首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changing rates of histone mRNA synthesis and turnover in Drosophila embryos   总被引:17,自引:0,他引:17  
K V Anderson  J A Lengyel 《Cell》1980,21(3):717-727
The rates of synthesis and turnover of histone mRNA in Drosophila embryos were determined by hybridization of in vivo and in vitro labeled embryonic RNA to Drosophila histone DNA of the recombinant plasmid cDm500. There is a large store of maternal histone mRNA, equivalent to at least 7 X 10(7) copies of each of the five classes of histone mRNA per embryo. Embryonic synthesis of histone mRNA begins at 90 min after oviposition, making the histone genes among the first to be transcribed by embryonic nuclei. Embryonic histone mRNA accumulates rapidly during the blastoderm and gastrula stages. The peak in the rate of histone mRNA synthesis per embryo coincides with the peak in the rate of DNA synthesis per embryo, which occurs at 6 hr after oviposition. After 6 hr, as the rate of DNA synthesis per embryo decreases, the rate of histone mRNA synthesis and the total mass of histone mRNA per embryo both drop sharply. The rate of histone mRNA synthesis per gene falls more than 60 fold in the first 13 hr after oviposition, from 1.3 -2.5 copies per gene-min at 2 hr to 0.02-0.03 copies per gene-min at 13 hr. From measurements of the mass of histone mRNA per embryo and of the rate of accumulation of newly synthesized histone mRNA at a number of stages of early embryogenesis we determined that the cytoplasmic half-life of histone mRNA decreases approximately 7 fold during early Drosophila development, from 2.3 hr at blastoderm to 20 min by the end of gastrulation. Thus the level of expression of histone genes in Drosophila development is controlled not only by the size of the maternal mRNA pool and changes in the rate of histone mRNA synthesis, but also by changes in the rate of histone mRNA turnover.  相似文献   

2.
3.
After SDS-polyacrylamide gel electrophoresis two glycosylated glue proteins are found in the salivary glands of Drosophila virilis late third instar larvae. Synthesis of larval glue protein 1 occurs in three successive steps: at first a precursor protein with a molecular weight of about 138,000 daltons is formed. This is modified by two subsequent steps of glycosylation, the first one involving hexosamine, the second one hexoses. Studies with tunicamycin and β-hydroxynorvaline suggest that glycosylation occurs at threonine residues. Larval glue protein 2 has a molecular weight of approximately 15,000 daltons and is weakly glycosylated. The synthesis of glue proteins is stage specific. It starts at about 120 hr after oviposition and attains its maximal rate about 20 hr later. At this time the larvae leave the food. Between ecdysone release and puparium formation (146–151 hr) larval glue protein synthesis is terminated. Throughout the prepupal stage a different set of glycoproteins is synthesized. Thus, the larval-prepupal transition is accompanied by the reprogramming of glycoprotein synthesis in salivary glands. The secretion products formed during the two developmental stages seem to possess different biological functions.  相似文献   

4.
Spermatogenic cells isolated from prepubertal and adult mice by unit gravity sedimentation have been used to examine proteins synthesized in a stage-specific manner throughout meiosis and early spermiogenesis. Preleptotene, leptotene/zygotene, and pachytene spermatocytes were isolated from 17-day-old mice. Adult pachytene spermatocytes and round spermatids were isolated from mature animals. These germ cells were then cultured in defined medium with [35S]methionine [( 35S]met) for 4-5 h. For each cell type, relative [35S]met incorporation was determined and labeled proteins were compared by two-dimensional (2D) polyacrylamide gel electrophoresis and autoradiography. Levels of [35S]met incorporation by isolated germ cells correlate closely with previous autoradiographic estimates of protein synthesis during spermatogenesis (Monesi, 1967). Pachytene spermatocytes from prepubertal mice incorporate the highest levels of [35S]met, when expressed either as cpm/-10(6) cells or cpm/mg protein. Comparisons of 2D autoradiograms indicated that many proteins, including actin and tubulins, are synthesized at approximately equal levels in all stages examined. Other proteins, including heat-shock proteins and multiple plasma membrane constituents, are synthesized in a stage-specific manner in leptotene/zygotene spermatocytes, pachytene spermatocytes, and round spermatids. These studies define conditions for monitoring protein synthesis in isolated spermatogenic cells prior to the pachytene stage of meiosis, provide a 2D map of proteins synthesized at these earlier meiotic stages, and examine the synthesis of several proteins previously identified on 2D gels with biochemical and immunological methods.  相似文献   

5.
Embryos at various stages of early development from 1.5 to 5 hr after oviposition were made permeable with octane and labeled for 1 hr with [3H]phenylalanine. Measurements of the rate of incorporation of [3H]phenylalanine into ribosomal proteins and total protein were made using these synchronized Drosophila embryos. The rate of synthesis of those ribosomal proteins incorporated into ribosomes increases until 3 to 4 hr after fertilization (550 pg/embryo-hr) then declines later in embryonic development. The rate of total protein synthesis is maximal as early during embryonic development as could be measured. During the period between 1.5 and 2.5 hr after fertilization this rate is 9.4 ng/embryo-hr and then also declines. The synthesis of ribosomal proteins accounts for a substantial portion (4.5%–8.9%) of total protein synthesis in early embryos. These results indicate that ribosome formation is a significant activity during the earliest stages of Drosophila development.  相似文献   

6.
Trumbly RJ  Jarry B 《The EMBO journal》1983,2(8):1281-1290
The changes in protein species synthesized during early Drosophila embryogenesis were characterized by two-dimensional electrophoresis. Of the 261 proteins scored, 68 (26%) show dramatic changes in rates of synthesis during the first 8 h of embryogenesis. These stage-specific proteins can be classified into three categories: early, detected at 1, 2 and 3 h but not later; late, not detected at 1 h, but appearing later; and discontinuous, detected before and after, but not at 3 and 4 h. RNA was extracted from three representative stages, translated in vitro, and the translation products separated on two-dimensional gels. There was a strong correlation between the patterns of synthesis in vivo and in vitro, suggesting that the early proteins are translated from maternal mRNA, and the late proteins from zygotic mRNA. A thorough comparison was made between the proteins synthesized in wild-type and dorsal embryos, in which virtually only dorsal hypoderm differentiates. The first observed difference was a reduced synthesis of actin I at 8 h, indicating that the absence of mesodermal and endodermal tissues is not detectable at the level of moderately abundant protein until the onset of differentiation.  相似文献   

7.
Homozygous recessive cardiac mutant gene c in the axolotl, Ambystoma mexicanum, results in a failure of the embryonic heart to initiate beating. Previous studies show that mutant axolotl hearts fail to form sarcomeric myofibrils even though hearts from their normal siblings exhibit organized myofibrils beginning at stage 34–35. In the present study, the proteins titin and myosin are studied using normal (+/+) axolotl embryonic hearts at stages 26–35. Additionally, titin is examined in normal (+/c) and cardiac mutant (c/c) embryonic axolotl hearts using immunofluorescent microscopy at stages 35–42. At tailbud stage-26, the ventromedially migrating sheets of precardiac mesoderm appear as two-cell-layers. Myosin shows periodic staining at the cell peripheries of the presumptive heart cells at this stage, whereas titin is not yet detectable by immunofluorescent microscopy. At preheartbeat stages 32–33, a myocardial tube begins to form around the endocardial tube. In some areas, periodic myosin staining is found to be separated from the titin staining; other areas in the heart at this stage show a co-localization of the two proteins. Both titin and myosin begin to incorporate into myofibrils at stage 35, when normal hearts initiate beating. Additionally, areas with amorphous staining for both proteins are observed at this stage. These observations indicate that titin and myosin accumulate independently at very early premyofibril stages; the two proteins then appear to associate closely just before assembly into myofibrils. Staining for titin in freshly frozen and paraffin-embedded tissues of normal embryonic hearts at stages 35, 39, and 41 reveals an increased organization of the protein into sarcomeres as development progresses. The mutant siblings, however, first show titin staining only limited to the peripheries of yolk platelets. Although substantial quantities of titin accumulate in mutant hearts at later stages of development (39 and 41), it does not become organized into myofibrils as in normal cells at these stages. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Isolated rat pachytene spermatocytes were incubated in chemically defined medium supplemented with pyruvate and lactate, which are known to be essential energy substrates for these germ cells. Protein synthesis by the isolated cells was investigated by means of two-dimensional polyacrylamide gel electrophoresis. The electrophoretic patterns of (35S)-labeled proteins, synthesized by the pachytene spermatocytes during incubation in the presence of (35S)methionine either from 0-2 h or from 24-26 h after isolation, were almost completely identical. The patterns of newly synthesized proteins of freshly isolated spermatocytes and spermatids, however, showed several stage-specific proteins in addition to many proteins common to both spermatogenic cell types. Hence, it was concluded that a stage-specific pattern of protein synthesis can be maintained by pachytene spermatocytes during incubation for a period of 24 h in the absence of Sertoli cells but in the presence of a proper energy source.  相似文献   

9.
Protein synthetic patterns during oogenesis in Drosophila melanogaster were examined; in particular the site, time, and rate of tubulin synthesis and accumulation during oogenesis were determined. Ovarian proteins were labeled with [35S]methionine in vivo or in organ culure in vitro, and the proteins synthesized in egg chambers of specific developmental stages displayed by two-dimensional gel electrophoresis. A dissection technique was devised to examine proteins synthesized in each of the three cell types present in stage 10B egg chambers. The majority of proteins which were resolved by two-dimensional gel electrophoresis, including tubulin and actin, were synthesized throughout oogenesis and, at least to some extent, in each of the stage 10B cell types. Protein synthesis specific to developmental stage and/or cell type was also observed; for example, two nonchorion proteins were synthesized only in follicle cells and primarily at stage 10. A sensitive and specific radioimmune assay was developed in order to quantitate tubulin accumulation. Synthesis of several α-tubulin subunits and one β-tubulin subunit was observed. The tubulin content per egg chamber increased from 3 ng in stage 9 to 17 ng in stage 14, a period of about 13 hr. An accumulation rate of 1 ng/hr suggests that tubulin mRNA can account for about 4% of the total, nonmitochondrial, poly(A)+ RNA of the egg. Analysis of separated cell types at stage 10B revealed that both the follicle and nurse cells synthesize and accumulate appreciable amounts of tubulin. The stage 10B oocyte contains relatively little tubulin but actively synthesizes it. These two complementary analyses demonstrate that the tubulin present in the egg is synthesized within the oocyte-nurse cell syncytium, first in the nurse cells and later in the oocyte.  相似文献   

10.
Two-dimensional polyacrylamide gel electrophoresis has been used to analyze changes in protein content and protein synthesis in three stages of the life cycle of the protozoan parasite Trypanosoma brucei. The stages examined were slender and stumpy mammalian bloodstream forms and procyclic forms, which are analogous to the tsetse fly midgut stage. Two-dimensional gels of 35S-methionine-labeled proteins were examined by autoradiography to analyze newly synthesized protein, and gels were stained with ammoniacal silver to analyze proteins present. Several stage-specific molecules were noted. The most obvious was the variant surface glycoprotein, which was only present in bloodstream forms. Some other proteins were also bloodstream form specific; they had molecular weights of 120,000 and 38,000. Proteins of 52,000, 46,000, 25–30,000, and 16,000 daltons were present both in stumpy forms and procyclics but not in slender-form trypanosomes. Several proteins (molecular weights of 50–70,000, 43,000, 40,000, 26–24,000, 20–25,000, and 15,000) were present only in one of the three stages. One protein, a molecule of about 18,000 daltons present in both slender and stumpy parasites, did not appear to be synthesized in the stumpy stage. In vitro translation products of mRNA purified from the three stages were also examined. The abundance of mRNA encoding a protein of about 40,000 daltons appeared to be greater in slender than in stumpy parasites although the stumpy forms contained more of the protein and synthesized it at a higher rate.  相似文献   

11.
Two-dimensional polyacrylamide gel electrophoresis has been used to analyze changes in protein content and protein synthesis in three stages of the life cycle of the protozoan parasite Trypanosoma brucei. The stages examined were slender and stumpy mammalian bloodstream forms and procyclic forms, which are analogous to the tsetse fly midgut stage. Two-dimensional gels of 35S-methionine-labeled proteins were examined by autoradiography to analyze newly synthesized protein, and gels were stained with ammoniacal silver to analyze proteins present. Several stage-specific molecules were noted. The most obvious was the variant surface glycoprotein, which was only present in bloodstream forms. Some other proteins were also bloodstream form specific; they had molecular weights of 120,000 and 38,000. Proteins of 52,000, 46,000, 25-30,000, and 16,000 daltons were present both in stumpy forms and procyclics but not in slender-form trypanosomes. Several proteins (molecular weights of 50-70,000, 43,000, 40,000, 26-24,000, 20-25,000, and 15,000) were present only in one of the three stages. One protein, a molecule of about 18,000 daltons present in both slender and stumpy parasites, did not appear to be synthesized in the stumpy stage. In vitro translation products of mRNA purified from the three stages were also examined. The abundance of mRNA encoding a protein of about 40,000 daltons appeared to be greater in slender than in stumpy parasites although the stumpy forms contained more of the protein and synthesized it at a higher rate.  相似文献   

12.
Rates of synthesis of major classes of RNA in Drosophila embryos.   总被引:6,自引:0,他引:6  
We have been successful in labeling to high specific activity (3 × 105 dpm/μg) the RNA synthesized by large numbers of Drosophila embryos. Embryos of various developmental stages were rendered permeable with octane and labeled with [3H]uridine for 1 hr. At each stage the total dpm incorporated into RNA and the specific activity of the UTP pool were measured and used to calculate the absolute rate of RNA synthesis per embryo. This rate increases during embryonic development, from 1 pmole UTP/hr at 2 hr after oviposition to 6 pmoles UTP/hr at 15 hr. The rates of synthesis of nuclear and cytoplasmic poly(A)? and poly(A)+ RNAs were determined by analyzing the fractionated RNAs from each stage by sucrose gradient sedimentation. There is a significant activation of nuclear RNA synthesis at the blastoderm stage (approximately 2 hr after oviposition). After blastoderm, the rates of synthesis of nuclear and cytoplasmic poly(A)? and poly(A)+ RNA per embryo increase continuously; the rate of synthesis of each of these classes per nucleus, however, remains fairly constant. After making corrections for turnover during the labeling period, we find that the rates of synthesis of the major classes of RNA per nucleus at the gastrula stage are: cytoplasmic poly(A)+ RNA, 0.06 fg/nucleus-min; hnRNA, 0.86 fg/nucleus-min; and ribosomal RNA, 0.46 fg/nucleus-min. These rates are compared to rates of RNA synthesis in sea urchin embryos.  相似文献   

13.
14.
Analysis of actin synthesis in early sea urchin development   总被引:2,自引:0,他引:2  
  相似文献   

15.
We have studied the turnover and synthesis of purine nucleoside phosphorylase by using a polyclonal rabbit antiserum to this protein. The turnover of purine nucleoside phosphorylase was studied in the B lymphoblast cell, WI-L2, by specific immunoprecipitation of [3H]leucine-labeled proteins. The half-lives for total protein and purine nucleoside phosphorylase were 14.5 and 14.1 hr, respectively. For cells cultured in the presence of inosine the half-life of purine nucleoside phosphorylase was reduced to 11.2 hr. The synthesis of purine nucleoside phosphorylase was analyzed during phytohemagglutinin-stimulated T cell transformation by pulse labeling cells with [35S]methionine. Purine nucleoside phosphorylase synthesis increased greater than 10-fold during the first 12 hr of transformation and continued to a maximum of 30-fold. The relative rate of purine nucleoside phosphorylase labeled to total proteins was 0.04% in unstimulated T cells and increased to 0.18% 12 hr after stimulation. These studies identify some preferential synthesis of purine nucleoside phosphorylase during the early stages of T cell transformation.  相似文献   

16.
Cyclic Protein-2 (CP-2) is synthesized in a stage-specific manner by mature rat Sertoli cells within stage VI and VII seminiferous tubules. To determine how testicular maturation affects CP-2 synthesis, we cultured 20 cm of tubules encompassing all stages of the cycle from rats 17, 35, 45, and 75 days old. The greatest increase in CP-2 synthesis was found to occur between 35 and 45 days and exceeded that observed for transferrin and sulfated glycoprotein (SGP)-2. Additionally, two-dimensional gel analysis indicated that secretion of CP-2 increased from 35 to 45 days to a greater extent than the secretion of SGP-1 and SGP-2 and transferrin. Biochemical analysis also demonstrated that CP-2 synthesis was stage-specific by 45 days. Immunocytochemistry expanded these observations; CP-2 was not detected in 7-35-day-old Sertoli cells. However, at 36 days, CP-2 was detected in Sertoli cells in stage VI and VII tubules but not at any other stage. CP-2 concentration in stage VI-VII tubules was increased by 38 days, but was unchanged thereafter. Finally, we immunocytochemically examined age-related changes in CP-2 concentration of the proximal convoluted kidney tubule. This analysis revealed that, at 1 wk, CP-2 was present in all proximal tubules except those in the subcapsular area; however, by 14 days, CP-2 was detected in all proximal tubules. This comparison of Sertoli cells and proximal tubule cells indicates that CP-2 content is determined by the maturity of a cell and not by the age of the animal.  相似文献   

17.
18.
The experimental removal of the polar lobe, an anucleate cytoplasmic protrusion formed in preparation for the first cleavage, from the egg of Ilyanassa obsoleta results in grossly abnormal embryonic development. In experiments reported here normal and delobed embryos, as well as isolated polar lobes, were incubated with [35S]methionine for 4 hr beginning at the completion of the first cleavage or 21 hr later during epiboly. Proteins were extracted and examined by fluorography after resolution by two-dimensional polyacrylamide gel electrophoresis. In normal embryos the synthesis of several proteins begins or ends between the two stages investigated. In isolated polar lobes a subset of these developmental changes in protein synthesis occurs, indicating that the regulation of these events is independent of concomitant nuclear activity and probably involves selective regulation of the translation of mRNA stored in the eggs. The patterns of protein synthesis in normal embryos and delobed embryos are qualitatively extremely similar, though quantitative differences are also observed. No proteins can be detected which are synthesized exclusively in polar lobes.  相似文献   

19.
Changing rates of DNA and RNA synthesis in Drosophila embryos   总被引:6,自引:0,他引:6  
Rates of DNA and RNA synthesis during Drosophila embryogenesis were measured by labeling octane-treated embryos with [14C]thymidine and [3H]uridine. Radioactivity incorporated per hour was converted to rates of synthesis using measurements of the pool-specific activity during the labeling periods. The rate of DNA synthesis during early embryogenesis increases to a maximum at 6 hr after oviposition and then decreases sharply. Measured rates of DNA synthesis were used to calculate that the total amount of DNA per embryo doubles every 18 min at blastoderm, every 70–80 min during gastrulation, and less than once every 7 hr at later stages. The rate of RNA accumulation per embryo increases continuously during the first 14 hr of embryogenesis. The rate of nuclear RNA synthesis per diploid amount of DNA, however, decreases fivefold between blastoderm and primary organogenesis. The cytoplasmic poly(A)+ RNA synthesized by blastoderm embryos associates rapidly with polysomes. The relatively high rate of synthesis of polysomal poly(A)+ RNA per nucleus at blastoderm allows the small number of nuclei present at blastoderm to make a significant quantitative contribution to the informational RNA active in the early embryo. At the end of blastoderm, approximately 14% of the mRNA being translated in the embryo has been synthesized after fertilization.  相似文献   

20.
Differentiating imaginal hypodermal cells of Drosophila melanogaster form adult cuticle during the second half of the pupal stage (about 40 to 93 hr postpupariation). A group of proteins with molecular weights of 23,000, 20,000, and 14,000 is identified as putative major wing cuticle proteins with the following biological properties: These proteins are abundant components of cuticle and are major synthetic products of cuticle-secreting hypodermal cells. They are leucine-rich and methionine-free and are the most prominent proteins of this type synthesized by wing hypoderm at 65 hr, during the period of procuticle formation. Electron microscopic autoradiography shows that leucine-rich, methionine-free proteins specifically localize to the apical cell surface and newly secreted cuticle of 65-hr wing cells. This strongly suggests the export of these proteins to the cuticle. Lastly, these proteins undergo a reduction in extractability just after eclosion, during the period of cuticle protein crosslinking (sclerotization). The synthesis of these major hypoderm proteins is temporally regulated in development. In wing cells, the 14-kDa proteins are synthesized first, from 53 to 78 hr, and the 20- and 23-kDa proteins are synthesized from 63 to 93 hr. The pattern of synthesis for these proteins is similar in abdominal cells but delayed by 6 to 10 hr. Two-dimensional gel electrophoresis shows that each of the 23-, 20-, and 14-kDa size classes contains at least two component polypeptides. Patterns of protein synthesis in cells of the imaginal hypodermis are regulated in a precise temporal sequence during the production of adult cuticle. Their study yields a useful system for the analysis of molecular events in gene control and cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号