首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By use of a newly constructed CD instrument, infrared magnetic circular dichroism (MCD) spectra were observed for various myoglobin derivatives. The ferric high spin myoglobin derivatives such as fluoride, water and hydroxide complexes, commonly exhibited the MCD spectra consisting of positive A terms. Therefore, the results reinforced the assignment that the infrared band is the charge transfer transition to the degenerate excited state (eg (dpi)). Since the fraction of A term estimated was approximately 80% for myoglobin fluoride and approximately 35% for myoglobin water, the effective symmetry for myoglobin fluoride is determined to be as close as D4h, while that for myoglobin water seems to have lower symmetry components. The ferric low spin derivatives such as myoglobin cyanide, myoglobin imidazole and myoglobin azide showed positive MCD spectra which are very similar to the electronic absorption spectra. These MCD spectra were assigned to the charge transfer transitions from porphyrin pi to iron d orbitals on the ground that they were observed only for the ferric low spin groups and insensitive to the axial ligands. The lack of temperature dependence in the MCD magnitude indicated that the MCD spectra are attributable to the Faraday B terms. Deoxymyoglobin, the ferrous high spin derivative, had fairly strong positive MCD around 760 nm with an anisotropy factor (delta epsilon/epsilon) of 1.4-10(-4). It shows some small MCD bands from 800 to 1800 nm. Among the ferrous low spin derivatives, carbonmonoxymyoglobin did not give any observable MCD in the infrared region while oxymyoglobin seemed to have significant MCD in the range from 700 to 1000 nm.  相似文献   

2.
In pharmacokinetic studies, a variety of analytical method including radioisotopic detection and HPLC (high performance liquid chromatography) has been used. In the present investigation, we developed in vivo BCM (Blood Circulation Monitoring)-ESR method, which is a new technique with a conventional X-band ESR spectrometer for observing stable free radicals in the circulating blood of living rats under anaesthesia. Both 5-(PROXYL derivatives) and 6-(TEMPO derivatives) membered nitroxide spin probes with various types of substituent functional group were used. After physicochemical properties of the spin probes such as hyperfine coupling constant (A-value), g-value and partition coefficient as well as chemical stability of the compounds in the fresh blood were obtained, the in vivo BCM-ESR method was performed in normal rats. Several pharmacokinetic parameters such as half-life of the probes, distribution volume, total body clearance and mean residence time were obtained and discussed in terms of their chemical structures. In addition, clearance of a spin probe was related to the urine concentration. The BCM-ESR method was found to be very useful to observe free radicals at the real time. By time-dependent ESR signal decay of spin probes, pharmacokinetic parameters were obtained.  相似文献   

3.
The cobalt(II)—cobalt(I) interconversion in a number of vitamin B1 2 derivatives was investigated by cyclic voltammetry. Particular attention was focused on the factors determining whether the interconversion is reversible. When the lower axial coordination position is occupied by a strong ligand, such as the benzimidazole nucleotide in “base on” cobalamins, the cobalt(II)—cobalt(I) interconversion is irreversible due to a slow reduction of the cobalt(II). However, when the lower axial coordination position is free of a strong ligand, as in most cobinamides or in “base off” cobalamins, the cobalt(II)—cobalt(I) interconversion is nearly perfectly reversible. Possible implications of the observations to B1 2-dependent enzymes are briefly discussed.  相似文献   

4.
《Free radical research》2013,47(6):483-496
In pharmacokinetic studies, a variety of analytical method including radioisotopic detection and HPLC (high performance liquid chromatography) has been used. In the present investigation, we developed in vivo BCM (Blood Circulation Monitoring)-ESR method, which is a new technique with a conventional X-band ESR spectrometer for observing stable free radicals in the circulating blood of living rats under anaesthesia. Both 5–(PROXYL derivatives) and 6–(TEMPO derivatives) membered nitroxide spin probes with various types of substituent functional group were used. After physicochemical properties of the spin probes such as hyperfine coupling constant (A-value), g-value and partition coefficient as well as chemical stability of the compounds in the fresh blood were obtained, the in vivo BCM-ESR method was performed in normal rats. Several pharmacokinetic parameters such as half-life of the probes, distribution volume, total body clearance and mean residence time were obtained and discussed in terms of their chemical structures. In addition, clearance of a spin probe was related to the urine concentration. The BCM-ESR method was found to be very useful to observe free radicals at the real time. By time-dependent ESR signal decay of spin probes, pharmacokinetic parameters were obtained.  相似文献   

5.
The intensity of the Soret magnetic circular dichroism (MCD) spectra of various complexes of methemoglobin subunits (α+ and β+) as well as methemoglobin (metHb A) was correlated well with the spin states of ferric heme. Upon the subunit association, spin state transition toward higher spin was observed only in high spin derivatives and the changes in spin state were due to mainly those of β+ chains. The effect of an allostric effector, inositol hexaphosphate (IHP), on the MCD spectra of metHb A derivatives was observed much significantly for high spin forms than low spin ones.  相似文献   

6.
In order to investigate the effect of the alpha beta subunit contacts on the subunit structure of human adult methemoglobin, the hyperfine shifted proton NMR spectra of several high spin complexes (water, cyanate, thiocyanate, formate, fluoride, and nitrite) and low spin complexes (imisazole, azide, and cyanide) of hemoglobin and its isolated subunits were characterized at 220 MHz and 22 degrees C. The spectra of ferric low spin derivatives of the isolated subunits were approximately superimposable on the corresponding hemoglobin spectra. On the other hand, the high spin spectra of the isolated subunits were greatly different from each other. The spectral anomaly in the ferric high spin complexes of the isolated beta subunit were interpreted to indicate other structural change than the hemichrome formation in the beta heme pocket. Difference in the subunit association effect between the high and low spin complexes of the isolated beta subunit was interpreted on the basis of a conformational change of the apoprotein dependent on the spin state of the beta heme iron.  相似文献   

7.
Binding of adenosine 3':5'-monophosphate (cAMP) to protein kinase (type I) from rabbit skeletal muscle has been investigated using spin-labeled cAMP derivatives. Different compounds were synthesized with the spin label attached by spacer chains of different length at different positions on the adenine base. Immobilization of the spin label, determined by comparing the electron-spin resonance spectra recorded in the presence of the kinase with those of the free ligand in solutions of different viscosities, gave information about the geometry of the cAMP site. Strong immobilization of the N-6 substituents up to a spacer length of seven atoms indicates a rather deep cleft of the cAMP site. The depth of this cleft differs, however, when the spin label is attached to the different positions at the adenine (N-6, C-2 and C-8). Whereas the N-6 derivatives indicate a rather deep site, the C-2 derivatives reveal a significantly smaller depth and C-8 substituents (syn conformation) obviously occupy a very shallow surface with almost no immobilation. In addition the binding affinities of the spin-labeled cAMP derivatives have been determined, together with those of a series of (diamagnetic) C-2 derivatives bearing hydrophobic alkyl chains of different length. The latter results helped to clarify the differences between the regions near to C-2 and N-6, respectively, of the cAMP site. N-6 spin-labeled derivatives have also been investigated in the presence of ATP and protein kinase. These results are interpreted as indicative of a conformational change at the cAMP site upon formation of the holoenzyme, due to binding of ATP, leaving cAMP less strongly immobilized.  相似文献   

8.
A vanadyl complex with perfluorinate phthalocyanine, VOPcF16, was prepared. The monomer-dimer solvent dependence was confirmed based on the solvent effect for the Q-band position-that is, VOPcF16 exists as a monomer in a nonpolar solvent such as benzene, but dimerizes in a polar solvent such as acetone. Electron spin resonance data also supported the solvent dependence found. In addition, the substituent effect of fluorine atoms on the redox properties was investigated by measuring the cyclic voltammograms in dichloromethane. On the reduction side, three redox couples were observed, the first two of which were assigned as being due to the reduction of the phthalocyanine ring (to LUMO), whose potentials are 0.4–0.5 V higher than those of the tetra-t-butyl and octabutoxy derivatives, VOPc(t-Bu)4 and VOPc(O-n-Bu)8.  相似文献   

9.
Lipid radicals: properties and detection by spin trapping   总被引:1,自引:0,他引:1  
Unsaturated lipids are rapidly oxidized to toxic products such as lipid hydroperoxides, especially when transition metals such as iron or copper are present. In a Fenton-type reaction Fe2+ converts lipid hydroperoxides to the very short-lived lipid alkoxyl radicals. The reaction was started upon the addition of Fe2+ to an aqueous linoleic acid hydroperoxide (LOOH) emulsion and the spin trap in the absence of oxygen. Even when high concentrations of spin traps were added to the incubation mixture, only secondary radical adducts were detected, probably due to the rapid re-arrangement of the primary alkoxyl radicals. With the commercially available nitroso spin trap MNP we observed a slightly immobilized ESR spectrum with only one hydrogen splitting, indicating the trapping of a methinyl fragment of a lipid radical. With DMPO or 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) adducts were detected with carbon-centered lipid radical, with acyl radical, and with the hydroxyl radical. We also synthesized lipophilic derivatives of the spin trap DEPMPO in order to detect lipid radical species generated in the lipid phase. With all spin traps studied a lipid-derived carbon-centered radical was obtained in the anaerobic incubation system Fe2+/LOOH indicating the trapping of a lipid radical, possibly generated as a secondary reaction product of the primary lipid alkoxyl radical formed. Under aerobic conditions an SOD-insensitive oxygen-centered radical adduct was formed with DEPMPO and its lipophilic derivatives. The observed ESR parameters were similar to those of alkoxyl radical adducts, which were independently synthesized in model experiments using Fe3+-catalyzed nucleophilic addition of methanol or t-butanol to the respective spin trap.  相似文献   

10.
A detailed study of the effect of temperature on the m.c.d. (magnetic circular dichroism) spectra of cytochrome c oxidase and some of its derivatives was undertaken to characterize the spin states of haem a and a(3). The fully reduced enzyme contains haem a(3) (2+) in its high-spin form and haem a(2+) in the low-spin state. This conclusion is reached by comparing the spectrum with that of the mixed-valence CO derivatives and its photolysis product. The cyanide derivative of the fully reduced enzyme contains both haem a and a(3) in the low-spin ferrous form. The m.c.d. spectra of the fully oxidized derivatives are consistent with the presence of one low-spin ferric haem group, assigned to a, which remains unaltered in the presence of ligands. Haem a(3) is high spin in the resting enzyme and the fluoride derivatives, and low spin in the cyanide form. The partially reduced formate and cyanide derivatives have temperature-dependent m.c.d. spectra due to the presence of high- and low-spin haem a(3) (3+) respectively. Haem a is low-spin ferrous in both. A comparison of the magnitude of the temperature-dependence of haem a(3) (3+) in the fully oxidized and partially reduced forms shows a marked difference which is tentatively ascribed to the presence of anti-ferromagnetic coupling in the fully oxidized form of the enzyme, and to its absence from the partially reduced derivatives, owing to the reduction of both Cu(2+) ions.  相似文献   

11.
Corticosteroid-induced tyrosine aminotransferase (EC 2.6.1.5) from cultured hepatoma cells was separated by carboxymethyl-Sephadex chromatography into three molecular forms resembling those described previously in the rat liver. Enzyme forms were isolated and used as purified substrates to examine their in vitro interconversion by various subcellular fractions. Isolated form III was converted to forms II and I, and isolated form II was converted to form I by the coarse particulate fraction sedimenting at 1000 X g. This activity was inhibited by the serine enzyme inhibitor phenylmethane sulfonyl fluoride or by raising the pH to 8.7. Conversion of enzyme forms in vitro in the opposite direction (I leads to II leads to III) could not be detected. The distribution of enzyme forms in vivo was examined by the use of experimental conditions that prevent their in vitro interconversion during cell extraction. Tyrosine aminotransferase extracted from cell subjected to various treatments that affect the rates of enzyme synthesis or degradation existed always predominantly as form III. It appears, therefore, that multiple forms of tyrosine aminotransferase are not related to the turnover of this enzyme in vivo.  相似文献   

12.
Summary We investigated the influence of Mg2+ and Mn2+ on the effects of adenosine and some derivatives on basal adenylate cyclase activity in rat fat cell membranes as well as on enzyme activity stimulated by isoprenaline or sodium fluoride. Adenosine and derivatives modified in the ribose function were inhibitory, irrespective of the stimulant used, both in the presence of MgCl2 or MnCl2. Inhibition of basal and sodium fluoride stimulated adenylate cyclase activity was more pronounced in the presence of MnCl2 than in the presence of MgCl2. N6-substituted adenosine analogs proved to be inhibitory in the presence of 5 MM MgCl2, but in the presence of 1 mM MnCl2 the fluoride stimulated adenylate cyclase activity was potentiated, while basal and isoprenaline stimulated activity were not significantly inhibited. These effects of adenosine and derivatives could not be blocked by theophylline with or without guanyl nucleotides.The potentiating effect of N6-substituted adenosine derivatives on sodium fluoride activated adenylate cyclase is dependent on the structure of the N6-substitutent and consists of an enhancement of Vrnax in combination with a small decrease of the Km for MnATP2–, indicative of an allosteric effect on adenylate cyclase. No potentiation by N6-phenylisopropyladeno sine of sodium fluoride stimulated cyclase was found on digitonin solubilized cyclase, while the inhibitory effect of adenosine was retained. The relevance of these findings is discussed in connection with the current hypothesis concerning the presence of two adenosinesensitive sites on rat fat cell membranes.  相似文献   

13.
Absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of beef liver catalase at pH 5.0 and 6.9, and its complexes with NaF, KCNO, NaCNS, NaN3 and NaCN, have been measured between 250 nm and 700 nm at room temperature. The pH 6.9 native catalase MCD shows the presence of several additional transitions not resolved in the absorption spectrum. While these bands can be seen in the spectra of all the derivatives, with the exception of the cyanide, their relative intensities changes considerably between complexes. Of special interest in the MCD of ferric hemes is the signal intensity at about 400 nm and 620 nm. The data indicate that the MCD intensity at 620 nm increases as the high spin iron porphyrin fraction increases, reaching a maximum with the fluoride complex. The 430 nm band intensity increases as the proportion of low spin iron increases, reaching a maximum with the cyanide complex. The MCD spectra also indicate clearly the existence of spin mixtures in the complexes with CNO-, CNS-, and N3-, where both the 430 nm and 620 nm bands have appreciable intensity. It is significant that despite almost identical absorption spectra the CNS- complex has higher fraction of low spin iron than either the CNO- or the N3- species. The differences between the pH 5 and 6.9 MCD spectra of the native catalase suggest that the environment of the heme centre is sensitive to protonation.  相似文献   

14.
The time-resolved fluorescence properties of phenol and straight-chained phenol derivatives and tyrosine and simple tyrosine derivatives are reported for the pH range below neutrality. Phenol and straight-chained phenol derivatives exhibit single exponential fluorescence decay kinetics in this pH range unless they have a titratable carboxyl group. If a carboxyl group is present, the data follow a two-state, ground-state, Henderson-Hasselbalch relationship. Tyrosine and its derivatives with a free carboxyl group display complex fluorescence decay behavior as a function of pH. The complex kinetics cannot be fully explained by titration of a carboxyl group; other ground-state processes are evident, especially since tyrosine analogues with a blocked carboxyl group are also multiexponential. The fluorescence kinetics can be explained by a ground-state rotamer model. Comparison of the preexponential weighting factors (amplitudes) of the fluorescence decay constants with the 1H NMR determined phenol side-chain rotamer populations shows that tyrosine derivatives with a blocked or protonated carboxyl group have at least one rotamer exchanging more slowly than the radiative and nonradiative rates, and the fluorescence data are consistent with a slow-exchange model for all three rotamers, the shortest fluorescence decay constant is associated with a rotamer where the carbonyl group can contact the phenol ring, and in the tyrosine zwitterion, either rotamer interconversion is fast and an average lifetime is seen or rotamer interconversion is slow and the individual fluorescence decay constants are similar.  相似文献   

15.
In hemoproteins the relaxation mechanism of iron is Orbach for high spin (HS) and Raman for low spin (LS). We found that in met-hemoglobin and met-myoglobin, under conditions in which the two spin states coexist, both the HS and the LS states relax to the lattice through Orbach-like processes. Alos, very short (approximately 1 ns) and temperature independent transverse relaxation times T2 were estimated. This may result from the unusual electronic structure of mixed states hemoproteins that allows thermal equilibrium and interconversion of the spin states.  相似文献   

16.
Viscosity, temperature and ionic strength dependences of ESR microwave saturation parameters of spin labelled human oxyhemoglobin (Hb) and bovine serum albumin (BSA) have been studied. The piperidine and pyrrolidine nitroxyl derivatives of maleimide were used as covalent SH reagents for Hb and BSA and the same two derivatives of gamma-benzocarboline and spin labelled stearic acid were used as noncovalent spin probes for BSA. The effects of label binding tightness on ESR spectral parameters were considered. The rotational correlation times were determined using viscosity dependences of the separation of the outer hyperfine extrema and Stokes extrapolations at high viscosities. The ESR microwave saturation parameters of the spin labels were shown to depend just weakly on temperature (at constant eta/t) over the range 0-25 degrees and on g, A values but to be sensitive to protein rotational correlation times up to 10(-4) sec and also to the rotational anisotropy and to the relative motion of the spin label.  相似文献   

17.
New spin labeled derivatives of phosphorylcholine have been synthesized. The compounds cause reversible inhibition of the precipitation reactions between pneumococcal C-polysaccharide and the C-reactive proteins from humans, dogfish sharks (Mustelus canis), and horseshoe crabs (Limulus polyphemus). The spin labeled phosphorylcholine derivatives also rival phosphorylcholine as a ligand for the human, dogfish, and Limulus C-reactive proteins. The interactions of the purified C-reactive proteins with the spin labeled derivatives of phosphorylcholine have been studied using electron spin resonance spectrometry. The dramatic decrease in the ESR signal of some of the spin labels is due to immobilization of the label. Only the well known phosphate spin label, 4-phosphate-2,2,6,6-tetramethylpiperidine-1-oxyl could be used for binding studies on human and Limulus C-reactive proteins. Thus, by Scatchard analysis, the human C-reactive protein bound 1 mol of phosphate spin label per mol of protein with a Ka = 3.91 X 10(3) M-1, whereas the Limulus C-reactive protein bound only 0.5 mol of phosphate spin label per mol of protein with an overall Ka = 1.95 X 10(3) M-1. Inhibition studies using purified C-polysaccharide-induced inhibition of the phosphate spin label-human C-reactive protein interaction showed competitive inhibition with a KI of 4.78 X 10(-5) M at 18 degrees C. The phosphate spin label did not bind to dogfish C-reactive protein. However, one new phosphorylcholine spin label did bind and was used for Scatchard and Hill plot analyses. The dogfish C-reactive protein, which exists as a Mr = 50,000 dimer, bound 2 mol of the phosphorylcholine spin label per mol of protein, and this binding exhibited negative cooperativity as indicated by a Hill coefficient of 0.75.  相似文献   

18.
Corticosteroi-induced tyrosine aminotransferase (EC 2.6.1.5) from cultured hepatoma cells was separated by carboxymethyl-Sephadex chromatography into three molecular forms resembling those described previously in the rat liver. Enzyme forms were isolated and used as purified substrates to examine their in vitro interconversion by various subcellular fractions. Isolated form III was converted to forms II and I, and isolated form II was converted to form I by the coarse particulate fraction sedimenting at 1000 × g. This activity was inhibited by the serine enzyme inhibitor phenylmethane sulfonyl fluoride or by raising the pH to 8.7. Conversion of enzyme forms in vitro in the opposite direction (I → II → III) could not be detected. The distribution of enzyme forms in vivo was examined by the use of experimental conditions that prevent their in vitro interconversion during cell extraction. Tyrosine aminotransferase extracted from cells subjected to various treatments that affect the rates of enzyme synthesis or degradation existed always predominantly as form III. It appears, therefore, that multiple forms of tyrosine aminotransferase are not related to the turnover of this enzyme in vivo.  相似文献   

19.
Dihydrozeatin, at 4×10–5 M, delayed the senescence of carnation flowers while tZ, at the same concentration, accelerated it. cis-Zeatin was ineffective. The DHZ derivatives as well as the Z derivatives gave responses very similar to those observed for the parent free bases. While additional experimentation with radiolabelled derivatives is clearly called for, the similarity between the responses observed for the respective derivatives and the free bases, suggests that in the carnation flower there is a great deal of metabolic interconversion.Abbreviations DHZ dihydrozeatin - DHZR ribosyldihydrozeatin - DHZOG glucosyl-O-dihydrozeatin - DHZ9G glucosyl-9-dihydrozeatin - DHZROG glucosyl-O-ribosyldihydrozeatin - cZ cis-zeatin - tZ trans-zeatin - ZR ribosylzeatin - Z9G glucosyl-9-zeatin - ZOG glucosyl-O-zeatin - ZROG glucosyl-O-ribosylzeatin  相似文献   

20.
The Ca2(+)-ATPase in native sarcoplasmic reticulum membranes was selectively spin-labeled for saturation transfer electron spin resonance (ESR) studies by prelabeling with N-ethylmaleimide and by using low label/protein ratios. Results with the nitroxide derivative of the standard sulphydryl-modifying reagent, maleimide, were compared with a series of six novel nitroxide beta-substituted vinyl aryl ketone derivatives which differed (with two exceptions) in the substituent at the ketone position. The two exceptions had a different electron withdrawing group at the alpha-carbon, to enhance further the electrophilic character of the beta-carbon. Although differing in their reactivity, all the conjugated unsaturated ketone nitroxide derivatives displayed saturation transfer ESR spectra indicative of much slower motion than did the maleimide derivative. The saturation transfer ESR spectra of maleimide-labeled Ca2(+)-ATPase therefore most likely contain substantial contributions from segmental motion of the labeled group. The effects of the level of spin labeling were also investigated. With increasing degree of spin label incorporation, the linewidths of the conventional ESR spectrum progressively increased and the intensity of the saturation transfer spectrum dropped dramatically, as a result of increasing spin-spin interactions. The hyperfine splittings of the conventional spectrum and the outer lineheight ratios of the saturation transfer spectrum remained relatively unchanged. Extrapolation back to zero labeling level yielded comparable values for the effective rotational correlation times deduced from the saturation transfer spectrum intensities and from the lineheight ratios, for the vinyl ketone label. For the maleimide label the extrapolated values from the integral are significantly lower than those from the lineheight ratios, probably because of the segmental motion. Comparison is made of the effective rotational correlation time for the vinyl ketone label with the predictions of hydrodynamic models for the protein diffusion, in a discussion of the aggregation state of the Ca2(+)-ATPase in the native sarcoplasmic reticulum membrane. The implications for the study of protein rotational diffusion and segmental motion, and of the proximity relationships between labeled groups, using saturation transfer ESR spectroscopy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号