首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative positions of the orbital and nasal openings in African apes and humans were studied by a new methodological approach based on the automatic determination, by image analysis techniques, of horizontal and vertical lines of reference. The material used consisted ofGorilla gorilla (38 males and 20 females),Pan troglodytes (19 males and 13 females), and modernHomo spaiens (51 males and 41 females). This allowed the relative positions of the orbital and nasal openings to be quantified by the determination of medio-lateral and vertical orbitonasal indices of overlap. In all the species studied, a medio-lateral orbitonasal overlap was systematically observed. This indicates that nasal breadth is always larger than interorbital distance. Medio-lateral overalp was greatest inGorilla, reduced inHomo, and intermediate inPan. By contrast, onlyHomo presents systematically a vertical overlap: a vertical overlap was sometimes observed inPan, but never inGorilla. Homo presented the greatest vertical overlap, andGorilla the least; the disposition inPan was intermediate. The interspectific study of the relationships between medio-lateral and vertical overlap inGorilla, Pan, andHomo demonstrated that an increase in veritical overlap was correlated with a decrease of medio-lateral overlap. Sexual dimorphism in orbitonasal relationships was systematically greatest inGorilla, and reduced inPan andHomo, this is also the case for the orbital, nasal, and orbitonasal parameters measured in this study. All these results provide interesting elements for understanding the morphological evolution of the middle face in hominoids.  相似文献   

2.
Dental dimensions and distributions of dental dimensions of males and females were compared for great apes (Pan, Gorilla, and Pongo, and humans (Homo). The results were examined and discussed with reference to fossil primates Sivapithecus and Ramapithecus. The analyses focused on patterns of sexual dimorphism, both with regard to mean dimensions and the distribution of those dimensions. Sex differences in mean canine dimensions were large and significant for Gorilla and Pongo, significant but smaller for Pan, and small but occasionally significant for Homo. The dispersions of measures were greater for males than for females in Gorilla and Pan but did not differ significantly for Pongo or Homo. Examination of the noncanine teeth revealed complex sex differences. In the anterior teeth, sex differences in mean dimensions were generally apparent for Gorilla and Pongo, less so for Pan, and least of all in Homo. The patterns of dispersion of measures of anterior teeth differed markedly from those of the canines. Pan exhibited the same pattern for anterior and canine teeth. Gorilla showed the opposite pattern. Pongo and Homo showed similar dispersions for males and females in many cases. Sex differences in posterior teeth followed the pattern of the canines for Gorilla and were absent for Pan. Pongo exhibited mean differences in dimensions across sex, but dispersions were similar. The pattern for Homo was most like that of Pongo, but with fewer significant differences. The genera differed with regard to the number of significant differences in means or dispersions along the tooth row. It is clear that the patterns of dimorphism differ qualitatively across all extant genera of great apes and humans. It appears that the pattern for Homo most closely resembles that of Ramapithecus, whereas Pongo most closely resembles Sivapithecus. The patterns for Gorilla and Pan appear to be unlike either of the fossil forms. It is suggested that the qualitatively distinct patterns of dental sexual dimorphism indicate substantial flexibility during recent primate evolution and that the degree of structural flexibility demonstrated provides a basis for appreciating potential for plasticity of gender differences in behavioral, social, and cultural systems.  相似文献   

3.
4.
Since australopithecines display humanlike traits such as short ilia, relatively small front teeth and thick molar enamel, they are usually assumed to be related toHomo rather than toPan orGorilla. However, this assumption is not supported by many other of their features. This paper briefly surveys the literature concerning craniodental comparisons of australopith species with those of bonobos, common chimps, humans and gorillas, adult and immature. It will be argued, albeit on fragmentary data, that the large australopiths of East Africa were in many instances anatomically and therefore possibly also evolutionarily nearer toGorilla than toPan orHomo, and the South African australopiths nearer toPan andHomo than toGorilla. An example of a possible evolutionary tree is provided. It is suggested that the evidence concerning the relation of the different australopithecines with humans, chimpanzees and gorillas should be re-evaluated.  相似文献   

5.
Cranial capacity measurements of 18 individuals (9 ♂, 9 ♀) of a total collection of 277Pan troglodytes verus skulls were taken using four different methods:- two conventional filling methods and two mathematical methods. The two mathematical analyses normally used in hominids, were for the first time specifically modified forPan. The results probably present a more accurate estimation of total cranial capacity inPan and specifically inPan troglodytes verus (352 cm3) than previously available. Sexual differences related to this trait were also measured. Regardles of the methods used,Pan troglodytes verus seems to manifest the smallest cranial capacity of all subspecies ofPan.  相似文献   

6.
Comparisons of joint surface curvature at the base of the thumb have long been made to discern differences among living and fossil primates in functional capabilities of the hand. However, the complex shape of this joint makes it difficult to quantify differences among taxa. The purpose of this study is to determine whether significant differences in curvature exist among selected catarrhine genera and to compare these genera with hominin1 fossils in trapeziometacarpal curvature. Two 3D approaches are used to quantify curvatures of the trapezial and metacarpal joint surfaces: (1) stereophotogrammetry with nonuniform rational B‐spline (NURBS) calculation of joint curvature to compare modern humans with captive chimpanzees and (2) laser scanning with a quadric‐based calculation of curvature to compare modern humans and wild‐caught Pan, Gorilla, Pongo, and Papio. Both approaches show that Homo has significantly lower curvature of the joint surfaces than does Pan. The second approach shows that Gorilla has significantly more curvature than modern humans, while Pongo overlaps with humans and African apes. The surfaces in Papio are more cylindrical and flatter than in Homo. Australopithecus afarensis resembles African apes more than modern humans in curvatures, whereas the Homo habilis trapezial metacarpal surface is flatter than in all genera except Papio. Neandertals fall at one end of the modern human range of variation, with smaller dorsovolar curvature. Modern human topography appears to be derived relative to great apes and Australopithecus and contributes to the distinctive human morphology that facilitates forceful precision and power gripping, fundamental to human manipulative activities. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc. 1 The term “hominin” refers to members of the tribe Hominini, which includes modern humans and fossil species that are related more closely to modern humans than to extant species of chimpanzees, Wood and Lonergan (2008). Hominins are in the family Hominidae with great apes.  相似文献   

7.
Ectocranial suture fusion patterns have been shown to contain biological and phylogenetic information. Previously the patterns of Homo, Pan, and Gorilla have been described. These data reflect the phylogenetic relationships among these species. In this study, we applied similar methodology to Pongo to determine the suture synostosis progression of this genus, and to allow comparison to previously reported data on other large‐bodied hominoids. We hypothesized these data would strengthen the argument that suture synostosis patterns reflect the phylogeny of primate taxa. Results indicate that the synostosis of vault sutures in Pongo is similar to that reported for Gorilla (excluding Pan and Homo). However, the lateral‐anterior pattern of fusion, in which there is a strong superior to inferior pattern, for Pongo is unique among these species, reflecting its phylogenetic distinctness among great ape taxa. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Chimpanzees (Pan troglodytes) and bonobos (P. paniscus) are our closest living relatives, with the human lineage diverging from the Pan lineage only around five to seven Mya, but possibly as early as eight Mya.1–2 Chimpanzees and bonobos even share genetic similarities with humans that they do not share with each other.2 Given their close genetic relationship to humans, both Pan species represent crucial living models for reconstructing our last common ancestor (LCA) and identifying uniquely human features. Comparing the similarities and differences of the two Pan is thus essential for constructing balanced models of human evolution.3  相似文献   

9.
Predatory behavior ofPan t. troglodytes in the Ndoki Forest was confirmed by both direct observation and fecal evidence. Eight out of 214 fecal samples (3.7%), collected during 16 months, contained vertebrate tissue. The prey species were a terrestrial bird, two monkey species including crowned guenon, a squirrel, and probably a pangolin. This rate suggested that predation in the Ndoki population can occur as frequently as in other populations. Chimpanzees were also directly observed to eat an infant crowned guenon, a hornbill, and a duiker. An adult female used a branch apparently in an attempt to drive out a hornbill from its nest hole, though no bird was observed to come out. Chimpanzees were attracted to meat, and were observed begging and sharing over the meat. Predatory behavior is common toPan andHomo, but not toGorilla, implying that the common ancestor of the former two genera acquired this behavior after separating from gorillas.  相似文献   

10.
The dichotomy between the two Pan species, the bonobo (Pan paniscus) and chimpanzee (Pan troglodytes) has been strongly emphasized until very recently. Given that most studies were primarily based on adult individuals, we shifted the “continuity versus discontinuity” discussion to the infant and juvenile stage. Our aim was to test quantitatively, some conflicting statements made in literature considering species differences between immature bonobos and chimpanzees. On one hand it is suggested that infant bonobos show retardation in motor and social development when compared with chimpanzees. Additionally it is expected that the weaning process is more traumatic to chimpanzee than bonobo infants. But on the other hand the development of behaviors is expected to be very similar in both species. We observed eight mother–infant pairs of each species in several European zoos. Our preliminary research partially confirms that immature chimpanzees seem spatially more independent, spending more time at a larger distance from their mother than immature bonobos. However, the other data do not seem to support the hypothesis that bonobo infants show retardation of motor or social development. The development of solitary play, environmental exploration, social play, non-copulatory mounts and aggressive interactions do not differ between the species. Bonobo infants in general even groom other group members more than chimpanzee infants. We also found that older bonobo infants have more nipple contact than same aged chimpanzees and that the weaning process seems to end later for bonobos than for immature chimpanzee. Additionally, although immature bonobos show in general more signs of distress, our data suggest that the weaning period itself is more traumatic for chimpanzees.  相似文献   

11.
Bivariate femoral length allometry in recent humans, Pan, and Gorilla is investigated with special reference to the diminutive Liang Bua (LB) 1 specimen (the holotype of Homo floresiensis) and six early Pleistocene femora referred to the genus Homo. Relative to predicted body mass, Pan and Gorilla femora show strong negative length allometry while recent human femora evince isometry to positive allometry, depending on sample composition and line-fitting technique employed. The allometric trajectories of Pan and Homo show convergence near the small body size range of LB 1, such that LB 1 manifests a low percentage deviation (dyx of Smith [1980]) from the Pan allometric trajectory and falls well within the 95% confidence limits around the Pan individuals (but also outside the 95% confidence limits for recent Homo). In contrast, the six early Pleistocene Homo femora, belonging to larger individuals, show much greater dyx values from both Pan and Gorilla and fall well above the 95% confidence limits for these taxa. All but one of these Pleistocene Homo specimens falls within the 95% confidence limits of the recent human sample. Similar results are obtained when femoral length is regressed on femoral head diameter in unlogged bivariate space. Regardless of the ultimate taxonomic status of LB 1, these findings are consistent with a prediction made by us (Franciscus and Holliday, 1992) that hominins in the small body size range of A.L. 288-1 (“Lucy”), including members of the genus Homo, will tend to possess short, ape-like lower limbs as a function of body size scaling.  相似文献   

12.
A method of drawing outlines of the distal end of the humerus is presented and carried out on some pongids (Pan troglodytes, Pan paniscus, Pongo pygmaeus), on modern man, and on some casts of Plio-Pleistocene hominids. It appears that these outlines are good indicators of the overall morphology and permit the distinguishing of the different hominoids. For example, the morphology of the pillars surrounding the fossa olecrani is useful for this purpose. In modern man, the lateral pillar is quadrangular, contrasting with the triangular medial one. In pongids, both of them are triangular; however, it is possible to note differences between Pongo and Pan. In the South Asian ape, there is a stronger anteroposterior flattening of the pillars as well as the diaphysis. The similarity of the shape of the pillars might be considered as a result of an adaptation to suspension. The differences might be due to different weights of the animals. Plio-Pleistocene hominids are variable with regard to the morphology of this region. For example, Gombore IB 7594 is similar to Homo. KNM ER 739 exhibits features intermediate between hominids and pongids. Finally, AL 288.1M is closer to pongids. These results confirm a previous anatomical work.  相似文献   

13.
Temporal trends in postcranial robusticity within the genus Homo are explored by comparing cross-sectional diaphyseal and articular properties of the femur, and to a more limited extent, the humerus, in samples of Recent and earlier Homo. Using both theoretical mechanical models and empirical observations within Recent humans, scaling relationships between structural properties and bone length are developed. The influence of body shape on these relationships is considered. These scaling factors are then used to standardize structural properties for comparisons with pre-Recent Homo (Homo sp. and H. erectus, archaic H. sapiens, and early modern H. sapiens). Results of the comparisons lead to the following conclusions: 1) There has been a consistent, exponentially increasing decline in diaphyseal robusticity within Homo that has continued from the early Pleistocene through living humans. Early modern H. sapiens are closer in shaft robusticity to archaic H. sapiens than they are to Recent humans. The increase in diaphyseal robusticity in earlier Homo is a result of both medullary contraction and periosteal expansion relative to Recent humans. 2) There has been no similar temporal decline in articular robusticity within Homo–relative femoral head size is similar in all groups and time periods. Thus, articular to shaft proportions are different in pre-Recent and Recent Homo. 3) These findings are most consistent with a mechanical explanation (declining mechanical loading of the postcranium), that acted primarily through developmental rather than genetic means. The environmental (behavioral) factors that brought about the decline in postcranial robusticity in Homo are ultimately linked to increases in brain size and cultural-technological advances, although changes in robusticity lag behind changes in cognitive capabilities. © 1993 Wiley-Liss, Inc.  相似文献   

14.
SKX 1084 is an isolated partial patella from Swartkrans Member 2, South Africa, attributed to a small-bodied Paranthropus robustus. This study provides complementary information on its outer conformation and, for the first time for a fossil hominin patella, documents its inner structure in the perspective of adding biomechanically-related evidence to clarify its identity. We used X-ray micro-tomography to investigate SKX 1084 and to extract homologous information from a sample of 12 recent human, one Neanderthal, and two adult Pan, patellae. We used geometric morphometrics to compare the outer equatorial contours. In SKX 1084, we identified two cancellous bony spots suitable for textural assessment (trabecular bone volume fraction, trabecular thickness, degree of anisotropy), and two related virtual slices for measuring the maximum cortico-trabecular thickness (CTT) of the articular surface. SKX 1084 shows a more complex articular shape than that for Pan, but still simpler than typical in Homo sapiens. At all sites, its CTT is thinner compared to Pan and approaches the condition in humans. This is also true for the expanded volume of the cancellous network. However, at both investigated spots, SKX 1084 is systematically intermediate between Homo and Pan for trabecular bone volume fraction and trabecular thickness, a pattern already shown in previous analyses on other Paranthropus postcranial remains. In the absence of any structural signal from patellae unambiguously sampling Paranthropus, as well as of comparable evidence extracted from specimens representing early Homo, our results do not allow rejection of the original taxonomic attribution of SKX 1084.  相似文献   

15.
Comparison of molecular data suggests that the higher apes (Gorilla, Pan) and humankind (Homo) are closely related and that they diverged from the common ancestor through two speciation events situated very closely together in time. Examination of the chromosomal formulas of the living species reveals a paradox in the distribution of mutated chromosomes which can only be resolved by a model of trichotomic diversification. This new model of divergence from the common ancestor is characterized by the transition from (1) a monotypic phase to (2) a polytypic phase of three sub-species — pre-gorilla, pre-chimpanzee and preaustralopithecine. The quadruped ancestors ofAustralopithecus appear to have been one of the three components of the common ancestor. The question is whetherramidus is an australopithecine or a pre-australopithecine representative of the common ancestor. The new model of diversification of the common ancestor is resituated in the paleogeographic and paleoclimatic context which, through the north-south pattern of extension of aridity, provides a coherent scenario for the formation of extant species and subspecies of theGorilla andPan genera.  相似文献   

16.
The complete mitochondrial DNA (mtDNA) molecule of the hamadryas baboon, Papio hamadryas, was sequenced and included in a molecular analysis of 24 complete mammalian mtDNAs. The particular aim of the study was to time the divergence between Cercopithecoidea and Hominoidea. That divergence, set at 30 million years before present (MYBP) was a fundamental reference for the original proposal of recent hominoid divergences, according to which the split among gorilla, chimpanzee, and Homo took place 5 MYBP. In the present study the validity of the postulated 30 MYBP dating of the Cercopithecoidea/Hominoidea divergence was examined by applying two independent nonprimate molecular references, the divergence between artiodactyls and cetaceans set at 60 MYBP and that between Equidae and Rhinocerotidae set at 50 MYBP. After calibration for differences in evolutionary rates, application of the two references suggested that the Cercopithecoidea/Hominoidea divergence took place >50 MYBP. Consistent with the marked shift in the dating of the Cercopithecoidea/Hominoidea split, all hominoid divergences receive a much earlier dating. Thus the estimated date of the divergence between Pan (chimpanzee) and Homo is 10–13 MYBP and that between Gorilla and the Pan/Homo linage ≈17 MYBP. The same datings were obtained in an analysis of clocklike evolving genes. The findings show that recalculation is necessary of all molecular datings based directly or indirectly on a Cercopithecoidea/Hominoidea split 30 MYBP. Received: 1 April 1998 / Accepted: 1 July 1998  相似文献   

17.
18.
Changes in lifestyles and body weight affected mammal life-history evolution but little is known about how they shaped species’ sensory systems. Since auditory sensitivity impacts communication tasks and environmental acoustic awareness, it may have represented a deciding factor during mammal evolution, including apes. Here, we statistically measure the influence of phylogeny and allometry on the variation of five cochlear morphological features associated with hearing capacities across 22 living and 5 fossil catarrhine species. We find high phylogenetic signals for absolute and relative cochlear length only. Comparisons between fossil cochleae and reconstructed ape ancestral morphotypes show that Australopithecus absolute and relative cochlear lengths are explicable by phylogeny and concordant with the hypothetized ((Pan,Homo),Gorilla) and (Pan,Homo) most recent common ancestors. Conversely, deviations of the Paranthropus oval window area from these most recent common ancestors are not explicable by phylogeny and body weight alone, but suggest instead rapid evolutionary changes (directional selection) of its hearing organ. Premodern (Homo erectus) and modern human cochleae set apart from living non-human catarrhines and australopiths. They show cochlear relative lengths and oval window areas larger than expected for their body mass, two features corresponding to increased low-frequency sensitivity more recent than 2 million years ago. The uniqueness of the “hypertrophied” cochlea in the genus Homo (as opposed to the australopiths) and the significantly high phylogenetic signal of this organ among apes indicate its usefulness to identify homologies and monophyletic groups in the hominid fossil record.  相似文献   

19.
Aside from use as estimates of body mass dimorphism and fore to hind limb joint size comparisons, postcranial elements have not often contributed to assessments of variation in Australopithecus africanus. Meanwhile, cranial, facial, and dental size variation is interpreted to be high or moderately high. Further, the cranial base and face express patterns of structural (shape) variation, which are interpreted by some as evidence for the presence of multiple species. Here, the proximal femur is used to consider postcranial size and shape variation in A. africanus. Original fossils from Makapansgat and Sterkfontein, and samples from Homo, Pan, Gorilla, and Pongo were measured. Size variation was assessed by comparing the A. africanus coefficient of variation to bootstrapped distributions of coefficient of variation samples for each taxon. Shape variation was assessed from isometrically adjusted shape variables. First, the A. africanus standard deviation of log transformed shape variables was compared to bootstrapped distributions of logged standard deviations in each taxon. Second, shape variable based Euclidean distances between fossil pairs were compared to pairwise Euclidean distance distributions in each reference taxon. The degree of size variation in the A. africanus proximal femur is consistent with that of a single species, and is most comparable to Homo and Pan, lower than A. afarensis, and lower than some estimates of cranial and dental variation. Some, but not all, shape variables show more variation in A. africanus than in extant taxa. The degree of shape difference between some fossils exceeds the majority of pairwise differences in the reference taxa. Proximal femoral shape, but not size, variation is consistent with high estimates of A. africanus cranial variation.  相似文献   

20.
The proximal femur has long been used to distinguish fossil hominin taxa. Specifically, the genus Homo is said to be characterized by larger femoral heads, shorter femoral necks, and more lateral flare of the greater trochanter than are members of the genera Australopithecus or Paranthropus. Here, a digitizing arm was used to collect landmark data on recent human (n=82), chimpanzee (n=16), and gorilla (n=20) femora and casts of six fossil hominin femora in order to test whether one can discriminate extant and fossil hominid (sensu lato) femora into different taxa using three-dimensional (3D) geometric morphometric analyses. Twenty proximal femoral landmarks were chosen to best quantify the shape differences between hominin genera. These data were first subjected to Procrustes analysis. The resultant fitted coordinate values were then subjected to PCA. PC scores were used to compute a dissimilarity matrix that was subjected to cluster analyses. Results indicate that one can easily distinguish Homo, Pan, and Gorilla from each other based on proximal femur shape, and one can distinguish Pliocene and Early Pleistocene hominin femora from those of recent Homo. It is more difficult to distinguish Early Pleistocene Homo proximal femora from those of Australopithecus or Paranthropus, but cluster analyses appear to separate the fossil hominins into four groups: an early australopith cluster that is an outlier from other fossil hominins; and two clusters that are sister taxa to each other: a late australopith/Paranthropus group and an early Homo group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号