieved with the immobilized enzyme extract.  相似文献   

12.
In order to understand the role of the acid–base, electrostatic and covalent interactions between enzyme and support, the catalytic behavior of the Rhizomucor miehei lipase (RML) immobilized on zeolite materials has been studied. The highest lipase activities were obtained when this enzyme, immobilized by adsorption, interacts through acid–base binding forces with the support surface, resulting in activation of the enzyme catalytic center. Due to the interest in biodiesel production by mild enzymatic transesterification, this heterogeneous biocatalyst has been used in transesterification of fatty acids contained in olive oil. The results show a high oleic acid conversion for several reaction cycles with a higher total biodiesel productivity compared to that using the free enzyme.  相似文献   

13.
β-D-galactosidase (EC 3.2.1.23) fromLactobacillus bulgaricus (1373) was immobilized by entrapment in a Polyacrylamide gel lattice. The enzymatic properties of the immobilized β-galactosidase were compared with those of the native enzyme. The temperature and pH optima were not affected by the immobilization. After entrapment of the enzyme no significant change was observed in its thermostability. The pH stability of the immobilized enzyme was higher than that of the native enzyme on the acidic side. TheK m values for the immobilized and native β-galactosidase with both lactose ando-nitrophenyl-β-D-galactoside as substrates were comparable. The immobilized enzyme could be repeatedly used 12 times without any loss of activity. No loss in the activity of the immobilized β-galactosidase was found after its storage for 30 days at 4°C and for 20 days at 25°C.  相似文献   

14.
Optimum conditions have been determined for the immobilization of glucoamylase on glass involving diazotized 5-aminosalicylic acid bonded to a deposited imperfectly crystallized film of TiO2. The changes in the kinetic and thermodynamic characteristics of the enzyme on immobilization have been determined. There are significant differences in the behaviour of the immobilized enzyme towards its substrates, maltose and starch. The apparent Km for starch increased on immobilization whereas that for maltose decreased. The pH optimum for the immobilized preparation showed a shift to acid pH relative to that of the free enzyme.  相似文献   

15.
Bacillus subtilis SHS0133 cephalosporin-C deacetylase (CAH) overexpressed in Escherichia coli was immobilized on an anion-exchange resin, KA-890, using glutaraldehyde. The activity yield of immobilized enzyme was approximately 55% of the free enzyme. The pH range for stability of the immobilized enzyme (pH 5–10) was broader than that for free enzyme. The Kmapp value of immobilized enzyme for 7-aminocephalosporanic acid (7-ACA) was similar to that of the free enzyme. This immobilized enzyme obeyed Michaelis–Menten kinetics similar to those of the free enzyme. A batch-type reactor with a water jacket was employed for deacetylation of 7-ACA using CAH immobilized on KA-890. Ten kilograms of 7-ACA were completely converted to deacetyl 7-ACA at pH 8.0 within 90 min. The reaction kinetics agreed well with a computer simulation model. Moreover, the immobilized enzyme exhibited only a slight loss of the initial activity even after repeated use (52 times ) over a period of 70 days. This reaction will thus be useful for the production of cephalosporin-type antibiotics.  相似文献   

16.
β-Glucosidase fromCurvularia lunata was immobilized in pellets of polyacrylamide, sodium alginate and agar. The activity of the enzyme was estimated at different times by measuring the absorbance of a solution into which 2-nitrophenol was released by the enzyme. The effect of pH and temperature was studied to select the optimum conditions. Thermostability of the β-glucosidase in each of the carriers was assessed over a period of 12–26 d. The immobilized enzyme on all the three carriers retained its activity longer than free enzyme did. Polyacrylamide was the best carrier both in terms of thermostability and of reusability of the immobilized enzyme preparations. The Michaelis constant (K m) for each of the immobilized enzyme preparation was calculated.  相似文献   

17.
Electrospinning, a simple and versatile method to fabricate nanofibrous supports, has attracted continuous attention in the field of enzyme immobilization. In this study, acetylcholinesterase (AChE) has been successfully immobilized in PVA nanofibers via electrospinning of a mixture of AChE, BSA as an enzyme stabilizing additive and PVA. The maximum activity recovery of immobilized AChE was about 40%. In comparison with free enzyme, the immobilized AChE showed improved stability while retaining a considerable amount of activity at lower pH values. Moreover, the immobilized AChE retained >34% of its initial activity when stored at 30°C for 100 days and retained 70% of its initial activity after ten consecutive reactor batch cycles.  相似文献   

18.
Summary Continuous production ofL-malic acid from fumaric acid using immobilized microbial cells was investigated. Several microorganisms having fumarase activity were immobilized into a polyacrylamide gel lattice. Among the microorganisms tested, immobilizedBrevibacterium ammoniagenes IAM 1645 showed the highest enzyme activity, but produced an unwanted by-product, succinic acid. Conditions for suppression of this side reaction were investigated, and bile extract treatment of immobilized cells was found to be effective.The bile extract treatment of immobilized cells also resulted in a marked increase of reaction rate forL-malic acid formation.No difference was observed between the native enzyme and immobilized cells in optimal pH and temperature of the enzyme reaction.The effect of temperature on the reaction rate and the stability of fumarase activity of an immobilized cell column were investigated under conditions of continuous enzyme reaction. The decay of enzyme activity during continuous enzyme reaction was expressed by an exponential relationship. Half-life of the fumarase activity of the immobilized cell column at 37°C was calculated to be 52.5 days.Presented at the Annual Meeting of the Society of Fermentation Technology, Japan, Osaka, Japan, October 30, 1975.  相似文献   

19.
Summary Hen egg white lysozyme was immobilized by covalent binding to a polymer showing reversibly soluble-insoluble characteristics with pH change. The retention of the specific activity of the immobilized enzyme can be as high as 41% of that of the free enzyme. The immobilized enzyme could be used in repeated batch lysis of M. lysodeikticus cells and to enhance the release of intracellular proteins 1.4 folds when compared with batch operation.  相似文献   

20.
Linoleic acid isomerase from Lactobacillus delbrueckii subsp. bulgaricus 1.1480 was purified by DEAE ion-exchange chromatography and gel filtration chromatography. An overall 5.1% yield and purification of 93-fold were obtained. The molecular weight of the purified protein was ~41 kDa which was analyzed by SDS-PAGE. The purified enzyme was immobilized on palygorskite modified with 3-aminopropyltriethoxysilane. The immobilized enzyme showed an activity of 82 U/g. The optimal temperature and pH for the activity of the free enzyme were 30 °C and pH 6.5, respectively; whereas those for the immobilized enzyme were 35 °C and pH 7.0, respectively. The immobilized enzyme was more stable than the free enzyme at 30–60 °C, and the operational stability result showed that more than 85% of its initial activity was retained after incubation for 3 h. The K m and V max values of the immobilized enzyme were found to be 0.0619 mmol l−1 and 0.147 mmol h−1 mg−1, respectively. The immobilized enzyme had high operational stability and retained high enzymatic activity after seven cycles of reuse at 37 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号