首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
The circular dichroic properties of H-Gly-Phe-(Gly)n-Trp-Gly-OH (II, n = 0,1,2) and of related simpler peptides, such as H-Phe-Gly-OH, H-Gly-Phe-OH, H-Gly-Phe-Gly-OH, H-Phe-Trp-OH, H-Phe-Trp-Gly-OH, and H-Gly-Phe-Trp-OH in water and trifluoroethanol solutions are investigated. Peptides containing only one phenylalanyl residue show markedly different near-uv dichroic signals depending on whether this residue is in the N-terminal position or not. The possible origin of this feature is discussed. The study of the oligopeptides II (n = 0,1,2) shows that no strong intramolecular interaction between the two aromatic rings is present. However, the dichroic properties of II (n = 0) are clearly anomalous, and the analysis of H-Gly-Phe-Trp-OH, H-Phe-Trp-Gly-OH, and of H-Phe-Trp-OH at different pH's, confirms that the presence of two adjacent aromatic residues may bring about chiroptical properties which indicate a restriction in the conformational equilibrium of the molecule. The limits, and the possible generalization of this finding, are discussed.  相似文献   

2.
A useful synthon to approach artificial phenylalanyl peptides in a [2 + 2 + 2] cycloaddition reaction, C(alpha,alpha)-dipropargylglycine (Dprg) is examined for its conformational preferences as a constrained residue. Crystal structure analysis and preliminary NMR results establish possible preference of the residue for folded (alpha) rather than extended (beta) region of the straight phi,psi conformational space. Boc-Dprg-L-Leu-OMe (1) displays two molecular conformations within the same crystallographic asymmetric unit, with Dprg in the alpha(R) or alpha(L) conformation, participating in a type I beta-turn or an alpha(L)-alpha(R)-type fold, in which Leu(2) assumes the alpha(R) conformation stereochemically favored for an L-chiral residue. Boc-Dprg-D-Val-L-Leu-OMe (2) displays a type I' beta-turn conformation in crystal, with both Dprg(1) and D-Val(2) assuming the alpha(L) conformation stereochemically favored for a D-chiral residue, with 4 --> 1 type hydrogen bond linking L-Leu(3) NH with Boc CO. NMR analysis using temperature variation, solvent titration, and a spin probe study suggests a fully solvent-exposed nature of Dprg NH, ruling out a fully extended C(5)-type conformation for this residue, and solvent sequestered nature of L-Leu(3) NH, suggesting possibility of a beta-turn due to Dprg assuming a folded conformation.  相似文献   

3.
The molecular conformations of the linear oligopeptides H-(L -Ala)n-L -Pro-OH, with n = 1,2 and 3, have been investigated. 13C nmr observation of the equilibrium between the cis and trans forms of the Ala-Pro peptide bond indicated the occurrence of nonrandom conformations in solutions of these flexible peptides. The formation of the nonrandom species containing the cis form of the Ala-Pro bond was found to depend on the deprotonation of the carboxylic acid group of proline, the solvent, and the ionic strength in aqueous solution. The influence of intramolecular hydrogen bonding on the relative conformational energies of the species containing the cis and trans Ala-Pro peptide bond was studied by comparison of the peptides H-(Ala)n-Pro-OH with analogous molecules where hydrogen bond formation was excluded by the covalent structure. In earlier work a hydrogen bond between the protonated terminal carboxylic acid group and the carbonyl oxygen of the penultimate amino acid residue had been suggested to stabilize conformations including trans proline. For the systems described here this hypothesis can be ruled out, since the cis:trans ratio is identical for molecules with methyl ester protected and free protonated terminal carboxylic acid groups of proline. Direct evidence for hydrogen bond formation between the deprotonated terminal carboxylic acid group and the amide proton of the penultimate amino acid residue in the molecular species containing cis proline was obtained from 1H nmr studies. However, the cis:trans ratio of the Ala-Pro bond was not affected by N-methylation of the penultimate amino acid residue, which prevents formation of this hydrogen bond. Overall the experimental observations lead to the conclusion that the relative energies of the peptide conformations including cis or trans proline are mainly determined by intramolecular electrostatic interactions, whereas in the molecules considered, intramolecular hydrogen bonding is a consequence of specific peptide backbone conformations rather than a cause for the occurrence of energetically favored species. Independent support for this conclusion was obtained from model consideration which indicated that electrostatic interactions between the terminal carboxylic acid group and the carbonyl oxygen of the penultimate amino acid residue could indeed account for the observed relative conformational energies of the species containing cis and trans proline, respectively.  相似文献   

4.
Our previous report showed that human fetal lung fibroblasts secreted non-disulfide-bonded, non-helical collagenous polypeptides of alpha1(IV) and alpha2(IV) chains depending on culture conditions [Connective Tissue (1999) 31, 161-168]. The secretion of non-helical collagenous polypeptides is unexpected from the current consensus that such polypeptides are not secreted under physiological conditions. The absence of interchain disulfide bonds among alpha1(IV) and alpha2(IV) chains was always correlated with the absence of triple-helical structure of the type IV collagen. The finding corresponds with the fact that the interchain disulfide bonds are formed at or close to the completion of the type IV collagen triple-helix formation. The present report shows that ascorbate is the primary factor for the triple-helix formation of the type IV collagen. When human mesangial cells were cultured with ascorbate, only the triple-helical type IV collagen was secreted. However, when the cells were cultured without ascorbate, the non-helical alpha1(IV) and alpha2(IV) chains were secreted. Relative amounts of the secreted products were unchanged with or without ascorbate, suggesting that ascorbate is required for the step of the triple-helix formation. The ascorbate-dependency of the triple-helix formation of the type IV collagen was observed in all the human cells examined. The non-helical alpha1(IV) chain produced by the ascorbate-free culture contained about 80% less hydroxyproline than the alpha1(IV) chain from the triple-helical type IV collagen. The evidence for the non-association of the non-helical alpha1(IV) and alpha2(IV) chains in the conditioned medium was obtained by an anti-alpha1(IV) antibody-coupled affinity column chromatography for the conditioned medium. Although all the non-helical alpha1(IV) chains were found in the bound fraction, all the non-helical alpha2(IV) chains were recovered in the flow-through fraction. The present findings suggest that ascorbate plays a key role in the trimerization step of three alpha chains and/or in the subsequent triple-helix formation of the type IV collagen.  相似文献   

5.
M. Suwalsky  A. Llanos 《Biopolymers》1977,16(2):403-413
A structural study of the synthetic polypeptide poly(L -lysine hydrobromide) has been made by X-ray fiber techniques. The investigation was undertaken to determine whelther this polymer undergoes conformational transitions as a function of hydration in a manner similar to other chemically related basic polypeptides. Specifically, a comparison with the previously reported structures of the hydrochloride form of poly(L -lysine) was sought. Homogeneous powder mixtures with various amounts of water and oriented fibers of poly(L -lysine hydrobromide) at different relative humidities were X-ray photographed. Reversible transitions amorphous state ? β-pleated sheet ? α-helix ? isotropic solution as a function of increasing/decreasing degrees of hydration were found. The β-pleated-sheet conformation was observed between 33% and 76% relative humidities (containing about one and three molecules of water per residue, respectively). Each pleated sheet was formed by “antiparallel” chains, and the sheets were piled up along the b-axis. The spacings of this conformation did not vary appreciably with hydration. The observed reflections at 52% relative humidity (1.4 molecules of water per residue) could be indexed satisfactorily in terms of an orthorhombic unit cell, of space group P21221, with a = 9.52 Å, b = 16.44 Å, and c = 6.80 Å. These dimensions were shown by models to be compatible with the proposed structure. The α-helix conformation was present in specimens photographed at 76% relative humidity and up, and containing between three and fifteen molecules of water per residue. The helices were packed parallel to each other in a hexagonal array but randomly along or about their lengths. Increasing the hydration from five to fifteen molecules of water per residue causes the a-axis to increase from 16.9 to 20.8 Å. Twenty molecules of water per residue produced an isotropic solution. Despite some structural differences between the hydrobromide and hydrochloride forms it is concluded that the role played by the anions is mainly related to determining the water content levels at which conformational changes occur. Therefore, the anions do not significantly influence the prevailing conformation in this particular system, but might affect the packing arrangement of the polypeptide chains.  相似文献   

6.
Missense mutations, which replace one Gly with a larger residue in the repeating sequence of the type I collagen triple helix, lead to the hereditary bone disorder osteogenesis imperfecta (OI). Previous studies suggest that these mutations may interfere with triple-helix folding. NMR was used to investigate triple-helix formation in a series of model peptides where the residue replacing Gly, as well as the local sequence environment, was varied. NMR measurement of translational diffusion coefficients allowed the identification of partially folded species. When Gly was replaced by Ala, the Ala residue was incorporated into a fully folded triple helix, whereas replacement of Gly by Ser or Arg resulted in the presence of some partially folded species, suggesting a folding barrier. Increasing the triple-helix stability of the sequence N-terminal to a Gly-to-Ser replacement allowed complete triple-helix folding, whereas with the substitution of Arg, with its large side chain, the peptide achieved full folding only after flexible residues were introduced N-terminal to the mutation site. These studies shed light on the factors important for accommodation of Gly mutations within the triple helix and may relate to the varying severity of OI.  相似文献   

7.
The fine structure of the marine coccolithophorid Hymenomonas (Cricosphaera) carterae (Braarud & Fagerland) Manton & Peterfi is reported. Details of the formation of the circular organic body scales are presented. Their formation is shown to be closely linked with the presence of tubules found within the Golgi cisternae. The details of coccolith production are also discussed. The formation of the organic matrix scale appears to be associated with a densely staining organelle, the intracellular coccolith pre-cursor. The precise mechanisms involved in the mineralization of the organic matrix scale is not known but 2 possibilities are discussed. The production of coccoliths in H. carterae is compared with coccolith production in other coccolithophorids that have been investigated finestructurally.  相似文献   

8.
The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gly in a homogeneous collagen molecular population. Homotrimeric bacterial collagen proteins with a Gly-to-Arg or Gly-to-Ser replacement formed stable triple-helix molecules with a reproducible 2 °C decrease in stability. All Gly replacements led to a significant delay in triple-helix folding, but a more dramatic delay was observed when the mutation was located near the N terminus of the triple-helix domain. This highly disruptive mutation, close to the globular N-terminal trimerization domain where folding is initiated, is likely to interfere with triple-helix nucleation. A positional effect of mutations was also suggested by trypsin sensitivity for a Gly-to-Arg replacement close to the triple-helix N terminus but not for the same replacement near the center of the molecule. The significant impact of the location of a mutation on triple-helix folding and conformation could relate to the severe consequences of mutations located near the C terminus of type I and type III collagens, where trimerization occurs and triple-helix folding is initiated.  相似文献   

9.
To study the conformational changes that convert G protein-coupled receptors (GPCRs) from their resting to their active state, we used the M(3) muscarinic acetylcholine receptor, a prototypical class A GPCR, as a model system. Specifically, we employed a recently developed in situ disulfide cross-linking strategy that allows the formation of disulfide bonds in Cys-substituted mutant M(3) muscarinic receptors present in their native membrane environment. At present, little is known about the conformational changes that GPCR ligands induce in the immediate vicinity of the ligand-binding pocket. To address this issue, we generated 11 Cys-substituted mutant M(3) muscarinic receptors and characterized these receptors in transfected COS-7 cells. All analyzed mutant receptors contained an endogenous Cys residue (Cys-532(7.42)) located within the exofacial segment of transmembrane domain (TM) VII, close to the agonist-binding site. In addition, all mutant receptors harbored a second Cys residue that was introduced into the exofacial segment of TM III, within the sequence Leu-142(3.27)-Asn-152(3.37). Disulfide cross-linking studies showed that muscarinic agonists, but not antagonists, promoted the formation of a disulfide bond between S151(3.36)C and Cys-532. A three-dimensional model of the inactive state of the M(3) muscarinic receptor indicated that Cys-532 and Ser-151 face each other in the center of the TM receptor core. Our cross-linking data therefore support the concept that agonist activation pulls the exofacial segments of TMs VII and III closer to each other. This structural change may represent one of the early conformational events triggering the more pronounced structural reorganization of the intracellular receptor surface. To the best of our knowledge, this is the first direct demonstration of a conformational change occurring in the immediate vicinity of the binding site of a GPCR activated by a diffusible ligand.  相似文献   

10.
The triple-helical conformation has the stringent amino acid sequence constraint that every third residue must be a glycine, (X-Y-Gly)n. We use nuclear magnetic resonance and circular dichroism to quantify the consequences of a substitution in the glycine position of a triple-helical peptide, and to enhance our understanding of interactions in this basic structural motif. A 30-residue peptide with a Gly----Ala change forms a stable trimer at a folding rate somewhat less than that of the unsubstituted peptide, and the substitution results in a marked decrease in thermal stability and a conformational perturbation of about 30% of the triple-helical structure. Two models were generated for this peptide, one with the alanine residues packed inside the triple helix and one with a looping out of the chain at the substitution site. Studies on the Gly----Ala peptide are useful in understanding connective tissue diseases which result from the substitution of one glycine residue in the triple-helix of fibrillar collagens.  相似文献   

11.
Abstract

Structural properties of the fluorescent α-anomeric 1,N(6)ethenodeoxyadenosine residue placed in opposition to all four canonical deoxynucleotide units within 11-mer DNA duplexes have been studied. The duplex with α-εedA / dG pairing is most thermodynamically stable while the α-edA / dC one is the least stable. Fluorescence measurements confirm the thermodynamic data and indicate base-pair dependent stacking properties of α-edA within duplex structures. Results of molecular dynamics (MD) simulations in aqueous solution for the most stable duplex point to the presence of different conformational states of the α-1,N(6)etheno-deoxyadenosine residue, including formation of a hydrogen bonded pair with the dG and possible occurrence of severe kinking in the duplex.  相似文献   

12.
Structural properties of the fluorescent alpha-anomeric 1,N(6)ethenodeoxyadenosine residue placed in opposition to all four canonical deoxynucleotide units within 11-mer DNA duplexes have been studied. The duplex with alpha-epsilondA / dG pairing is most thermodynamically stable while the alpha-epsilondA / dC one is the least stable. Fluorescence measurements confirm the thermodynamic data and indicate base-pair dependent stacking properties of alpha-epsilondA within duplex structures. Results of molecular dynamics (MD) simulations in aqueous solution for the most stable duplex point to the presence of different conformational states of the alpha-1,N(6)etheno-deoxyadenosine residue, including formation of a hydrogen bonded pair with the dG and possible occurrence of severe kinking in the duplex.  相似文献   

13.
The effects of ethidium bromide, an intercalating dye and berenil, a nonintercalating dye on the biological activities ofEscherichia coli ribosomes have been studied. Ethidium bromide treatment drastically reduced both enzymatic and nonenzymatic initiation complex formation, enzymatic as well as nonenzymatic binding of phenylalanyl tRNA, peptidyl transferase, GTPase as well as the overall protein synthesising activity as measured by the poly U-dependent polymerization of phenylalanine. On berenil treatment, however, only enzymatic formation of the initiation complex is marginally reduced. Other reactions are not markedly affected except the enzymatic phenylalanyl tRNA binding which is slightly decreased only at high Mg2+ concentration; the treated ribosome has lowered polymerizing activity at sub-optimal Mg2+ concentration (10 mM). Although it has already been shown in this laboratory that treatment with either dye leads to the unfolding of the structure of the ribosome, the present studies indicate that berenil treatment does not alter the structure of the ribosome drastically in contrast to ethidium bromide treatment.  相似文献   

14.
A 1H-NMR investigation was carried out on the tetranucleotides U-m6(2)A-U-m6(2)A and m6(2)A-m6(2)A-U-m6(2)A (m6(2) = N6-dimethyladenosine) as well as on the hybrid trinucleotide dA-r(U-A). An extensive comparison with m6(2)A-U-m6(2)A and other relevant compounds is made. Previous proton NMR studies on trinucleotides have shown that purine-pyrimidine-purine sequences prefer to adopt a mixture of states which have as a common feature that the interior pyrimidine residue bulges out, whereas the flanking purine residues stack upon each other. A stacking interaction on the 3' side of the bulge is known to have no measurable effect on the bulge population. Chemical-shift data, ribose ring conformational analysis and information from NOE experiments now show unambiguously that the moderate U(1)-m6(2)A(2) stack in U-m6(2)A-U-m6(2)A diminishes the population of bulged-out structures in favour of a regular stack. This tendency towards conformational transmission in the downstream 5'----3' direction is fully confirmed by the fact that the strong m6(2)A(1)-m6(2)A(2) stack in the tetranucleotide m6(2)A-m6(2)A-U-m6(2)A virtually precludes the formation of bulged-out structures. The conformational characteristics of dA-r(U-A) appear comparable with those of m6(2)A-U-m6(2)A, which indicates that the presence of a 2'-hydroxyl group in the first purine residue is not a necessary prerequisite for the formation of a bulge.  相似文献   

15.
C-Glycosides in which the pseudoglycosidic substituent is a methylene group have been advertised as hydrolytically stable mimetics of their parent O-glycosides. While this substitution assures greater stability, the lower polarity and increased conformational flexibility in the intersaccharide linker brought about by this change may compromise biological mimicry. In this regard, C-glycosides, in which the pseudoanomeric methylene is replaced with a difluoromethylene group, are interesting because the CF2 group is more of an isopolar replacement for oxygen than CH2. In addition, the CF2 residue is expected to instill conformational bias into the intersaccharide torsions. Herein is described the synthesis and conformational behavior of the difluoromethylene linked C-glycoside of beta-D-galactopyranosyl-(1<-->1)-alpha-D-mannopyranoside. The synthesis centers on the formation of the galactose residue via an oxocarbenium ion-enol ether cyclization. Conformational analysis, using a combination of molecular mechanics, dynamics, and NMR spectroscopy, suggests that the difluoro-C-glycoside populates the non-exo-Gal/exo-Man conformer to a major extent (ca 50%), with a minor contribution ( approximately 15%) from the exo-Gal/exo-Man conformer that corresponds to the ground sate of the parent O-glycoside.  相似文献   

16.
Peptides have been an integral part of the collagen triple-helix structure story, and have continued to serve as useful models for biophysical studies and for establishing biologically important sequence-structure-function relationships. High resolution structures of triple-helical peptides have confirmed the basic Ramachandran triple-helix model and provided new insights into the hydration, hydrogen bonding, and sequence dependent helical parameters in collagen. The dependence of collagen triple-helix stability on the residues in its (Gly-X-Y)(n) repeating sequence has been investigated by measuring melting temperatures of host-guest peptides and an on-line collagen stability calculator is now available. Although the presence of Gly as every third residue is essential for an undistorted structure, interruptions in the repeating (Gly-X-Y)(n) amino acid sequence pattern are found in the triple-helical domains of all nonfibrillar collagens, and are likely to play a role in collagen binding and degradation. Peptide models indicate that small interruptions can be incorporated into a rod-like triple-helix with a highly localized effect, which perturbs hydrogen bonds and places the standard triple-helices on both ends out of register. In contrast to natural interruptions, missense mutations which replace one Gly in a triple-helix domain by a larger residue have pathological consequences, and studies on peptides containing such Gly substitutions clarify their effect on conformation, stability, and folding. Recent studies suggest peptides may also be useful in defining the basic principles of collagen self-association to the supramolecular structures found in tissues.  相似文献   

17.
PPT‐C encoded hemokinin‐1(hHK‐1) of Homo sapiens (TGKASQFFGLM) is a structurally distinct neuropeptide among the tachykinin family that participate in the NK‐1 receptor downstream signaling processes. Subsequently, signal transduction leads to execution of various effector functions which includes aging, immunological, and central nervous system (CNS) regulatory actions. However the conformational pattern of ligand receptor binding is unclear. The three‐dimensional structure of the hemokinin‐1 in aqueous and micellar environment has been studied by one and two‐dimensional proton nuclear magnetic resonance (2D 1H‐NMR spectroscopy) and distance geometry calculations. Data shows that hemokinin‐1 was unstructured in aqueous environment; anionic detergent SDS induces α‐helix formation. Proton NMR assignments have been carried out with the aid of correlation spectroscopy (gradient‐COSY and TOCSY) and nuclear Overhauser effect spectroscopy (NOESY and ROESY) experiments. The inter proton distances and dihedral angle constraints obtained from the NMR data have been used in torsion angle dynamics algorithm for NMR applications (CYANA) to generate a family of structures, which have been refined using restrained energy minimization and dynamics. Helical conformation is observed from residue K3‐M11. The conformational range of the peptide revealed by NMR studies has been analyzed in terms of characteristic secondary features. Observed conformational features have been compared to that of Substance P potent NK1 agonist. Thus the report provides a structural insight to study hHK‐1‐NK1 interaction that is essential for hHK1 based signaling events. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 702–710, 2015.  相似文献   

18.
《Genomics》1995,29(3)
Genes that encode the vertebrate fibrillar collagen types I–III have previously been shown to share a highly conserved intron/exon organization, thought to reflect common ancestry and evolutionary pressures at the protein level. We report here the complete intron/exon organization ofCOL5A1,the human gene that encodes the α1 chain of fibrillar collagen type V. The structure ofCOL5A1is shown to be considerably diverged from the conserved structure of the genes for fibrillar collagen types I–III.COL5A1has 66 exons, which is greater than the number of exons found in the genes for collagen types I–III. The increased number of exons is partly due to the increased size of the pro-α1(V) N-propeptide, relative to the sizes of the N-propeptides of the types I–III procollagen molecules. In addition, however, the increased number of exons is due to differences in the intron/exon organization of the triple-helix coding region ofCOL5A1compared to the organization of the triple-helix coding regions of the genes for collagen types I–III. Of particular interest is the increase of 54 bp exons in this region ofCOL5A1,strongly supporting the proposal that the triple-helix coding regions of fibrillar collagen genes evolved from duplication of a 54 bp primordial genetic element. Moreover, comparison of the structure ofCOL5A1to the highly conserved structure of the genes of collagen types I–III provides insights into the probable structure of the ancestral gene that gave rise to what appears to be two classes of vertebrate fibrillar collagen genes.  相似文献   

19.
A molecular dynamics simulation of the DNA triple helix d(TC)5.d(GA)5.d(C+T)5 is described (C+ represents a protonated cytosine residue). The simulation has been performed using the program AMBER 3.1 and includes counterions and explicit solvent under periodic boundary conditions. Both the dynamic and time-averaged behaviour of the system has been analysed. Considerable deviations from the fibre-diffraction model for DNA triple helix structure are observed, including the repuckering of the purine strand sugars that has been identified in some nuclear magnetic resonance (n.m.r.) studies. The simulation suggests that this conformational change may be driven by the possibility of improved interactions between the phosphate groups of this strand and both the solvent and counterions. Several examples of a particular conformational transition are observed, involving correlated changes in the backbone angles alpha and gamma. These transitions provide a possible explanation for some unusual n.m.r. data that have been reported. The structure of the triple helix major groove also suggests an explanation for the observed stabilization of DNA triplexes by polyvalent cations, and their ability to interact with drugs that bind in the minor groove of DNA duplexes.  相似文献   

20.
We have identified a point mutation in the type IV collagen alpha 5 chain gene (COL4A5) in Alport syndrome. Variant PstI (Barker et al., 1990, Science 248, 1224-1227), and BglII restriction sites with complete linkage with the Alport phenotype have been found in the 3' end of the COL4A5 gene in the large Utah Kindred P. The approximate location of the variant sites was determined by restriction enzyme mapping, after which this region of the gene (1028 bp) was amplified with the polymerase chain reaction (PCR) from DNA of normal and affected individuals for sequencing analysis. The PCR products showed the absence or presence of the variant PstI and BglII sites in DNA from normal and affected individuals, respectively. DNA sequencing revealed a single base change in exon 3 (from the 3' end) in DNA from affected individuals, changing the TGT codon of cysteine to the TCT codon for serine. This single base mutation also generated new restriction sites for PstI and BglII. The mutation involves a cysteine residue that has remained conserved in the carboxyl-end noncollagenous domain (NC domain) of all known type IV collagen alpha chains from Drosophila to man. It is presumably crucial for maintaining the right conformation of the NC domain, which is important for both triple-helix formation and the formation of intermolecular cross-links of type IV collagen molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号