首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown both theoretically and experimentally that interphase nitrogen transport may have a significant influence on the rate of interphase oxygen transport, and thereby also on the value of the volumetric mass transfer coefficient of oxygen, kla, determined in mechanically agitated bubble fermentors using the variants of dynamic method presented in the literature. The experiments were carried out in 1M KCI solution at five stirrer frequencies and two gas inlet levels. The gas interchanges were performed either without interrupting the aeration and agitation of the charge (A) or with the aeration and agitation of the charge turned on at the same time (B). The applied variants of the interchange were N2→ O2→, O2→ N2, N2→ air, air→ N2, O→ O2, and O→ air. In the two last variants the oxygen dissolved in the charge was removed by reacting with sulfite ions. The kla values calculated by allowing for the nitrogen transport for procedure A were approximately equal to the values obtained by disregarding the nitrogen transport, whereas those for procedure B were higher (up to 40%), than the values obtained disregarding the nitrogen transport.  相似文献   

2.
The effect of agitation and aeration on the growth and antibiotic production by Xenorhabdus nematophila YL001 grown in batch cultures were investigated. Efficiency of aeration and agitation was evaluated through the oxygen mass transfer coefficient (K L a). With increase in K L a, the biomass and antibiotic activity increased. Activity units of antibiotic and dry cell weight were increased to 232 U ml−1 and 19.58 g l−1, respectively, productivity in cell and antibiotic was up more than 30% when K L a increased from 115.9 h−1 to 185.7 h−1. During the exponential growth phase, DO concentration was zero, the oxygen supply was not sufficient. So, based on process analysis, a three-stage oxygen supply control strategy was used to improved the DO concentration above 30% by controlling the agitation speed and aeration rate. The dry cell weight and activity units of antibiotic were further increased to 24.22 g l−1 and 249 U ml−1, and were improved by 24.0% and 7.0%, compared with fermentation at a constant agitation speed and a constant aeration rate (300 rev min−1, 2.5 l min−1).  相似文献   

3.
Summary The aeration performance of two venturi aeration reactors (operating volumes 381 and 251) was studied for an air-water system. It was found that the mass transfer coefficient (k la) could be described in terms of the superficial gas velocity (V s) alone by the simple expressionk La=aV infb supS with constantsa=0.313,b=0.579 for the 38-1 reactor anda=0.214,b=0.534 for the 25-1 reactor. A similar relationship was obeyed when the 38-1 reactor was aerated with a diffuser tile (a=17.0,b=1.52). A linear relationship betweenk La and gas hold-up was observed for the 38-1 reactor with both venturi and diffuser aeration. The 25-1 reactor was used successfully for the thermophilic aerobic digestion of sewage sludge. A mean sludge temperature rise of 30°C was observed. Chemical oxygen demand, pH, and total solids content of the digested sludge differed significantly from the feed sludge and were similar to values obtained for full-scale thermophilic aerobic digestion. No significant differences between inorganic solids content, dissolved oxygen concentration, or redox potential were observed between feed and digested sludge.  相似文献   

4.
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses; therefore, the knowledge of the volumetric mass transfer coefficient (kLa) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the kLa values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium, in the absence of biomass. Aeration and agitation were selected as the independent variables using a 22 full factorial design. Both variables showed statistically significant effects on kLa, and the highest values of this parameter in both media for simple fermentation (241 s−1) and extractive fermentation with ATPS (70.3 s−1) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The kLa values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N3D2) and superficial gas velocity (Vs) determined in distilled water (α = 0.39 and β = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (α = 0.38 and β = 0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (α = 0.50 and β = 1.0). A reasonable agreement was found between the experimental data of kLa for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions.  相似文献   

5.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

6.
7.
The calculation and scale-up of fermentation processes need kLa as one of the most important engineering data. There are two methods to determine kLa depending on power input, aeration rate and the properties of the fermentation broth: static with a balance between air supply and exit, dynamic gassing out with following the changes of dissolved oxygen concentration during periods of air off and a following air on. Within early intervals of fermentation time the data from both methods agree well, while for later time intervals the dynamic method always gives much lower values for kLa than static. The only explanations for this phenomenon are quick changes in the oxygen metabolism or an enzymatic storage of oxygen. For both gassing out and saturation period it is possible to calculate the same absolute amounts of this additional oxygen.  相似文献   

8.
The sufficient provision of oxygen is mandatory for enzymatic oxidations in aqueous solution, however, in process optimization this still is a bottleneck that cannot be overcome with the established methods of macrobubble aeration. Providing higher mass transfer performance through microbubble aerators, inefficient aeration can be overcome or improved. Investigating the mass transport performance in a model protein solution, the microbubble aeration results in higher kLa values related to the applied airstream in comparison with macrobubble aeration. Comparing the aerators at identical kLa of 160 and 60 1/h, the microbubble aeration is resulting in 25 and 44 times enhanced gas utility compared with aeration with macrobubbles. To prove the feasibility of microbubbles in biocatalysis, the productivity of a glucose oxidase catalyzed biotransformation is compared with macrobubble aeration as well as the gas‐saving potential. In contrast to the expectation that the same productivities are achieved at identically applied kLa, microbubble aeration increased the gluconic acid productivity by 32% and resulted in 41.6 times higher oxygen utilization. The observed advantages of microbubble aeration are based on the large volume‐specific interfacial area combined with a prolonged residence time, which results in a high mass transfer performance, less enzyme deactivation by foam formation, and reduced gas consumption. This makes microbubble aerators favorable for application in biocatalysis.  相似文献   

9.
Aims: To investigate the effects of pretreated‐beet molasses on Escherichia coli fermentation using benzaldehyde lyase (BAL) production by recombinant E. coli BL21(DE3)pLySs process as the model system. Methods and Results: The effect of the initial pretreated (hydrolysed) beet molasses concentration was investigated at 16, 24, 30 and 56 g l?1 at a dissolved oxygen condition of 40% air saturation cascade to airflow, at N = 625 min?1 and pHC = 7·2 controlled‐pH operation conditions. The highest cell concentration and BAL activity were obtained as CX = 5·3 g l?1 and A = 1617 U cm?3, respectively, in the medium containing 30 g l?1 pretreated beet molasses consisting of 7·5 g l?1 glucose and 7·5 g l?1 fructose. Production with and without IPTG (isopropyl‐β‐d ‐thiogalactopyranoside) induction using the medium containing 30 g l?1 of pretreated beet molasses yielded the same amount of BAL production, where the overall cell yield on the substrate was 0·37 g g?1, and the highest oxygen transfer coefficient was KLa = 0·048 s?1. Conclusions: Pretreated beet molasses was used in the fermentation with E. coli for the first time and it yielded higher cell and BAL production compared with the glucose‐based medium. Significance and Impact of the Study: Pretreated beet molasses was found to be a good carbon source for E. coli fermentation. Furthermore, IPTG addition was not required to induce recombinant protein production as galactose, one of the monomers of trisaccharide raffinose present in the beet molasses (1·2%), induced the lac promoter.  相似文献   

10.
Dissolved oxygen (DO) concentration was selected as a principal parameter for translating results of shake flask fermentation of Trichoderma viride (biocontrol fungi) to a fermenter scale. All fermentations were carried out in a 7.5 l automated fermenter with a working volume of 4 l. Fermentation performance parameters such as volumetric oxygen transfer coefficient (k L a), oxygen uptake rate (OUR), rheology, conidia concentration, glucose consumption, soluble chemical oxygen demand, entomotoxicity and inhibition index were measured. The conidia concentration, entomotoxicity and inhibition index were either stable or improved at lower DO concentration (30%). Variation of OUR aided in assessing the oxygen supply capacity of the fermenter and biomass growth. Meanwhile, rheological profiles demonstrated the variability of wastewater during fermentation due to mycelial growth and conidiation. In order to estimate power consumption, the agitation and the aeration requirements were quantified in terms of area under the curves, agitation vs. time (rpm h), and aeration vs. time (lpm h). This simple and novel strategy of fermenter operation proved to be highly successful which can be adopted to other biocontrol fungi.  相似文献   

11.
Photorhabdus luminescens, a bacterial symbiont of entomoparasitic nematodes, was cultured in a 10 L bioreactor. Cellular density and bioluminescence were recorded and volumetric oxygen transfer coefficient (kLa) and specific oxygen transfer rates were determined during the batch process. Exponential phase of the bacterium lasted for 20 h, showing a maximum specific growth rate of 0.339 h?1 in a defined medium. Bioluminescence peaked within 21h, and was maintained until the end of the batch process (48 h). The specific oxygen uptake rate (SOUR) was high during both lag and early exponential phase, and eventually reached a stable value of 0.33 mmol g?1 h?1 during stationary phase. Maintenance of 200 rpm agitation and 1.4 volume of air per volume of medium per minute (vvm) aeration, gave rise to a kLa value of 39.5 h?1. This kLa value was sufficient to meet the oxygen demand of 14.4 g L?1 (DCW) biomass. This research is particularly relevant since there are no reports available on SOURs of symbiotic bacteria or their nematode partners. The insight gained through this study will be useful during the development of a submerged monoxenic culture of Heterorhabditis bacteriophora and its symbiotic bacterium P. luminescens in bioreactors.  相似文献   

12.
Study of the distribution of the oxygen mass transfer coefficient, k l a, for a stirred bioreactor and simulated (pseudoplastic solutions of carboxymethylcellulose sodium salt) bacterial (P. shermanii), yeast (S. cerevisiae), and fungal (P. chrysogenum free mycelia) broths indicated significant variation of transfer rate with bioreactor height. The magnitude of the influence of the considered factors differed from one region to another. As a consequence of cell adsorption to bubble surface, the results indicated the impossibility of achieving a uniform oxygen transfer rate throughout the whole bulk of the microbial broth, even when respecting the conditions for uniform mixing. Owing to the different affinity of biomass for bubble surface, the positive influence of power input on k l a is more important for fungal broths, while increasing aeration is favorable only for simulated, bacterial and yeast broths. The influence of the considered factors on k l a were included in mathematical correlations established based on experimental data. For all considered positions, the proposed equations for real broths have the general expression kl a = aCXb ( \fracPa V )g vSd , k_{\rm l} a = \alpha C_{\rm X}^{\beta } \left( {{\frac{{P_{\rm a} }}{V}}} \right)^{\gamma } v_{\rm S}^{\delta } , exhibiting good agreement with experimental results (with maximum deviations of ±10.7% for simulated broths, ±8.4% for P. shermanii, ±9.3% for S. cerevisiae, and ±6.6% for P. chrysogenum).  相似文献   

13.
Summary A new technique is presented to determine gas-to-water overall volumetric mass transfer coefficients (k l a) in a stirred-tank reactor containing solvent-in-water dispersions. The compound to be transferred from the gas to the water was toluene; the water-immiscible organic solvent was FC40, a perfluorocarbon. The k l a was determined in steady-state conditions in the absence of biological consumption. Toluene removal was achieved by passing a continuous flow of toluene-free water through the reactor. When solvent was present it was separated from the water at the reactor outlet by means of a small settler and recycled back to the vessel. The k l a was found to increase with the FC40 volume fraction. An enhancement of 1.9 times on an aqueous-phase-volume basis was found at 15 % (v/v) FC40.  相似文献   

14.
The effects of aliphatic hydrocarbons (n-hexadecane andn-dodecane) on the volumetric oxygen mass transfer coefficient (k L a) were studied in flat alveolar airlift reactor and continuous stirred tank reactors (CSTRs). In the flat alveolar airlift reactor, high aeration rates (>2 vvm) were required in order to obtain efficient organic-aqueous phase dispersion and reliablek L a measurements. Addition of 1% (v/v)n-hexadecane orn-dodecane increased thek l a 1.55-and 1.33-fold, respectively, compared to the control (superficial velocity: 25.8×10−3 m/s, sparger orifice diameter: 0.5 mm). Analysis of the gas-liquid interfacial areaa and the liquid film mass transfer coefficientk L suggests that the observedk L a increase was a function of the media's liquid film mass transfer. Addition of 1% (v/v)n-hexadecane orn-dodecane to analogous setups using CSTRs led to ak L a increase by a factor of 1.68 and 1.36, respectively (superficial velocity: 2.1×10−3 m/s, stirring rate: 250 rpm). These results propose that low-concentration addition of oxygen-vectors to aerobic microbial cultures has additional benefit relative to incubation in purely aqueous media.  相似文献   

15.
The O2 mass-transfer coefficient, k L a, decreased by 20% when the viscosity of a simulated broth increased from 1.38 × 10–3 to 3.43 × 10–3 Pa s in a split-cylinder airlift bioreactor with a broth volume of 41 l. When the paper pulp concentration was below 10 g l–1, k L a hardly changed. While at 30 g l–1, k L a decreased by 56%. C2O4 2– and Na+ were found to have some effect on the k L a value.  相似文献   

16.
A series of substituted 2,4,5-triphenylisothiazol-3(2H)-one 1,1-dioxides 9 was synthesized and investigated as inhibitors of human leukocyte elastase (HLE). All compounds were found to inhibit HLE in a time-dependent manner and most of them exhibited kobs/[I] values > 300 M? 1s? 1. The most potent 3-oxosultam of this series was 9l (kobs/[I] = 2440 M? 1s? 1). Kinetic investigations performed with 9g and different substrate concentrations did not allow to clearly distinguish between a competitive or noncompetitive mode of inhibition. A more complex interaction is supported by the failure of a linear dependency of kobs values on the inhibitor concentration.  相似文献   

17.
Summary The effect of medium composition and initial glucose concentration on production of hEGF by recombinant E. coli cells was investigated. Optimum hEGF production was observed in a yeast extract/acid hydrolysed casein/salts media containing an initial glucose concentration of 10 g.l-1. A maximum hEGF titer of 250 mg.l-1 was obtained in this medium after 32 h in laboratory fermenters with pH, temperature, agitation and aeration set at 6.8, 30°C, 500 rpm and 2 vvm, respectively.  相似文献   

18.
The effects of oxygenation in cultures of Bacillus circulans BL32 on transglutaminase (TGase) production and cell sporulation were studied by varying the agitation speed and the volume of aeration. Kinetics of cultivations has been studied in batch systems using a 2 L bioreactor, and the efficiency of agitation and aeration was evaluated through the oxygen volumetric mass transfer coefficient (kLa). It was adopted a two-stage aeration rate control strategy: first stage to induce biomass formation, followed by a second stage, in which cell sporulation was stimulated. A correlation of TGase production, spores formation, and oxygen concentration was established. Under the best conditions (500 rpm; 2 vvm air flow, followed by no air supply during stationary phase; kLa of 33.7 h−1), TGase production reached a volumetric production of 589 U/L after 50 h of cultivation and the enzyme yield was 906 U/g cells. These values are 61% higher than that obtained in shaker cultures and TGase productivity increased 82%, when kLa varied from 4.4 to 33.7 h−1. The maximal cell concentration increased four times in relation to shaker cultures and the cultivation time for the highest TGase activity was reduced from 192 h to just 50 h. These results show the importance of bioprocess design for the production of microbial TGase, especially concerning the oxygen supply of cultures and the induction of cell sporulation.  相似文献   

19.
Abstract

We report the optimization of production of a halotolerant, thermoalkaline protease by Bacillus cereus SIU1, at shake-flask and bench-scale bioreactor level, using conventional and response surface methods. The basal medium supplemented with optimized (w/v) 0.8% glucose, 1.5% peptone, and 0.4% yeast extract produced 224 Uml? 1 alkaline protease after 20 h incubation. Enzyme yield was further increased to 491 Uml? 1 when the fermentation broth was supplemented with 0.02% (w/v) Ca2+. Optimization of physical factors resulted in still higher protease level of 651 Uml? 1 within 18 h fermentation at initial pH 9.0, 50°C, and 150 rpm agitation. Statistically designed experiments revealed significant effects of peptone and CaCl2 on protease production. A maximum of 749 protease Uml? 1 was produced at optimum factor levels (w/v) of peptone 1.75%, yeast extract 0.4%, CaCl2 0.025%, and pH 9.0 after 18 h incubation. Optimization of agitation and aeration rates in bench-scale bioreactors further enhanced the enzyme yield to 941 protease Uml? 1 at 125 rpm and 2.0 vvm aeration. Optimization of protease production by conventional and statistical approaches resulted in a ~10.7-fold increase (941 Uml? 1) compared to un-optimized conditions (88 Uml? 1).  相似文献   

20.
A cost-minimizing mathematical model for on-line control of dissolved oxygen using agitation speed and aeration rate was developed. In pilot scale monensin fermentation using Streptomyces cinnamonensis, this algortihm provided stable control of dissolved oxygen at 40%, reducing energy usage 27.8%. The agitation and aeration profiles provided by the algorithm respresent the pathway of least energy cost for control at the desired dissolved oxygen level. Other observed advantages of bivariable control were reduction of foaming, evaporation, and gas holdup. Reduced maintenance of compressors and agitator motors could also be expected due to decreased load. Monensin productivity equivalent to fermentation with constant agitation and aeration was not obtained, however, with potency reduced 14.8% with the dissolved oxygen control strategy.List of Symbols A m2 cross sectional area of fermentor - A 1, A 2, A 3, A 4 constants of polynomial fit to Calderbank's equations - BP N/m2 gauge back pressure - C ag $/W/s cost of electrical power - C Q $/m3 cost of compressed air - CE mol/m3/s carbon dioxide evolution rate - D m impeller diameter - DO, DO meas, DO sp % dissolved oxyen saturation at any time, measured, and setpoint respectively - h m height of liquid in fermentor - H N/m2/mmol Henry's constant for oxygen in water - H av average gas holdup in fermentor - k L a, k L a meas, k L k sp s–1 oxygen mass transfer coefficient at any time, measured, and setpoint respectively - N, N sp s–1 agitation speed at any time and setpoint respectively - N a, N a, sp aeration number at any time and setpoint respectively - N i total number of impellers - N p impeller power number - N s number of impellers into which air is directly sparged - OU, OU meas mol/m3/s Oxygen uptake rate at any time and measured respectively - P W ungassed agitation power - P g, P g,meas, P g,sp W gassed agitation power at any time, measured, and set point respectively - Q, Q meas, Q sp m3/s aeration rate at any time, measured, and setpoint respectively - T K fermentation temperature - u g m/s linear gas velocity - V m3 fermentation liquid volume - mole fraction of oxygen in fermentation off-gas - calculation constant - motor efficiency - $/s sum of agitation and aeration costs - kg/m3 liquid density  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号