首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 416 毫秒
1.
Messenger RNA (mRNA) for globin was isolated from spleens of irradiated mice in which erythroid differentiation was induced by a bone marrow graft. The globin mRNA was isolated either by means of sucrose gradients of reticulocyte polysomal RNA or by affinity chromatography of total spleen RNA on poly (U)-sepharose. The globin mRNA was tested in a wheat embryo cell-free system. The appearance of mRNA in the spleen erythroid colonies was correlated with other parameters of erythroid differentiation such as globin synthesis, activity of delta-aminolevulinic acid synthetase and iron uptake. Poly(A) containing mRNA did appear already on the 3rd day after grafting. However, significant translational activity of globin mRNA could be demonstrated only one day later together with the increase in globin synthesis and delta-aminolevulinic acid synthetase and enhanced iron uptake. In the second part of this study mouse spleen cells rich in erythroid elements were incubated with a specific heme synthesis inhibitor (isonicotinic acid hydrazide, INH) and the synthesis of 9 S RNA was estimated. It was found that a 40-minute incubation with INH reduced uridine incorporation into 9 S RNA fraction by about 40%.  相似文献   

2.
The order of methylation of the 5'-terminus of globin mRNA of mice was studied by incubation of staged nucleated erythroid cells and peripheral reticulocytes with [methyl-3H] methionine. Methylation of the 5'-termini of alpha and beta- globin mRNAs in enucleated reticulocytes was demonstrated as follows: (a) [methyl-3H] incorporation into poly(A)+ RNA of reticulocytes co-migrated with the alpha- and beta- globin mRNAs on gel electrophoresis, and (b) following digestion of this RNA, radioactivity was localized to the four methyl sites at the 5'-capped structure of mouse globin mRNAs. However, this methylation is only 5 to 8% as efficient as in nucleated erythroid precursor cells, suggesting that most globin mRNA molecules are fully methylated prior to the reticulocyte stage. Incubations of early and late nucleated erythroid precursor cells and pulse-chase experiments with reticulocytes demonstrate that addition of the four 5'-terminal methyl groups follows an orderly sequence. In addition, the pulse-chase experiments suggest the turnover of the N7-methyl group on the 5'-terminal guanosine, but not of the other methyl groups in the 5'-terminus of globin mRNA. Thus, 5'-terminal methylation of globin mRNA is a nonrandom, dynamic process.  相似文献   

3.
4.
Polysomes from 5.5-day and 6.5-day embryonic chick erythroid cells contain messenger RNA (mRNA) which can be translated into products in a cell-free protein-synthesizing system. The products of the cell-free system coelectrophoresed with carrier globin chains from the cells from which the polysomal pellet was isolated. Wheat germ S30 fraction increases by 1.5--2.0 fold [3H] leucine incorporation into trichloroacetic acid-precipitable material directed by the endogenous mRNA on chick erythroid cell polysomes. The wheat germ probably provides a specific factor or factors absent in a shortage in the incubation medium.  相似文献   

5.
6.
δ-Amino [4-14C]laevulinate added to reticulocytes incubated in vitro is incorporated into haem. Exogenous δ-aminolaevulinate restores the incorporation of 59Fe into haem in reticulocytes which had been treated with isonicotinic acid hydrazide (INH) or penicillamine and were hence unable to synthesize δ-aminolaevulinate. On the other hand, the addition of δ-aminolaevulinate does not restore the incorporation of Fe into reticulocytes incubated with haemin. The inhibition of the incorporation of iron is neither restored by δ-aminolaevulinate in reticulocytes incubated with cycloheximide (which inhibits globin synthesis and thus elevates the free intracellular haem pool). These results suggest that in intact reticulocytes haemin does not inhibit δ-aminolaevulinate synthetase. This conclusion is further supported by the finding that the pattern of incorporation of [2-14C]glycine and δ-amino[4-14C]-laevulinate into haem differs in reticulocytes incubated with an inhibitor of δ-aminolaevulinate synthetase (INH) and in reticulocytes incubated with haemin and cycloheximide.  相似文献   

7.
5′-Methylthioadenosine (MTA) inhibits the incorporation of [3H] uridine into RNA in salivary glands of Drosophilamelanogaster. This effect is not due to an inhibition of [3H] uridine uptake into the glands. The inhibition of RNA synthesis by MTA is concentration dependent and maximum inhibition is observed after 45 minutes of incubation in the presence of 1 mM MTA. Experiments utilizing α-amanitin suggest that the synthesis of heterogeneous RNA is completely inhibited.  相似文献   

8.
Addition of rat peritoneal macrophages to nonadherent rat spleen cells in culture results in enhancement or suppression of DNA synthesis depending on the ratio of macrophages to lymphocytes. At high ratios of macrophages to lymphocytes (1:5), suppression can be observed as early as four hours. Macrophages suppress incorporation of thymidine (TdR) by nonadherent spleen, thymus and bone marrow cells, in most instances, to less than 5% of that observed in culture to which macrophages were not added. In the presence of macrophages, incorporation of [3H]uridine and [14C] amino acids by spleen cells was also moderately suppressed. Based on 51Chromium release and dye exclusion assays, it appears that suppression is not due to cytotoxicity. Furthermore, suppression of [3H]TdR incorporation by nonadherent spleen cells is reversible, in the presence of an antigenic stimulus, following removal of the macrophages from the cultures. The suppressive effects are not elicited by extracts of macrophages, freeze-thawed or heated macrophages, but appear to be due to a low molecular weight, heat stable factor released into the macrophage culture fluid.  相似文献   

9.
In the presence of tracer concentrations of extracellular leucine (5 μM), treatment of rat splenic lymphocyte suspensions in vitro with 1 μM dexamethasone for 2.5–4 h caused a 30–35% inhibition of [3H]leucine incorporation into protein. As the extracellular leucine concentration was raised to 5 mM, this inhibition was progressively reduced to 0–12%. This phenomenon correlated with a marked dependence on extracellular leucine concentration of the dexamethasone-dependent enlargement of free intracellular leucine pools in splenic lymphocytes: a 123% increase in pool size with tracer extracellular leucine; a 10% increase with 5 mM leucine. Varying extracellular leucine had no effect on: (1) nuclear [3H]dexamethasone binding by the cells; (2) the concentration of dexamethasone needed for half-maximal inhibition of [3H]leucine incorporation; (3) the time course of onset and maximal expression of the hormonal inhibition of [3H]leucine incorporation; or (4) the magnitude of dexamethasone-dependent inhibition of [3H]uridine incorporation into RNA by these cells. There was no detectable effect of dexamethasone on uptake and retention of [3H]leucine by the cells, regardless of the extracellular leucine concentration. Treatment of splenic lymphocytes for 4 h in vitro with 1 μM dexamethasone caused a small shift of ribosomes from larger aggregate polysomes to smaller forms. Thus, glucocorticoid-induced inhibition of amino acid incorporation in splenic lymphocytes is a multicomponent response, of which an actual decrease in protein synthesis is only a small part. Enlargement of free intracellular amino acid pools, probably resulting from increased protein degradation, is the major contributing factor to the hormonal inhibition of amino acid incorporation.  相似文献   

10.
We have investigated the effect of succinylacetone (4,6-dioxoheptanoic acid) on hemoglobin synthesis and iron metabolism in reticulocytes. Succinylacetone, 0.1 and 1 mM, inhibited [2-14C]glycine incorporation into heme by 91.2 and 96.4%, respectively, and into globin by 85 and 90.2%, respectively. 60 μM hemin completely prevented the inhibition of globin synthesis by succinylacetone, indicating that succinylacetone inhibits specifically the synthesis of heme. Added porphobilinogen, but not δ-aminolevulinic acid, partly overcame the inhibition of 59Fe incorporation into heme caused by succinylacetone suggesting that the drug inhibits δ-aminolevulinic acid dehydratase in reticulocytes. Succinylacetone, 10 μM, 0.1 and 1 mM, inhibited 59Fe incorporation into heme by 50, 90 and 93%, respectively, but stimulated reticulocyte 59Fe uptake by about 25–30%. In succinylacetone-treated cells 59Fe accumulates in a fraction containing plasma membranes and mitochondria as well as cytosol ferritin and an unidentified low molecular weight fraction obtained by Sephacryl S-200 chromatography. Reincubation of washed succinylacetone- and 59Fe-transferrin-pretreated reticulocytes results in the transfer of 59Fe from the particulate fraction (plasma membrane plus mitochondria) into hemoglobin and this process is considerably stimulated by added protoporphyrin. Although the nature of the iron accumulated in the membrane-mitochondria fraction in succinylacetone-treated cells is unknown some of it is utilizable for hemoglobin synthesis, while cytosolic ferritin iron would appear to be mostly unavailable for incorporation into heme.  相似文献   

11.
The inhibition of human prostatic epithelial cell (MA-160) replication by cAMP and certain analogs was explored in tissue cultures. When untreated fetal bovine serum was used to supplement the culture medium, cyclic AMP (cAMP) markedly inhibited cell growth. The inhibition was reversed by equimolar concentrations of uridine. Inhibition by 8-methyl-thio-cAMP (MES) was somewhat less effective and was not reversed by uridine. After heat treatment of the fetal bovine serum, which inactivated the cAMP phosphodiesterases, cAMP became less effective in cell growth inhibition, whereas the activity of MES remained unaltered. Dibutyryl cAMP (db-cAMP) had no effect on cell growth, however, when combined with the phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine (MIX), significant retardation of cell replication was observed. Cells treated for 24 h with 0.5 mM MES took up and incorporated significantly less [3H]TdR and [3H]uridine than control cells. Treatment of cells with 0.5 mM cAMP for 24 h, on the other hand, resulted in both substantially increased [3H]TdR uptake and increased [3H]uridine incorporation into RNA. The effects of similar treatment with db-cAMP plus MIX closely paralleled those of MES with marked inhibition of the uptake and incorporation of both thymidine and uridine.  相似文献   

12.
Implanting and delayed implanting mouse embryos were incubatedin vitro with [3H]uridine for 2–24 hr. The size and specific activity of the [3H]UTP pools were determined by means of a double isotope technique using copolymer synthesis with the [3H]UTP in the embryos, exogenous [14C]ATP, andE. coli RNA polymerase. Using the rate of incorporation of [3H]uridine into acid-insoluble material and the specific activity of the [3H]UTP pools, it was possible to calculate the overall rate of incorporation of uridine into RNA by the embryos. In implanting embryos it was constant for 24 hr. In contrast, the initial rate of uridine incorporation by the delayed implanting embryos was only 31% of that in implanting embryos (i.e., per cell); this increased steadily during the incubation period, reaching 81% of the rate in implanting embryos after 24 hr. This activation of RNA synthesis by delayed implanting embryosin vitro occurred in the absence of any uterine stimulatory factors. Further, it was shown that although 10% mouse serum would support trophoblastic outgrowthin vitro, it did not influence uptake, distribution of label into nucleotides, or rate of uridine incorporation into RNA in either implanting or delayed implanting embryos. Therefore, it is suggested that if depression and activation of metabolic activity in blastocysts are part of the mechanims of delayed implantation, and if trophoblast outgrowthin vitro is analogous to the process of implantationin vivo, then these two aspects of embryo activation are under different controls.  相似文献   

13.
The size of pulse-labeled globin messenger RNA nucleotide sequences was investigated, to determine whether newly transcribed globin mRNA molecules are larger than steady-state globin mRNA. Molecular hybridization techniques were used to compare directly the sedimentation of steady-state (unlabeled) and pulse-labeled (radioactive) globin mRNA sequences in the same analytical sucrose gradient. In gradients containing 98% formamide, radioactive globin mRNA sequences from mouse fetal liver cells labeled for 15 to 20 minutes with [3H]uridine sediment in a broad band with a peak at approximately 14 S, while steady-state globin mRNA sediments at 10 S. The large radioactive RNA can be recovered from one gradient and recentrifuged in a second gradient, in which it again sediments in a broad band with a peak at 14 S. The large radioactive RNA is cleaved to 10 S during a 75-minute “chase” with either actinomycin D or unlabeled uridine plus cytidine. The estimated half-life of the precursor is 45 minutes or less under these conditions. A covalent RNA precursor larger than 18 S with a similar turnover rate is not observed.  相似文献   

14.
Abstract: We have investigated the mechanism of inhibition of RNA synthesis by methyl mercury (MeHg) in isolated neonatal rat cerebellar cells. Each of the three component steps involved in the incorporation of exogenous [3H]uridine into cellular RNA was examined separately in whole-cell and/or subcellular preparations. Nuclear RNA polymerase activity was measured in preparations containing both free nuclei and whole cells. Incorporation of [3H]UTP into nuclear RNA was found to be unimpaired at concentrations of MeHg that inhibited whole-cell incorporation of [3H]uridine by > 75%. Cellular uptake of [3H]uridine was assayed in cerebellar cells treated with KCN to deplete ATP levels and block subsequent phosphorylation reactions of transported uridine. Uptake activity under these conditions was unaffected by MeHg. Measurement of intracellular phosphorylation of [3H]uridine indicated that inhibition of this activity closely paralleled that of RNA synthesis. Quantitation of individual uridine nucleotides by polyethyleneimine-cellulose TLC revealed reduced levels of UTP and UDP whereas levels of UMP were elevated, suggesting that impairment of phosphorylation was not the result of cellular ATP depletion but, more likely, a direct effect on phosphouridine kinase enzymes. This mechanism of MeHg-induced inhibition of RNA synthesis was confirmed by assays of uridine phosphorylation using cell-free extracts in which exogenous ATP was supplied.  相似文献   

15.
The metabolism of neuroblastoma cell glycoproteins was examined using l-[3H]fucose. Incubation of monolayer cultures with [3H]fucose resulted in a rapid uptake of the radioactive precursor and its incorporation into acid-insoluble macromolecules. Less than 3% of the [3H]fucose that was isolated from neuroblastoma cells by trichloroacetic acid precipitation was associated with glycolipids. The metabolism of fucosylated macromolecules was studied in cells which were labelled to a steady state, and then reincubated under conditions which limited reutilization of the radioactive precursor (40 mM unlabelled fucose). During reincubation of the cells, we observed a rapid metabolism (27% by 2 h)_ of the prelabelled macromolecules which stabilized within a cell generation time to give an overall rate of turnover of 9%. This rapid loss of radioactivity from the cells was not due to exocytosis since less than 4% of the [3H]-fucose was lost into the media as macromolecules during a 5 h reincubation period. The presence of 40 mM fucose in the media did not affect cell growth until after 24 h of incubation or cellular synthesis until after 15 h of incubation. When the metabolism of neuroblastoma cell glycoproteins was measured in the presence of 1.8 · 10?4 M cycloheximide, there appeared to be a less rapid decrease in cell-associated specific activity, and an increased reutilization of [3H]fucose. Although the major proportion of the radioactivity remained as [3H]fucose, extensive incubation of neuroblastoma cells with this radioactive precursor led to increased amounts of tritium associated with other cellular components. However, a rapid rate of glycoprotein metabolism could also be demonstrated with cells incubated with [4C]fucose. This eliminated the possibility that the above results were restricted to the tritiated precursor and merely a reflection of hydrogen-tritium exchange.  相似文献   

16.
Heme formation in reticulocytes from rabbits and rodents is subject to end product negative feedback regulation: intracellular "free" heme has been shown to control acquisition of transferrin iron for heme synthesis. To identify the site of control of heme biosynthesis in the human erythron, immature erythroid cells were obtained from peripheral blood and aspirated bone marrow. After incubation with human 59Fe transferrin, 2-[14C]glycine, or 4-[14C]delta-aminolevulinate, isotopic incorporation into extracted heme was determined. Addition of cycloheximide to increase endogenous free heme, reduced incorporation of labeled glycine and iron but not delta-aminolevulinate into cell heme. Incorporation of glycine and iron was also sensitive to inhibition by exogenous hematin (Ki, 30 and 45 microM, respectively) i.e. at concentrations in the range which affect cell-free protein synthesis in reticulocyte lysates. Hematin treatment rapidly diminished incorporation of intracellular 59Fe into heme by human erythroid cells but assimilation of 4-[14C]delta-aminolevulinate into heme was insensitive to inhibition by hematin (Ki greater than 100 microM). In human reticulocytes (unlike those from rabbits), addition of ferric salicylaldehyde isonicotinoylhydrazone, to increase the pre-heme iron pool independently of the transferrin cycle, failed to promote heme synthesis or modify feedback inhibition induced by hematin. In human erythroid cells (but not rabbit reticulocytes) pre-incubation with unlabeled delta-aminolevulinate or protoporphyrin IX greatly stimulated utilization of cell 59Fe for heme synthesis and also attenuated end product inhibition. In human erythroid cells heme biosynthesis is thus primarily regulated by feedback inhibition at one or more steps which lead to delta-aminolevulinate formation. Hence in man the regulatory process affects generation of the first committed precursor of porphyrin biosynthesis by delta-aminolevulinate synthetase, whereas in the rabbit separate regulatory mechanisms exist which control the incorporation of iron into protoporphyrin IX.  相似文献   

17.
Rat anterior hemipituitaries incubated in vitro rapidly take up and incorporate into protein D-[6-3H]-glucosamine · HCl, D-[1-14C]mannose and L-[G-3H]fucose. The newly labeled protein was only slowly released into a Krebs-Ringer bicarbonate incubation medium. Glucosamine- or mannose-labeled protein was barely detectable in the medium after a 30–60 min incubation whereas about 4% of all fucose-labeled protein had already been released into the incubation medium by 30 min. Puromycin · 2HCl (1 mM) inhibited incorporation of glucosamine or mannose into protein to 40% or less of control values within 30 min; fucose incorporation was not significantly inhibited before 45 min. Acid hydrolysis followed by amino acid analysis of glucosamine-labeled protein yielded significant amounts of label in glucosamine, galactosamine and apparent glucosamine-degradation products but no significant amount of label in any amino acid.  相似文献   

18.
Employing defined media conditions, the insulin sensitivities of mouse mammary gland epithelial cells in primary culture and MCF-7 human mammary epithelial cells were determined. Insulin stimulated the rates of [3H]uridine incorporation into RNA and [3H]leucine incorporation into protein in both primary mouse mammary gland epithelial cell cultures and MCF-7 cell cultures at concentrations approximating the dilution endpoint of the hormone (10−21 M). Insulin stimulated the rate of [3H]thymidine incorporation into DNA in primary mouse mammary gland epithelial cells at the dilution endpoint concentrations. However, MCF-7 cells required insulin concentrations 100–1000-times that necessary in mouse mammary epithelial cultures to elicit an increased rate of [3H]thymidine incorporation into DNA. Evidence is presented which suggests that the increased rates of uptake of [3H]uridine, [3H]thymidine and [3H]leucine into their respective precursor pools is not responsible for the apparent stimulatation of RNA, DNA and protein synthesis.  相似文献   

19.
Summary The autoradiographic investigation of L cells and Chinese hamster cells for the presence of mycoplasmas (A. laidlawii andM. hyorhinis) using uridine/uracil (UdR/U) testing is a rapid and reliable method suitable for the serial checking of even a small number of cells. It depends on a reduced incorporation of [3H]uridine and an increased uptake of [3H]uracil into the RNA of mycoplasma-infected cells, shown in autoradiograms by the density of the grains and their distribution. Results obtained by the autoradiographic technique correspond approximately to specific activity values of RNA-infected cells after the incorporation of [3H]uridine and [3H]uracil.  相似文献   

20.
The effects of hyperbaric oxygen on uracil nucleotide metabolism in B104 rat neuroblastoma cells were investigated. Cells exposed to 10 atm O2 for 4 h incorporated markedly less [3H]uridine into the acid-soluble fraction and RNA compared to cells kept in ambient air. The acid-soluble fraction of the oxygen-treated cells contained less total [3H]uridine phosphates ([3H]UMP + [3H]UDP + [3H]UTP) than air-treated cells. Uridine kinase activity, assayed in cytosolic extracts from cells exposed to 10 atm O2 for 4 h, was decreased by 46% compared to the air controls. The reduced enzyme activity which appears to account for the depressed [3H]uridine incorporation, may contribute to the lethal effects of oxygen in these cells.Abbreviations DMEM Dulbecco's Modified Eagle's Medium - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号