首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Data for disruption of C. utilis, S. cerevisiae and B. subtilis cells by impingement of a high velocity jet of suspended cells against a stationary surface are compared. Differences between organisms were observed, but there were no general differences found between yeast and bacteria. In addition, growth conditions were found to have an effect on disruption with cells grown at a high specific growth rate easier to disrupt than cells grown at a low rate.Nomenclature a exponent of pressure (dimensionless) - D dilution rate (h\s-1) - K dimensional rate constant (Pa \s-) - N number of passes (dimensionless) - P operating pressure (Pa) - R fraction of cells disrupted (dimensionless) - um maximum specific growth rate (h\s-1)  相似文献   

2.
The disruption of native and recombinant strains of Escherichia coli was studied using a high-pressure homogenizer (Microfluidizer). The cells were grown in both batch and continuous fermentations. Cell suspensions ranging from 4 to 175 g dry wt/L were investigated at disruption pressures ranging from 30-95 MPa and at up to five passes. For both types of cells, the fraction of cells disrupted was dependent on the growth rate and concentration of the cells, the disruption pressure, and the number of passes through the disrupter. A model is presented that correlates the fractional disruption with these operating variables. The recombinant strain disrupted more readily than the native strain; 95 to 98% disruption of the former was achieved in two to three passes at a pressure of 95 MPa.  相似文献   

3.
The different invertase activities in embryogenic and non-embryogenic calli induced from explants (cotyledons, petioles, hypocotyls and leaves) obtained from Medicago arborea L. subsp. arborea seedlings were evaluated. Total invertase activity was lower in the calli with the greatest embryogenic capacity. The greatest fraction of this activity corresponded to soluble invertase. Wall-bound invertase showed maximum activity during the first two months of culture and the highest activities of this type were found in non-embryogenic calli. Extracellular invertase formed the smallest fraction of the total invertase activity evaluated. Acid and alkaline invertase activities were found in all calli but differences were detected between the embryogenic and non-embryogenic calli. In the former, the activity of both types of invertase exhibited a similar type of behaviour but different from that observed in the non-embryogenic calli. The calli with the greatest embryogenic capacity had very low levels of acid invertase and very high levels of the alkaline form. Soluble invertase – both acid and alkaline – accounted for the highest fraction after the first two months of culture and was present in lower amounts in the embryogenic than in the non-embryogenic calli. Regarding bound invertase, the highest production was seen to correspond to acid invertase. The extracellular invertase evaluated corresponded to the acid form since the alkaline extracellular invertase did not show any physiologically significant activity.  相似文献   

4.
The disruption of commercially-available pressed Bakers' yeast (Saccharomyces cerevisiae) was studied using a relatively new high-pressure homogenizer (the Microfluidizer). Initial experiments using only mechanical disruption generally gave low disruption yields (i.e., less than 40% disruption in 5 passes). Consequently combinations of two disruption methods, namely enzymatic lysis and subsequent homogenization, were tested to identify achievable levels of disruption. The enzyme preparation employed was Zymolyase, which has been shown to effectively lyse the walls of viable yeast. Yeast cell suspensions ranging in concentration from 0.6 to 15 gDW/L were disrupted with and without enzymatic pre-treatment. Final total disruption obtained using the combined protocol approached 100% with 4 passes at a pressure of 95 MPa, as compared to only 32% disruption with 4 passes at 95 MPa using only homogenization. A model is presented to predict the fraction disrupted while employing this novel enzymatic pretreatment.Nomenclature a exponent of pressure (-) - b exponent of number of passes (-) - K disruption constant (MPa-a) - N number of passes (-) - P pressure (MPa) - R total fraction of cells disrupted (-) - Ro fraction of cells disrupted after enzymatic pre-treatment (-) - X cell concentration (dry weight) (gDW/L) abbreviation DW dry weight  相似文献   

5.
The enhancement of the overall disruption of a native strain of Candida utilis (ATCC 9226) was studied using a combination of two methods, namely, pretreatment in the form of partial enzymatic lysis by Zymolyase followed by mechanical disruption in a Microfluidizer high-pressure homogenizer. The cells were grown in both batch and continuous cultures to examine the effect of specific growth rate on disruption. Cell suspensions ranging in concentration from 7 to 120 g DW/L were disrupted with and without enzymatic pretreatment. For yeast grown in batch culture, final total disruption obtained using the combined protocol approached 95% with four passes at a pressure of 95 MPa, as compared with only 65% disruption using only mechanical homogenization. A modified model was developed to predict the fraction disrupted by the enzymatic pretreatment-mechanical homogenization two-stage process. Predicted disruptions agreed favorably with experimental observations (maximum deviation of 20%) over a wide range of operating conditions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
Rhizopus nigricans ATCC 6227b grown in either shake flasks or a fermentor was sheared in a concentric cylinder viscometer. The cells grown in shake flasks were found to be more susceptible to disruption by shear than those grown in the fermentor. Cells resuspended in a medium containing reduced glutathione and EDTA were found to be more easily disrupted than cells resuspended in 0.5% NaCl. The optimum condition for disruption of shake flask cells grown in the former medium with retention of progesterone 11alpha-hydroxylase activity was a laminar shear rate of 4300 s(-1), for a period of 3 min at 4 degrees C. During the first 30 s the apparent viscosity was found to decrease significantly with applied shear.  相似文献   

7.
Fractions of acid invertase and acid phosphatase of the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf & Kernan were compared by column chromatography and polyacrylamide gel electrophoresis. Acid invertase levels were measured during the exponential phase after 14 days growth in pure culture. Most acid invertase was wall associated (50%) with 41% forming an extracellular fraction and 9% a soluble, cytoplasmic fraction. The wall-bound fraction was partially solubilized by 1 M NaCl, bulked with the extracellular fraction and separated by gel filtration into two acid invertase activity peaks. These peaks corresponded closely to two acid phosphatase activity peaks measured in the same eluates. Anion exchange chromatography under a continuous salt gradient separated the invertase and phosphatase isoforms from each other. Non-denaturing polyacrylamide gel electrophoresis demonstrated that the more active isoforms of each enzyme have different electrophoretic properties and are high mannose-type glycoproteins with a high affinity for the lectin, concanavalin A. The results are discussed in terms of the functional aspects of the two enzymes and their cytochemical localization.  相似文献   

8.
When cultured sycamore cells are homogenised in a phosphate-citrate buffer at pH 7.0 and the homogenate centrifuged two fractions are obtained both of which show the presence of an acid (opt. pH 4.0–4.5) and a neutral (opt. pH 7.0–7.4) invertase. The activity of the insoluble pellet appears to be located in its cell wall fragments. The acid and neutral invertases of the soluble fraction can be separated by fractional precipitation with (NH4SO4. The activities of these enzymes are low in stationary phase cells but they increase following subculture to reach peaks of activity towards the end of the period of most active cell growth and division and then decline again as the cells begin to enter stationary phase. The activities of both enzymes are higher in the cell wall than in the soluble fraction and the acid invertase reaches higher levels of activity than the neutral enzyme in both fractions. When cells are subcultured there occurs within a few hours an increase in the acid invertase and a decline in the neutral invertase activity in the cell wall fraction and a decline in the acid invertase of the soluble fraction prior to the large net increases in the activities of both enzymes in both locations which occurs as the cells embark upon cell division. The pattern of changes in the invertase activities through the growth cycle of batch propagated cultures is similar whether the cells are grown in sucrose, or glucose, or sucrose plus glucose; the highest levels of activities were recorded in the glucose-grown cells. The total yield of invertase activities and the distribution of activities between the soluble and cell wall fractions of the homogenates are affected by the pH of the extraction medium (within the range pH 4.0–8.0). It has not proved possible to completely remove the invertases from the cell wall fraction; upwards of 50 % of the acid invertase was recovered from this fraction by treatment with Triton-X followed by urea, but these treatments inactivated a high proportion of the neutral enzyme. These findings are compared with other studies on the activity and intra-cellular distribution of plant invertases and the possible roles of these enzymes discussed.  相似文献   

9.
Plasma membranes have been isolated from 3T3 and SV-3T3 cells grown in culture. Cells were harvested mechanically and disrupted in simple isotonic buffered salt solutions without resorting to hypotonic swelling or chemical membrane “hardeners.” The method of storing collected cells, the cell concentration during disruption, and the method of mechanical disruption were found to be significant variables affecting the yield of plasma membranes. The plasma membranes were separated from mitochondria and other cellular organelles by a single centrifugation through a step sucrose gradient containing a viscosity barrier of Dextran T-500 (modified fromA. S. Sun and B. Poole (1975)Anal. Biochem.68, 260). The isolated plasma membranes were located by assay for the “marker” enzyme, alkaline phosphatase (EC 3.1.3.1). The isolated plasma membrane fraction was free of mitochondrial and essentially free of lysozymal and endoplasmic reticulum contamination, which were assayed by measuring cytochrome c reductase, arylsulfatase, and hydrolysis of α-naphthol acetate, respectively. Of the enzymes tested, the phosphodiesterase activity was found to be the most specific assay for the plasma membrane from culture mouse fibroblast cells. The 5′-nucleotidase (EC 3.1.3.5) activity, the other plasma membrane marker, was extremely low in activity and gave an additional peak of activity when 5′-adenilic acid was used as substrate as compared to the expected single peak obtained with 5′-cytidilic acid as substrate. Overall recovery of isolated plasma membranes was greater than 75% as measured by the final recovery of phosphodiesterase activity.  相似文献   

10.
In culture, the ectomycorrhiza-forming fungi Amanita muscaria (Pers. ex Fries) Hock. and Hebeloma crustuliniforme (Bull. ex Fries) Quel. only grow on media with glucose or fructose but not with sucrose as sole carbohydrate source. This is due to their lack of wall-bound invertase activity. Therefore, utilization of sucrose by the fungi within a mycorrhizal association is believed to depend on the wall-bound invertase activity of the host. This enzyme activity was studied in the apoplast of suspension cultured cells of Picea abies (L.) Karst. An ionically and a tightly wall-bound isoform of acid invertase were found that function as β-d -fructofuranoside-fructohydrolases (EC 3.2.1.26). The ionically bound enzyme could be easily released from walls of intact cells with buffer of high ionic strength. In its native form, the ionically bound invertase isoform is a monomeric protein with a molecular mass of 61 kDa, as determined by gel filtration and SDS-PAGE. Glycoprotein nature of the enzyme was demonstrated with antibodies directed against the digoxigenin-labeled protein. The Km values of both enzymes for sucrose, their natural substrate, are relatively high (ionically bound invertase Km= 16 mM, tightly bound invertase Km= 8.6 mM). Activity of both wall-bound invertase isoforms strongly depends on the apoplastic pH. They have a narrow pH-optimum and exhibit highest activity at pH 4.5. with elevated activity between pH 4.5 and 6.0. Furthermore, fructose acts as competitive inhibitor of both isoforms, whereas glucose is not inhibitory. Unloading of sucrose from host cells to the apoplastic interface of the Hartig net in ectomycorrhizae appears to depend on the rate of hydrolysis by the wall-bound invertase of the host. Since the activity of the plant invertase depends on the actual pH value and the fructose concentration in the mycorrhizal interface, we suggest that the fungus can actively influence the activity of the plant invertase by acidification of the cell wall and by fructose uptake. Thus, the fungus itself can regulate its own supply of glucose and fructose.  相似文献   

11.
Summary Secretion of invertase and inulinase produced by recombinant Saccharomyces cerevisiae cells were investigated under derepression conditions of GALI promoter. Secreted invertase mainly localized in the periplasmic space, but most of inulinase was found in the extracellular culture medium. This high level of extracellular secretion of inulinase was not dependent on the growth phase in which derepression of GALI promoter occurs. Our results indicate that the inulinase polypeptide itself may have a function for the protein secretion into the culture medium.  相似文献   

12.
A native strain of Neurospora sitophila was disrupted using enzymatic pretreatment combined with mechanical disruption in order to facilitate recovery of constitutive cellulases. Exceptional disruption (approaching 100%) was achieved when the enzymatic pretreatment protocol was used prior to mechanical disruption at a low rotor speed via a new bead mill (the Annu Mill). Further, increased recovery of cellulases (ca. two-fold increases in cellulase activity per unit biomass) appears attainable when this disruption protocol is employed. The enzyme preparation employed was Zymolyase, which lyses the walls of viable fungi. Combined disruption of the mycelial biomass appears to provide a secondary source of cellulases from Neurospora sitophila in addition to the extracellular primary source derived from the filtered (unprocessed) fermentation broth.Nomenclature CMCase carboxymethyl cellulase - FPase filter paper'ase - IU international unit (mol liberated hydrolysis product/min.) - N number of passes through the bead mill (–) - R total fraction of cells disrupted (–) - Ro fraction of cells disrupted after enzymatic pretreatment alone (–) - X cell concentration (dry weight) (gDW/L) Abbreviations DW dry weight  相似文献   

13.
1. The liberation of invertase (β-fructofuranosidase, EC 3.2.1.26) from Candida utilis at autolysis of the cells was found to begin after the autolysis was almost completed. The autolysis residue at this stage consisted mainly of cell walls (ghosts). A suspension of washed cell ghosts released invertase on further incubation and this liberation was stimulated by the addition of reducing agents such as mercaptoethanol, or proteolytic enzymes such as papain, as has been known in the release of the invertase of Saccharomyces cerevisiae.

2. The invertase activity of the cell ghosts was not lost when the suspension was heated at 60°C. However, the invertase of the heated cell ghosts was not liberated even if the above stimulative agents were added.

3. Several commercial enzymes were shown to stimulate the liberation of invertase from the heated cell ghosts and “Zymolyase,? one of the effective enzymes, was fractionated. One fraction isolated from the preparation showed a striking effect on the liberation of invertase but this fraction did not show lytic activity on brewer’s yeast cells.  相似文献   

14.
Both acid and alkaline invertases were present in immature juice sacs of satsuma mandarin (Citrus‘Unshu Marcovitch”) fruit, in which sugar content was low. Maturing and mature juice sacs, in which sugar content increased steadily with time, were characterized by the presence of alkaline invertase and the absence of acid invertase. When the immature juice sacs were homogenized with 0.2 M sodium phosphate-citrate buffer (pH 8.0), almost all of the acid invertase activity was found in the solubilized fraction, whereas almost all of the alkaline invertase activity was present in the insoluble fraction. The distribution of alkaline invertase between the solubilized and insoluble fractions changed with the development of fruit. The acid invertase had a molecular weight of 69,000, optimum pH of 4.8–5.3, and Km value for sucrose of 7.3 mM. The alkaline invertase had a molecular weight of 200,000, pH optimum of 7.2–7.7, and Km value of 35.7 mM. The hydrolysing activities of both enzymes for raffinose were considerably less than those for sucrose. The alkaline invertase had lower activity for raffinose than the acid invertase.  相似文献   

15.
Ultrasound effects on the release and activity of invertase from Aspergillus niger cultivated in a medium containing sucrose and peptone and in another with sugar-cane molasses and peptone were investigated. Irradiation was conducted for periods of 2–10 min. with waves of amplitude 20 and 40 using an ultrasound processor of 20 kHz. Product formation was determined as reducing equivalents formed by time units using 3,5-dinitrosalicylic acid. Total and specific activities of the culture supernatants were compared in the presence and absence of sonication. Both amplitudes promoted a significant increase of total invertase activity in the time periods investigated and the highest values were obtained with an amplitude of 20. Ultrasound irradiation caused cell disruption, thus releasing invertase and, after 4 min, activation of the enzyme also occurred. The best conditions for production, extraction and activation of invertase were in molasses medium containing peptone and irradiation with ultrasound waves at 20 for 8 min. This method showed high efficiency for the extraction and activation of invertase from A. niger as well as a great potential for use in industrial processes.  相似文献   

16.
Two Saccharomyces cerevisiae strains were employed to investigate the effects of medium enrichment on the expression and secretion of a recombinant protein. One was a stable autoselection strain with mutations in the ura3, fur1, and urid-k genes. The combination of these three mutations blocks both the pyrimidine nucleotide biosynthetic and salvage pathways and is lethal to the cells. Retention of the plasmid, which carries a URA3 gene, was essential for cell viability. Therefore, all media were selective, allowing cultivation of the strain in complex medium. The second strain was a nonautoselection (control) strain and is isogenic to the first except for the fur1 and urid-k mutations. The plasmid utilized contains the yeast invertase gene under the control of the MFalpha1 promoter and leader sequence. The expression and secretion of invertase for the autoselection strain were examined in batch culture for three media: a minimal medium (SD), a semidefined medium (SDC), and a rich complex medium (YPD). Biomass yields and invertase productivity (volumetric activity) increased with the complexity of the medium; total invertase volumetric activity in YPD was 100% higher than in SDC and 180% higher than in SD. Specific activity, however, was lowest in the SDC medium. Secretion efficiency was extremely high in all three media; for the majority of the culture, 80-90% of the invertase was secreted into the periplasmic space and/or culture medium. A glucose pulse at the end of batch culture in YPD facilitated the transport of residual cytoplasmic invertase. For the nonautoselection strain, invertase productivity did not improve as the medium was enriched from SDC to YPD, and plasmid stability in the complex YPD medium dropped from 54% to 34% during one batch fermentation. During long-term sequential batch culture in YPD, invertase activity decreased by 90% and the plasmid-containing fraction dropped from 56% to 8.8% over 44 generations of growth. The expression level for the autoselection strain, however, remained high and constant over this time period, and no reversion at the fur1 or urid-k locus was observed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
The viscoelastic deformation of porcine aortic endothelial cells grown under static culture conditions was measured using the micropipette technique. Experiments were conducted both for control cells (mechanically or trypsin detached from the substrate) and for cells in which cytoskeletal elements were disrupted by cytochalasin B or colchicine. The time course of the aspirated length into the pipette was measured after applying a stepwise increase in aspiration pressure. To analyze the data, a standard linear viscoelastic half-space model of the endothelial cell was used. The aspirated length was expressed as an exponential function of time. The actin microfilaments were found to be the major cytoskeletal component determining the viscoelastic response of endothelial cells grown in static culture.  相似文献   

18.
Changes in insoluble or cell wall invertase and soluble invertase activity were examined during callus induction from tobacco pith-phloem explants and during callus proliferation on sucrose, glucose and fructose as carbon sources, or on transfer from culture on the hexoses to sucrose. In all cases there was a growth independent transitory increase in cell wall invertase early in culture. The magnitude of the increase was greatest in the presence of sucrose. Cell wall invertase was found to possess catalytic activity in situ, whether or not the tissue was grown on sucrose. It is hypothesized that the transitory increase in cell wall invertase plays a role in sucrose hydrolysis during wound respiration, which takes place early in culture.  相似文献   

19.
Cell suspension culture of Eschscholtzia californica Cham. were permeabilized by Tween 20 or 80, and immobilized by glutaraldehyde. The highest invertase activity was at pH 4.5 and temperature 50 °C. The hydrolysis of the substrate was linear for 5 h reaching 60 % conversion. The cells had high invertase activity and a good stability, and in long-term storage they showed convenient physico-mechanical properties.  相似文献   

20.
Polyvinyl alcohol (PVA)-utilizing Sphingopyxis sp. 113P3 (reidentified from Sphingomonas sp. 113P3) removed almost 0.5% PVA from culture supernatants in 4 days. Faster degradation of 0.5% PVA was performed by the periplasmic fraction. The average molecular size of PVA in the culture supernatant or cell-bound PVA was gradually shifted higher, suggesting that lower molecular size molecules are degraded faster. Depolymerized products were found in neither the culture supernatant nor the cell-bound fraction; however they were recovered from the periplasmic fraction. As extracellular or cell-associated PVA oxidase activity was almost undetectable in strain 113P3, degradation of PVA must be performed by periplasmic PVA dehydrogenase after uptake into the periplasm. Following the consumption of PVA, a dent appeared on the cell surface on day 2 and increased in size and depth for 4 days and was maintained for 8 days. Ultrastructural change on the cell surface was only observed in PVA medium, but not in nutrient broth (NB), suggesting that the change is induced by PVA. Fluorescein-4-isothiocyanate-labeled PVA was bound more to cells grown in PVA than to cells grown in NB. No binding was found with PVA-grown cells treated with formaldehyde. Thus, a dent on the cell surface seems to be related to the uptake of PVA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号