首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quinacrine dihydrochloride (QDH) staining and the [3H]thymidine incorporation patterns were simultaneously analyzed in nuclei of rat cells from a proliferating (granulation tissue) and a nonproliferating tissue (liver). Nuclei from freshly isolated and cultured cells of the rapidly proliferating subcutaneous granulation tissue showed a cell cycle-related pattern similar to that previously described with growing fibroblast-like cells in vitro. Nuclei of liver cells in smears from biopsies and in histological sections showed a fluorescence pattern similar to that of serum-deprived arrested G0 cells from established cell lines. Treatment of primary cultured rat hepatocytes with phenobarbital altered their degree of chromatin condensation similar to that seen after treatment of rats in vivo. The data indicate that the QDH staining pattern is an early marker, suitable for detecting the cell cycle-promoting activity of chemicals (e.g., of tumor promoters) in nonproliferating cells from various tissues in vivo and in vitro.  相似文献   

2.
A fusion chimera between the integral nuclear pore membrane protein POM121 and GFP (green fluorescent protein) has been shown to correctly target to the nuclear pores when transiently expressed in a number of mammalian cell types. POM121-GFP is therefore an excellent marker for the noninvasive studies of the nuclear pores in living cells using fluorescence microscopy. We have established a line of neuroblastoma cells stably expressing the POM121-GFP fusion protein. We also monitored the nuclear envelope in living cells after induction of apoptosis or necrosis using 1 μM staurosporine or 100 μMp-benzoquinone, respectively. Interestingly, the POM121-GFP fluorescence was weaker or missing in the apoptotic cells. The disappearance of the nuclear pore marker accompanied apoptotic progression as judged by the degree of chromatin condensation and DNA fragmentation as analyzed by DNA staining and TUNEL assay, respectively. In contrast, the intensity of the nuclear rim fluorescence was unaffected in necrotic cells displaying an abnormal morphology with tilted nuclei. Thus, it was possible to distinguish between apoptotic and necrotic development in living cells using fluorescence microscopy. This cell line provides a fast and convenient model for screening suspected toxic xenobiotics.  相似文献   

3.
We investigated the influence of the cell cycle stage of the nuclear donor on prematurely condensed chromatin (PCC) and spindle morphology and on chromosome constitution in rabbit nuclear transplant embryos. The configuration of PCC following nuclear transplantation with G1, early S, and late S phase donor nuclei (G1, early S, and late S transplants, respectively) was characterized in whole mounts and chromosome spreads. In addition, the influence of the donor cell cycle stage on chromosome constitution in cleavage stage-manipulated embryos was determined. Within 2 h after fusion of the donor blastomere, the recipient oocyte cytoplasm was able to induce formation de novo of a metaphase plate associated with a spindle in G1, early S, and late S transplants. Metaphase chromosomes and spindle were intact in most cases of PCC in G1 transplants. However, these structures displayed minor abnormalities in early S transplants and gross abnormalities in late S transplants, such as incomplete or absent spindle formation and incomplete chromatin condensation. Normal chromosomes were present in G1 and early S transplants, whereas chromosome abnormalities were detected in late S transplants. The results indicate that morphology of prematurely condensed G1 and early S chromatin has a minor influence on chromosome constitution of manipulated embryos. That of late S chromatin, however, affects chromosome constitution in embryos and may account for reduced development of nuclear transplant embryos when late S phase donor nuclei are used.  相似文献   

4.
Fluorescence staining with acridine orange (AO) and ethidium bromide (EB) showed that nuclei of cortex root cells of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated Vicia faba ssp. minor seedlings differed in color. Measurement of resultant fluorescence intensity (RFI) showed that it increased when the color of nuclear chromatin was changed from green to red, indicating that EB moved to the nuclei via the cell membrane which lost its integrity and stained nuclei red. AO/EB staining showed that changes in color of the nuclear chromatin were accompanied by DNA condensation, nuclei fragmentation, and chromatin degradation which were also shown after 4,6-diamidino-2-phenylindol staining. These results indicate that ACC induced programmed cell death. The increasing values of RFI together with the corresponding morphological changes of nuclear chromatin were the basis to prepare the standard curve; cells with green unchanged nuclear chromatin were alive while those with dark orange and bright red nuclei were dead. The cells with nuclei with green–yellow, yellow–orange, and bright orange chromatin with or without their condensation and fragmentation chromatin were dying. The prepared curve has became the basis to draw up the digital method for detection and determination of the number of living, dying, and dead cells in an in planta system and revealed that ACC induced death in about 20% of root cortex cells. This process was accompanied by increase in ion leakage, shortening of cells and whole roots, as well as by increase in weight and width of the apical part of roots and appearance of few aerenchymatic spaces while not by internucleosomal DNA degradation.  相似文献   

5.
DNA stainability by different fluorochromes has been compared in exponentially dividing and stationary Euglena cells. With the intercalating fluorochromes, ethidium bromide, acridine orange and DAPI, a decrease of fluorescence intensity of the G1 cells is observed when cells enter stationary stage. However this decrease of fluorescence is not obtained with the nonintercalating fluorochrome Hoechst 33258. If nuclear basic proteins are extracted, however, the intensity of staining by either Hoechst 33258 or ethidium-bromide is comparable in stationary and dividing cells. Therefore, the decrease of fluorescence intensity of the G1 cells observed during the transition from exponential to stationary phase is not due to a loss of DNA but is related to the exposure of chromatin binding sites for ethidium bromide. In Euglena cells, DNA accessibility for intercalating fluorochromes depends upon chromatin structure and consequently upon cell age.  相似文献   

6.
Programmed cell death has been linked to AMPA-receptor-mediated excitotoxicity in pyramidal neurons of the hippocampus. The intent of this study was to investigate the roles of caspase-dependent and independent nuclear death-related factors in mediating AMPA-induced nuclear changes in PyNs by use of immunohistochemistry and transmission electron microscopy (TEM). Data indicate increases in the nuclear levels of caspase-activated acinus and DNase and Endonuclease G (a caspase-independent endonuclease) in CA1 and CA3 PyN nuclei with different temporal patterns following an AMPA-insult. Hoechst staining and TEM confirm AMPA-induced chromatin condensation. The presence of active acinus in nuclei suggests it mediates chromatin condensation. Interestingly, a DNA fragmentation labeling protocol showed that there was no chromatin cleavage up to 90 min after AMPA-insult. Overall, we conclude that: 1) AMPA-induced excitotoxicity increases nuclear immunoreactivity of pro-death enzymes from multiple programmed cell death pathways, 2) differential chromatin condensation patterns occur between CA1 and CA3, and 3) there is no chromatin cleavage within our experimental timeframe. Abbreviations: AIF, apoptosis inducing factor; AMPA, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid; CAD, caspase-activated DNase; CIP, calf intestinal alkaline phosphatase; EndoG, endonuclease G; ICAD, inhibitor of CAD; NMDA, N-methyl D-aspartate; TdT, terminal deoxynucleotidyl transferase; TEM, transmission electron microscopy; TUNEL, terminal deoxynucleotidyl transferase biotin-UTP nick end labeling  相似文献   

7.
Cytological studies of fluorescent proteins are rapidly yielding insights into chromatin structure and dynamics. Here we describe the production and cytological characterization of new transgenic maize lines expressing a fluorescent histone fusion protein, H2B-mCherry. The transgene is expressed under the control of the maize ubiquitin1 promoter, including its first exon and intron. Polymerase chain reaction-based genotyping and root-tip microscopy showed that most of the lines carrying the transgene also expressed it, producing bright uniform staining of nuclei. Further, plants showing expression in root tips at the seedling stage also showed expression during meiosis, late in the life cycle. Detailed high-resolution three-dimensional imaging of cells and nuclei from various somatic and meiotic cell types showed that H2B-mCherry produced remarkably clear images of chromatin and chromosome fiber morphology, as seen in somatic, male meiotic prophase, and early microgametophyte cells. H2B-mCherry also yielded distinct nucleolus staining and was shown to be compatible with fluorescence in situ hybridization. We found several instances where H2B-mCherry was superior to DAPI as a generalized chromatin stain. Our study establishes these histone H2B-mCherry lines as new biological reagents for visualizing chromatin structure, chromosome morphology, and nuclear dynamics in fixed and living cells in a model plant genetic system.  相似文献   

8.
Feulgen-DNA content, nuclear phenotypes, and levels of chromatin condensation were evaluated by image analysis in NIH/3T3 cells transformed with the c-H-ras oncogene of T24 cells. Three nuclear phenotypes, differing from those of untransformed control cells and defined in terms of patterns of chromatin condensation, were demonstrated microspectrophotometrically for the tumor cells. Polyploidy could only be observed in nuclei with extensive and deeply stained areas covered with condensed chromatin, i.e., only in a small fraction of the tumor cell nuclear population. The increased chromatin condensation that appeared with cell transformation affected the euchromatin zones. The image analysis provided data that, compared with those obtained in other situations involving cell transformation, could be relevant to the understanding of changes in chromatin supraorganization related to tumorigenesis and to tumor cell diagnosis.  相似文献   

9.
The G1 period     
In previous papers the existence of two cycles of chromosome condensation-decondensation per cell cycle was suggested based on experiments involving nuclear morphometry measurements of Feulgen-stained nuclei. This conclusion can be criticized since its assumption of a relationship between nuclear morphology and chromatin structure is derived from indirect evidence. In this paper, we report simultaneous measurements of nuclear area and nuclear fluorescence intensity on individual cells stained with the intercalating dye, acridine orange (AO). Using cells in various stages of G1 and synchronized by two different methods, our results demonstrate a linear correlation between nuclear area and fluorescence intensity. They also indicate two cycles of chromatin condensation-decondensation during the G1 period, as assayed by the number of chromatin primary, intercalating AO binding sites. Finally, they show that the first of these cycles involves a transition in early G1 from a very small condensed nucleus (immediately after telephase) to a relatively large, dispersed nucleus that occurs abruptly.  相似文献   

10.
为揭示褐飞虱Niloparvata lugens Stl若虫在发育过程中中肠的凋亡细胞,使用末端脱氧核苷酸转移酶介导的dUTP-生物素断端标记法(TUNEL)进行中肠组织切片检测,结果表明,1~5龄若虫中肠分别存在2%~5%的凋亡细胞。利用4′,6-二脒基-2-苯基吲哚二盐酸(DAPI)染色法检测表明,存在Ⅰ,Ⅱa和Ⅱb期凋亡的细胞核,其特征包括染色体浓缩、边缘化及细胞核碎裂。透射电子显微镜检测结果表明,早期凋亡的细胞呈现染色质浓缩、边缘化特征,晚期凋亡的细胞出现细胞核碎裂、形成凋亡小体及细胞质空泡化等。本研究揭示了在正常发育过程中褐飞虱若虫中肠有少量的细胞发生了凋亡。通过人工干预的方式调控中肠细胞的凋亡进程有可能使之成为防治该水稻害虫的新靶标。  相似文献   

11.
We investigated a number of sample-preparative parameters for use of flow cytometry to detect chromatin condensation in cells stained with acridine orange after DNA in situ is partially denatured by acid treatment. Stability and data reproducibility for both control and drug-treated ME-180 and HT-29 cells were assessed over: a range of cell concentrations in 2.56 X 10(-5) M acridine orange; 15 days of storage in fixative; various times between RNase digestion and staining; and increasing times between staining and analysis. Listmode data for red and green fluorescence were collected and mean fluorescence intensities of G1, S, and G2 subpopulations of HT-29 and ME-180 cells were computed. These were normalized to data from HeLa-S3 cells and fluorescent microspheres to control for inter-experiment variations in staining and instrumental parameters, respectively. The normalized red and green fluorescence data were used to calculate alpha 1 for G1 cells [alpha t = red fluorescence/(total fluorescence)]. Exponentially growing HeLa-S3 cells were a very consistent and reproducible biological standard to control for fixation and staining variability. Mean fluorescence intensities of control and difluoromethylornithine-treated (i.e., polyamine depleted) cells remained stable and reproducible across all tested ranges for cell concentration, storage in fixative, and time after RNase digestion. This technique can thus be used to evaluate difluoromethylornithine-induced changes in chromatin condensation of samples stored for as long as 2 weeks and analyzed all on 1 day.  相似文献   

12.
Whether chromosomes maintain their nuclear positions during interphase and from one cell cycle to the next has been controversially discussed. To address this question, we performed long-term live-cell studies using a HeLa cell line with GFP-tagged chromatin. Positional changes of the intensity gravity centers of fluorescently labeled chromosome territories (CTs) on the order of several microm were observed in early G1, suggesting a role of CT mobility in establishing interphase nuclear architecture. Thereafter, the positions were highly constrained within a range of approximately 1 microm until the end of G2. To analyze possible changes of chromosome arrangements from one cell cycle to the next, nuclei were photobleached in G2 maintaining a contiguous zone of unbleached chromatin at one nuclear pole. This zone was stably preserved until the onset of prophase, whereas the contiguity of unbleached chromosome segments was lost to a variable extent, when the metaphase plate was formed. Accordingly, chromatin patterns observed in daughter nuclei differed significantly from the mother cell nucleus. We conclude that CT arrangements were stably maintained from mid G1 to late G2/early prophase, whereas major changes of CT neighborhoods occurred from one cell cycle to the next. The variability of CT neighborhoods during clonal growth was further confirmed by chromosome painting experiments.  相似文献   

13.
The radiosensitive cell populations, such as resting lymphocytes from thymus, spleen, lymph node and blood, have much smaller nuclei (Vn (nuclear volume) approximately 20 to 70 microns3) compared to radioresistant G0 cells from non-lymphoid tissues (liver, kidney, brain, heart; Vn approximately 75 to 2700 microns3). It is suggested that radiation-induced disorganization of nuclear structures and cell pycnosis (interphase death) are promoted in G0 lymphocytes because in normal physiological conditions their nuclei assume a higher degree of chromatin condensation. In contrast, dispersion of chromatin into larger nuclear volumes, such as those of most non-lymphoid G0 cells, may hinder or delay radiation-induced cell death.  相似文献   

14.
A study was made of the chromatin structure of mature sperm cells from healthy males aged 25 to 40 using fluorescent microscopy and acridine orange staining according to the DNP cell thermal denaturation technique modified by the authors. It was shown that normal human sperm cell chromatin melting profiles represent uniform curves with maxima in the following temperature ranges: 43 (+/- 2) degrees, 55 (+/- 1) degrees, 67 (+/- 2) degrees, 77 (+/- 1) degrees, 82 (+/- 0.5) degrees, 89 (+/- 1) degrees, 92 (+/- 2) degrees (P less than 0.01), that are identical to those obtained with lymphocytes of healthy males with certain deviations from the standard normal variant. No heteromorphism was revealed in the sperm cell chromatin. Marked polymorphism in the chromatin structure occurs but at the diploid cell level. A 10-time decrease in the fluorescence of AO bound with sperm cell chromatin as compared to F530 AO bound with lymphocyte chromatin structure of the same individual supports the data on the over condensation of sperm cell nuclear chromatin as compared to that in lymphocytes.  相似文献   

15.
The objective of this study was to investigate whether G1 cells could enter S phase after premature chromosome condensation resulting from fusion with mitotic cells. HeLa cell synchronized in early G1, mid-G1, late G1, and G2 and human diploid fibroblasts synchronized in G0 and G1 phases were separately fused by use of UV-inactivated Sendai virus with mitotic HeLa cells. After cell fusion and premature chromosome condensation, the fused cells were incubated in culture medium containing Colcemid (0.05 micrograms/ml) and [3H]thymidine ([3H]ThdR) (0.5 microCi/ml; sp act, 6.7 Ci/mM). At 0, 2, 4, and 6 h after fusion, cell samples were taken to determine the initation of DNA synthesis in the prematurely condensed chromosomes (PCC) on the basis of their morphology and labeling index. The results of this study indicate that PCC from G0, G1, and G2 cells reach the maximum degree of compaction or condensation at 2 h after PCC induction. In addition, the G1-PCC from normal and transformed cells initiated DNA synthesis, as indicated by their "pulverized" appearance and incorporation of [3H]ThdR. Further, the initiation of DNA synthesis in G1-PCC occurred significantly earlier than in the mononucleate G1 cells. Neither pulverization nor incorporation of label was observed in the PCC of G0 and G2 cells. These findings suggest that chromosome decondensation, although not controlling the timing of a cell's entry into S phase, is an important step for the initiation of DNA synthesis. These data also suggest that the entry of a S phase may be regulated by cell cycle phase-specific changes in the permeability of the nuclear envelope to the inducers of DNA synthesis present in the cytoplasm.  相似文献   

16.
Acridine orange staining of exfoliated cells from epithelial tissues facilitates discrimination between normal and abnormal cells: abnormal cells develop highly elevated nuclear fluorescence. Comparisons of acridine orange (AO) staining with propidium iodide (PI) or Feulgen staining have shown that: (a) PI staining also provides highly elevated nuclear fluorescence from abnormal cells; (b) the distributions of nuclear fluorescence following AO or PI staining were usually not significantly different as judged by the Kolmogorov-Smirnov test; (c) fluorescence emission spectra from AO and PI stained cells are consistent with the hypothesis that both fluorochromes bind to DNA within cell nuclei; (d) DNAse treatment of AO stained normal cells eliminates the nuclear fluorescence peak from slit-scan contours; RNAse treatment has no effect on nuclear fluorescence; (e) the distribution of abnormal cell nuclear fluorescence after AO staining is usually, but not always, significantly different from the distribution of abnormal cell nuclear absorbance after Feulgen staining, with relative nuclear fluorescence being greater than relative nuclear absorbance. The hypothesis currently most consistent with these results is that elevated Feulgen DNA content can account for only part of the discrimination provided by AO staining, and that the chromatin within abnormal cells is altered so as to increase accessibility of DNA to intercalating dyes.  相似文献   

17.
Multinucleate (MN) cells were induced in PtK1 cells by colcemid treatment. A large percentage of cells developed nuclear asynchrony both in relation to DNA synthesis and mitosis within one cell cycle. Asynchrony could be traced even in metaphase and anaphase cells in which interphase nuclei, PCC of S-phase nuclei and less condensed prophase-like chromosomes could be observed along with normally condensed chromosomes. The occurrence of such abnormalities in these large MN cells may be explained on the basis of an uneven distribution of inducer molecules of DNA synthesis and mitosis due to cytoplasmic compartmentation. The less condensed form of all the chromosomes except chromosome 4 could be traced in asynchronous metaphase. The failure of the less condensed chromosomes to undergo complete condensation does not always appear to result from late entry of nuclei containing these chromosomes into G2 phase. It is likely that chromosome 4 carries gene(s) for chromosome condensation, as this chromosome itself never appears in a less condensed form. The inducers for chromosome condensation may not always be available at equal concentrations to all chromosomes located in separate nuclei, thus they may sometimes fail to undergo complete condensation before other nuclei reach the end of prophase, when the nuclear envelopes of all nuclei present in the cell break down simultaneously.  相似文献   

18.
Several subcompartments of the cell cycle in addition to the G1-, S-, and G2-phases usually observed were identified by simultaneous flow cytometric measurements of ethidium bromide fluorescence and side scatter intensity of cell nuclei. Metaphase cells and very early G1-phase cells (G1A) with low side scatter intensities were discriminated from interphase cells with high side scatter intensities. The reason for the various side scatter intensities was found to be the different structure of metaphase cells and early G1-phase cells due to chromatin condensation as shown by sorting of the respective cell nuclei. The G1A-phase could further be subdivided into two compartments with very low side scatter (G1A1) and intermediate side scatter (G1A2) intensities. Using partially synchronized cells the duration of these subcompartments of the G1-phase could be estimated. The durations of G1A1- and G1A2-phases were found to be about 10 min and 20 min, respectively, compared to the total duration of the G1-phase of about 3 h. Additional flow cytometric measurements of side scatter intensities of cell nuclei provide therefore further information on subcompartments of the G1- and G2/M-phases.  相似文献   

19.
We used a new method based on the study of nuclear areas above certain density thresholds to estimate changes in the condensation of chromatin of a cell. Allium cepa L. root meristematic cells were “labelled” as binucleate by a 1 h treatment with 0.1 % caffeine and were fixed at the middle of each interphase period. The distribution of chromatin densities of Feulgen-stained cells in G1, S and G2 phases was so different that by simply estimating chromatin patterns it would be possible to identify which period of the interphase any cell has reached. G2 nuclei have an increased number of chromatin-dense areas compared with G1 or S nuclei. We postulate that the estimation of chromatin condensation may be useful for the evaluation of intranuclear differentiation at the level of the intact cell.  相似文献   

20.
Abstract. To study whether an electrical potential difference exists across the nuclear envelope or inner nuclear membrane of plant cells, the authors have used an optical probe of membrane potential, the cationic fluorescent dye, DiOC6(3) (MW = 572.5). This dye was microinjected into the nucleoplasm of isolated Acetabularia nuclei (which are still surrounded by a thin layer of cytoplasm) and its subnuclear localization visualized by fluorescence microscopy. Striking differences, which seemed to be correlated with the developmental stage of the isolated nucleus, were observed. In nuclei isolated from cells at the stage of early cap stage formation, the dye was restricted to the nuclear envelope. In nuclei isolated from cells with intermediate or fully developed caps, there was increased nucleoplasmic staining, and the staining of the envelope was frequently diminished or abolished. In all nuclei, the dye remained within the nucleus after injection. Cytoplasmic staining was only observed when nuclei isolated from cells at the stage of early cap formation were incubated in a hyper- or hypo-tonic medium. Various ionophores, injected before the dye into the nucleoplasm, had no effect on the subsequent nuclear localization of DiOC6(3), although they did rapidly induce nucleolar condensation in nuclei isolated from cells at the stage of early cap formation. The results suggested that the electrical properties of Acetabularia nuclear envelopes or inner nuclear membranes change during cell maturation. Furthermore, the retention of the dye in the nucleoplasm under isotonic conditions indicated that the nuclear pores were not open channels for molecules of this size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号