首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the aromatic residues in protein structures, histidine (His) is unique, as it can exist in the neutral or positively charged form at the physiological pH. As such, it can interact with other aromatic residues as well as form hydrogen bonds with polar and charged (both negative and positive) residues. We have analyzed the geometry of interaction of His residues with nine other planar side chains containing aromatic (residues Phe, Tyr, Trp, and His), carboxylate (Asp and Glu), carboxamide (Asn and Gln) and guanidinium (Arg) groups in 432 polypeptide chains. With the exception of the aspartic (Asp) and glutamic (Glu) acid side-chains, all other residues prefer to interact in a face-to-face or offset-face-stacked orientation with the His ring. Such a geometry is different from the edge-to-face relative orientation normally associated with the aromatic-aromatic interaction. His-His pair prefers to interact in a face-to-face orientation; however, when both the residues bind the same metal ion, the interplanar angle is close to 90 degrees. The occurrence of different interactions (including the nonconventional N-H...pi and C-H...pi hydrogen bonds) have been correlated with the relative orientations between the interacting residues. Several structural motifs, mostly involved in binding metal ions, have been identified by considering the cases where His residues are in contact with four other planar moieties. About 10% of His residues used here are also found in sequence patterns in PROSITE database. There are examples of the amino end of the Lys side chain interacting with His residues in such a way that it is located on an arc around a ring nitrogen atom.  相似文献   

2.
Tb(III) as a fluorescent probe for the structure of bovine serum albumin   总被引:1,自引:0,他引:1  
Tb(III) was used as a fluorescent probe in the study of the calcium-binding sites on Bovine Serum Albumin (BSA). The fluorescence of Tb(III) is enhanced markedly when bound to BSA and nonradiative energy transfer between two fluorescent tryptophan(Trp) residues and Tb(III) bound to calcium-binding sites on BSA occurred. Experimental results show that the major groups in BSA bound to metal ion are the carboxyl side groups of glutamic acid (Glu) and aspartic acid (Asp). The average distance between the bound Tb(III) and the two tryptophan residues in BSA calculated by a F?ster dipole-dipole nonradiative energy transfer mechanism is 1.48 nm.  相似文献   

3.
Chen Z  Xu P  Barbier JR  Willick G  Ni F 《Biochemistry》2000,39(42):12766-12777
The solution conformations of a selectively osteogenic 1-31 fragment of the human parathyroid hormone (hPTH), hPTH(1-31)NH(2), have been characterized by use of very high field NMR spectroscopy at 800 MHz. The combination of the CalphaH proton and (13)Calpha chemical shifts, (3)J(NH)(alpha) coupling constants, NH proton temperature coefficients, and backbone NOEs reveals that the hPTH(1-31)NH(2) peptide has well-formed helical structures localized in two distinct segments of the polypeptide backbone. There are also many characteristic NOEs defining specific side-chain/backbone and side-chain/side-chain contacts within both helical structures. The solution structure of hPTH(1-31)NH(2) contains a short N-terminal helical segment for residues 3-11, including the helix capping residues 3 and 11 and a long C-terminal helix for residues 16-30. The two helical structures are reinforced by well-defined capping motifs and side-chain packing interactions within and at both ends of these helices. On one face of the C-terminal helix, there are side-chain pairs of Glu22-Arg25, Glu22-Lys26, and Arg25-Gln29 that can form ion-pair and/or hydrogen bonding interactions. On the opposite face of this helix, there are characteristic hydrophobic interactions involving the aromatic side chain of Trp23 packing against the aliphatic side chains of Leu15, Leu24, Lys27, and Leu28. There is also a linear array of hydrophobic residues from Val2, to Leu7, to Leu11 and continuing on to residues His14 and Leu15 in the hinge region and to Trp23 in the C-terminal helix. Capping and hydrophobic interactions at the end of the N-terminal and at the beginning of the C-terminal helix appear to consolidate the helical structures into a V-shaped overall conformation for at least the folded population of the hPTH(1-31)NH(2) peptide. Stabilization of well-folded conformations in this linear 1-31 peptide fragment and possibly other analogues of human PTH may have a significant impact on the biological activities of the PTH peptides in general and specifically for the osteogenic/anabolic activities of bone-building PTH analogues.  相似文献   

4.
A 3D model of the transmembrane 7-alpha-bundle of rhodopsin-like G-protein-coupled receptors (GPCRs) was calculated using an iterative distance geometry refinement with an evolving system of hydrogen bonds, formed by intramembrane polar side chains in various proteins of the family and collectively applied as distance constraints. The alpha-bundle structure thus obtained provides H bonding of nearly all buried polar side chains simultaneously in the 410 GPCRs considered. Forty evolutionarily conserved GPCR residues form a single continuous domain, with an aliphatic "core" surrounded by six clusters of polar and aromatic side chains. The 7-alpha-bundle of a specific GPCR can be calculated using its own set of H bonds as distance constraints and the common "average" model to restrain positions of the helices. The bovine rhodopsin model thus determined is closely packed, but has a few small polar cavities, presumably filled by water, and has a binding pocket that is complementary to 11-cis (6-s-cis, 12-s-trans, C = N anti)-retinal or to all-trans-retinal, depending on conformations of the Lys296 and Trp265 side chains. A suggested mechanism of rhodopsin photoactivation, triggered by the cis-trans isomerization of retinal, involves rotations of Glu134, Tyr223, Trp265, Lys296, and Tyr306 side chains and rearrangement of their H bonds. The model is in agreement with published electron cryomicroscopy, mutagenesis, chemical modification, cross-linking, Fourier transform infrared spectroscopy, Raman spectroscopy, electron paramagnetic resonance spectroscopy, NMR, and optical spectroscopy data. The rhodopsin model and the published structure of bacteriorhodopsin have very similar retinal-binding pockets.  相似文献   

5.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

6.
alpha-Neurotoxins bind with high affinity to alpha-gamma and alpha-delta subunit interfaces of the nicotinic acetylcholine receptor. Since this high affinity complex likely involves a van der Waals surface area of approximately 1200 A(2) and 25-35 residues on the receptor surface, analysis of side chains should delineate major interactions and the orientation of bound alpha-neurotoxin. Three distinct regions on the gamma subunit, defined by Trp(55), Leu(119), Asp(174), and Glu(176), contribute to alpha-toxin affinity. Of six charge reversal mutations on the three loops of Naja mossambica mossambica alpha-toxin, Lys(27) --> Glu, Arg(33) --> Glu, and Arg(36) --> Glu in loop II reduce binding energy substantially, while mutations in loops I and III have little effect. Paired residues were analyzed by thermodynamic mutant cycles to delineate electrostatic linkages between the six alpha-toxin charge reversal mutations and three key residues on the gamma subunit. Large coupling energies were found between Arg(33) at the tip of loop II and gammaLeu(119) (-5.7 kcal/mol) and between Lys(27) and gammaGlu(176) (-5.9 kcal/mol). gammaTrp(55) couples strongly to both Arg(33) and Lys(27), whereas gammaAsp(174) couples minimally to charged alpha-toxin residues. Arg(36), despite strong energetic contributions, does not partner with any gamma subunit residues, perhaps indicating its proximity to the alpha subunit. By analyzing cationic, neutral and anionic residues in the mutant cycles, interactions at gamma176 and gamma119 can be distinguished from those at gamma55.  相似文献   

7.
Several cyclic analogues of renin inhibitors, based on Glu-D-Phe-Lys motif have been investigated by NMR spectroscopy and molecular dynamics calculations (MD). The 15 membered macrocycle, resulting from Glu and Lys side-chain cyclization, exhibits conformational preference. The structural evidence from NMR shows the presence of hydrogen bond between Lys NH and Glu side-chain carbonyl, resulting in a 10 membered pseudo beta-turn-like structure. The structure of the cyclic moiety is similar in all the peptides, which takes at least two conformations around Calpha-Cbeta in Glu side chain. The restrained MD calculations further support such observations and show that the macrocycle is fairly rigid, with two conformations about the Glu Calpha-Cbeta bond. The linear peptide appendages, which are essential for activity in cyclic peptides, show an extended structure in the beta-region of Ramchandran plot. These calculations also demonstrate that for the most active peptide, two major conformers each exist about the Calpha-CO bond of the Lys, D-Trp and Leu residues. In this peptide, the cyclic moiety presents a negatively charged surface formed due to the carbonyl oxygens, which are thus available to form hydrogen bonds with the receptor. The linear fragment presents further binding sites with a surface which has the hydrophobic side chains of D-Trp, Leu and D-Met on one side and carbonyls on the other side.  相似文献   

8.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

9.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

10.
The structural and dynamic properties of the oxoglutarate carrier were investigated by introducing a single tryptophan in the Trp-devoid carrier in position 184, 190 or 199 and by monitoring the fluorescence spectra in the presence and absence of the substrate oxoglutarate. In the absence of substrate, the emission maxima of Arg190Trp, Cys184Trp and Leu199Trp are centered at 342, 345 and 348 nm, respectively, indicating that these residues have an increasing degree of solvent exposure. The emission intensity of the Arg190Trp and Cys184Trp mutants is higher than that of Leu199Trp. Addition of substrate increases the emission intensity of Leu199Trp, but not that of Cys184Trp and Arg190Trp. A 3D model of the oxoglutarate carrier was built using the structure of the ADP/ATP carrier as a template and was validated with the experimental results available in the literature. The model identifies Lys122 as the most likely candidate for the quenching of Trp199. Consistently, the double mutant Lys122Ala-Leu199Trp exhibits a higher emission intensity than Leu199Trp and does not display further fluorescence enhancement in response to substrate addition. Substitution of Lys122 with Cys and evaluation of its reactivity with a sulphydryl reagent in the presence and absence of substrate confirms that residue 122 is masked by the substrate, likely through a substrate-induced conformational change.  相似文献   

11.
The structural and dynamic properties of the oxoglutarate carrier were investigated by introducing a single tryptophan in the Trp-devoid carrier in position 184, 190 or 199 and by monitoring the fluorescence spectra in the presence and absence of the substrate oxoglutarate. In the absence of substrate, the emission maxima of Arg190Trp, Cys184Trp and Leu199Trp are centered at 342, 345 and 348 nm, respectively, indicating that these residues have an increasing degree of solvent exposure. The emission intensity of the Arg190Trp and Cys184Trp mutants is higher than that of Leu199Trp. Addition of substrate increases the emission intensity of Leu199Trp, but not that of Cys184Trp and Arg190Trp. A 3D model of the oxoglutarate carrier was built using the structure of the ADP/ATP carrier as a template and was validated with the experimental results available in the literature. The model identifies Lys122 as the most likely candidate for the quenching of Trp199. Consistently, the double mutant Lys122Ala-Leu199Trp exhibits a higher emission intensity than Leu199Trp and does not display further fluorescence enhancement in response to substrate addition. Substitution of Lys122 with Cys and evaluation of its reactivity with a sulphydryl reagent in the presence and absence of substrate confirms that residue 122 is masked by the substrate, likely through a substrate-induced conformational change.  相似文献   

12.
The principal receptor-binding domain (Ser(17)-Val(31)) of parathyroid hormone (PTH) is predicted to form an amphiphilic alpha-helix and to interact primarily with the N-terminal extracellular domain (N domain) of the PTH receptor (PTHR). We explored these hypotheses by introducing a variety of substitutions in region 17-31 of PTH-(1-31) and assessing, via competition assays, their effects on binding to the wild-type PTHR and to PTHR-delNt, which lacks most of the N domain. Substitutions at Arg(20) reduced affinity for the intact PTHR by 200-fold or more, but altered affinity for PTHR-delNt by 4-fold or less. Similar effects were observed for Glu substitutions at Trp(23), Leu(24), and Leu(28), which together form the hydrophobic face of the predicted amphiphilic alpha-helix. Glu substitutions at Arg(25), Lys(26), and Lys(27) (which forms the hydrophilic face of the helix) caused 4-10-fold reductions in affinity for both receptors. Thus, the side chains of Arg(20), together with those composing the hydrophobic face of the ligand's putative amphiphilic alpha-helix, contribute strongly to PTHR-binding affinity by interacting specifically with the N domain of the receptor. The side chains projecting from the opposite helical face contribute weakly to binding affinity by different mechanisms, possibly involving interactions with the extracellular loop/transmembrane domain region of the receptor. The data help define the roles that side chains in the binding domain of PTH play in the PTH-PTHR interaction process and provide new clues for understanding the overall topology of the bimolecular complex.  相似文献   

13.
Iu Ia Gotlib  A V Rystov 《Biofizika》1983,28(3):399-402
On the basis of the suggested in previous paper [1] model of high-frequency motions of indol group forming a part of tryptophan residue side group parameters of indol groups torsional vibrations in tryptophan-containing synthetic polypeptides and proteins were analysed. Results of conformational analysis and experimental data on polarized luminescence obtained in [2-5] were used.  相似文献   

14.
Ligand binding may involve a wide range of structural changes in the receptor protein, from hinge movement of entire domains to small side-chain rearrangements in the binding pocket residues. The analysis of side chain flexibility gives insights valuable to improve docking algorithms and can provide an index of amino-acid side-chain flexibility potentially useful in molecular biology and protein engineering studies. In this study we analyzed side-chain rearrangements upon ligand binding. We constructed two non-redundant databases (980 and 353 entries) of "paired" protein structures in complexed (holo-protein) and uncomplexed (apo-protein) forms from the PDB macromolecular structural database. The number and identity of binding pocket residues that undergo side-chain conformational changes were determined. We show that, in general, only a small number of residues in the pocket undergo such changes (e.g., approximately 85% of cases show changes in three residues or less). The flexibility scale has the following order: Lys > Arg, Gln, Met > Glu, Ile, Leu > Asn, Thr, Val, Tyr, Ser, His, Asp > Cys, Trp, Phe; thus, Lys side chains in binding pockets flex 25 times more often then do the Phe side chains. Normalizing for the number of flexible dihedral bonds in each amino acid attenuates the scale somewhat, however, the clear trend of large, polar amino acids being more flexible in the pocket than aromatic ones remains. We found no correlation between backbone movement of a residue upon ligand binding and the flexibility of its side chain. These results are relevant to 1. Reduction of search space in docking algorithms by inclusion of side-chain flexibility for a limited number of binding pocket residues; and 2. Utilization of the amino acid flexibility scale in protein engineering studies to alter the flexibility of binding pockets.  相似文献   

15.
We describe the de novo design and biophysical characterization of a model coiled-coil protein in which we have systematically substituted 20 different amino acid residues in the central "d" position. The model protein consists of two identical 38 residue polypeptide chains covalently linked at their N termini via a disulfide bridge. The hydrophobic core contained Val and Ile residues at positions "a" and Leu residues at positions "d". This core allowed for the formation of both two-stranded and three-stranded coiled-coils in benign buffer, depending on the substitution at position "d". The structure of each analog was analyzed by CD spectroscopy and their relative stability determined by chemical denaturation using GdnHCI (all analogs denatured from the two-stranded state). The oligomeric state(s) was determined by high-performance size-exclusion chromatography and sedimentation equilibrium analysis in benign medium. Our results showed a thermodynamic stability order (in order of decreasing stability) of: Leu, Met, Ile, Tyr, Phe, Val, Gln, Ala, Trp, Asn, His, Thr, Lys, Ser, Asp, Glu, Arg, Orn, and Gly. The Pro analog prevented coiled-coil formation. The overall stability range was 7.4 kcal/mol from the lowest to the highest analog, indicating the importance of the hydrophobic core and the dramatic effect a single substitution in the core can have upon the stability of the protein fold. In general, the side-chain contribution to the level of stability correlated with side-chain hydrophobicity. Molecular modelling studies, however, showed that packing effects could explain deviations from a direct correlation. In regards to oligomerization state, eight analogs demonstrated the ability to populate exclusively one oligomerization state in benign buffer (0.1 M KCl, 0.05 M K(2)PO(4)(pH 7)). Ile and Val (the beta-branched residues) induced the three-stranded oligomerization state, whereas Tyr, Lys, Arg, Orn, Glu and Asp induced the two-stranded state. Asn, Gln, Ser, Ala, Gly, Phe, Leu, Met and Trp analogs were indiscriminate and populated two-stranded and three-stranded states. Comparison of these results with similar substitutions in position "a" highlights the positional effects of individual residues in defining the stability and numbers of polypeptide chains occurring in a coiled-coil structure. Overall, these results in conjunction with other work now generate a relative thermodynamic stability scale for 19 naturally occurring amino acid residues in either an "a" or "d" position of a two-stranded coiled-coil. Thus, these results will aid in the de novo design of new coiled-coil structures, a better understanding of their structure/function relationships and the design of algorithms to predict the presence of coiled-coils within native protein sequences.  相似文献   

16.
Kovacs JM  Mant CT  Hodges RS 《Biopolymers》2006,84(3):283-297
Understanding the hydrophilicity/hydrophobicity of amino acid side chains in peptides/proteins is one the most important aspects of biology. Though many hydrophilicity/hydrophobicity scales have been generated, an "intrinsic" scale has yet to be achieved. "Intrinsic" implies the maximum possible hydrophilicity/hydrophobicity of side chains in the absence of nearest-neighbor or conformational effects that would decrease the full expression of the side-chain hydrophilicity/hydrophobicity when the side chain is in a polypeptide chain. Such a scale is the fundamental starting point for determining the parameters that affect side-chain hydrophobicity and for quantifying such effects in peptides and proteins. A 10-residue peptide sequence, Ac-X-G-A-K-G-A-G-V-G-L-amide, was designed to enable the determination of the intrinsic values, where position X was substituted by all 20 naturally occurring amino acids and norvaline, norleucine, and ornithine. The coefficients were determined by reversed-phase high-performance liquid chromatography using six different mobile phase conditions involving different pH values (2, 5, and 7), ion-pairing reagents, and the presence and absence of different salts. The results show that the intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides (proteins) is independent of pH, buffer conditions, or whether C(8) or C(18) reversed-phase columns were used for 17 side chains (Gly, Ala, Cys, Pro, Val, nVal, Leu, nLeu, Ile, Met, Tyr, Phe, Trp, Ser, Thr, Asn, and Gln) and dependent on pH and buffer conditions, including the type of salt or ion-pairing reagent for potentially charged side chains (Orn, Lys, His, Arg, Asp, and Glu).  相似文献   

17.
Specific interactions of membrane proteins with the membrane interfacial region potentially define protein position with respect to the lipid environment. We investigated the proposed roles of tryptophan and lysine side chains as "anchoring" residues of transmembrane proteins. Model systems were employed, consisting of phosphatidylcholine lipids and hydrophobic alpha-helical peptides, flanked either by tryptophans or lysines. Peptides were incorporated in bilayers of different thickness, and effects on lipid structure were analyzed. Induction of nonbilayer phases and also increases in bilayer thickness were observed that could be explained by a tendency of Trp as well as Lys residues to maintain interactions with the interfacial region. However, effects of the two peptides were remarkably different, indicating affinities of Trp and Lys for different sites at the interface. Our data support a model in which the Trp side chain has a specific affinity for a well defined site near the lipid carbonyl region, while the lysine side chain prefers to be located closer to the aqueous phase, near the lipid phosphate group. The information obtained in this study may further our understanding of the architecture of transmembrane proteins and may prove useful for refining prediction methods for transmembrane segments.  相似文献   

18.
K Ogasahara  S Sawada  K Yutani 《Proteins》1989,5(3):211-217
CD spectra in the aromatic region of a series of the mutant alpha-subunits of tryptophan synthase from Escherichia coli, substituted at position 49 buried in the interior of the molecule, were measured at pH 7.0 and 25 degrees C. These measurements were taken to gain information on conformational change produced by single amino acid substitutions. The CD spectra of the mutant proteins, substituted by Tyr or Trp residue in place of Glu residue at position 49, showed more intense positive bands due to one additional Tyr or Trp residue at position 49. The CD spectra of other mutant proteins also differed from that of the wild-type protein, despite the fact that the substituted residues at position 49 were not aromatic. Using the spectrum of the wild-type protein (Glu49) as a standard, the spectra of the other mutants were classified into three major groups. For 10 mutant proteins substituted by Ile, Ala, Leu, Met, Val, Cys, Pro, Ser, His, or Gly, their CD values of bands (due to Tyr residues) decreased in comparison with those of the wild-type protein. The mutant protein substituted by Phe also belonged to this group. These substituted amino acid residues are more hydrophobic than the original residue, Glu. In the second group, three mutant proteins were substituted by Lys, Gln, or Asn, and the CD values of tyrosyl bands increased compared to those of the wild-type proteins. These residues are polar. In the third group, the CD values of tyrosyl bands of two mutant proteins substituted by Asp or Thr were similar to those of the wild-type protein, except for one band at 276.5 nm. These results suggested that the changes in the CD spectra for the mutant proteins were affected by the hydrophobicity of the residues at position 49.  相似文献   

19.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

20.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号