首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The activity in platelet-poor plasma that allowed density-arrested BALB/c-3T3 cells rendered competent by a transient exposure to platelet-derived growth factor (PDGF) to traverse G1 and enter the S phase has been termed progression activity. Epidermal growth factor (EGF) and somatomedin C-supplemented medium was shown to be capable of replacing the progression activity of 5% platelet-poor plasma (PPP) for competent density-inhibited BALB/c-3T3 cells. Exposure of competent cells to medium supplemented with EGF and somatomedin C reduced the 12 h minimum G1 lag time found in plasma-supplemented medium by 2 h. It is suggested that the reduction in the minimum time required for progression through G1 is due to the availability of free, unbound somatomedin C. Complete G1 traverse required both EGF and somatomedin C; however, the traverse of the last 6 h of G1 and entry into the S phase required only somatomedin C. Though EGF and somatomedin C could replace the G1 phase progression activity of plasma, medium supplemented with EGF and somatomedin C did not support complete cell cycle traverse or growth of sparse cultures of BALB/c-3T3 cells.  相似文献   

2.
Concentrations of methylglyoxal bis-(guanylhydrazone) (mGBG) that inhibited serum-stimulated BALB/c-3T3 cells in late G1 caused a marked inhibition of 3H-leucine incorporation during a 20-min incubation. No decrease was observed in the incorporation of 3H-uridine during a 20-min incubation; however, the amount of acid-insoluble 3H-uridine in mGBG-treated cultures was decreased when the incubation period was longer than 20 min. The amount of the decrease in the accumulation of incorporated 3H-uridine was directly proportional to the length of the incorporation time. Between 10 and 12 h after quiescent BALB/c-3T3 cells were serum-stimulated in mGBG no additional 3H-uridine was accumulated. The stability of the incorporated 3H-uridine, as determined by acid-insoluble radioactivity remaining after the addition of actinomycin D, was less in cells cultured in mGBG. Exogenous spermine or spermidine reversed the inhibition of 3H-uridine accumulation in acid-insoluble material produced by mGBG as well as the decrease in stability of the incorporated 3H-uridine in acid-insoluble material. The effects of mGBG on both the incorporation of 3H-uridine and the stability of the incorporated 3H-uridine can apparently be accounted for by an effect on ribosomal RNA.  相似文献   

3.
Stimulation of total inositol phosphate production, alteration of cytosolic free calcium [( Ca++]i), vinculin disruption from adhesion plaques, and DNA synthesis caused by PDGF were examined in normal and INF pretreated density arrested BALB/c-3T3 fibroblasts. In normal cells, PDGF caused an increase in total inositol phosphates, a rapid, transient increase in [Ca++]i, disappearance of vinculin from adhesion plaques, and stimulation of DNA synthesis. Pretreatment of cells with INF inhibited PDGF-stimulated increases in [Ca++]i, vinculin disruption from adhesion plaques, and DNA synthesis, but had no effect on PDGF-induced increase in total inositol phosphate levels. These findings suggest that INF prevents entry of quiescent BALB/c-3T3 cells into G1 by inhibiting PDGF-induced release of Ca++ from intracellular stores.  相似文献   

4.
A cell surface macromolecular component from quiescent BALB/c 3T3 mouse cells (designated fibroblast growth regulatory factor, FGRF) inhibits DNA synthesis and cell division in growing 3T3 cells. Addition of FGRF to synchronized populations of growing 3T3 cells in the late G1 or early S phase did not inhibit DNA synthesis in the immediate S phase. However, a significant inhibition was observed in the S phase of the next round of cell cycle. Cells exposed to the regulatory factor in late S/early G2 or early G1 showed reduced DNA synthesis in the upcoming S phase; the late S/early G2 cells were more sensitive to inhibition than the cells in the G1. Further, the regulatory factor delayed the progression of G0/G1-arrested cells into the next S phase. These results suggest that the physiological effect of FGRF is to arrest cells in early G1, thus preventing their entry into a new round of cell cycle. In contrast to untransformed 3T3 cells, mouse cells transformed by SV40 were not subjected to growth-arrest by the regulatory factor, although the transformed cells contain active FGRF that inhibits DNA synthesis in growing 3T3 cells.  相似文献   

5.
The stimulation of DNA synthesis in quiescent, density-arrested BALB/c-3T3 cells by platelet-derived growth factor in plasma-supplemented medium was inhibited by the presence of isobutylmethylxanthine (IBMX) and cholera toxin, although neither IBMX or cholera toxin when used alone inhibited the stimulation of DNA synthesis. The cells were reversibly inhibited in mid G1 at a point 6 hr prior to the initiation of DNA synthesis. The inhibition of cell cycle traverse was associated with a 10-15 fold increase in cellular cyclic AMP concentration over basal levels. The reversal of this inhibition by removal of IBMX was correlated with a dramatic decrease in cyclic AMP levels. The traverse of G1 and the initiation of DNA synthesis after release from the cholera toxin and IBMX inhibition was dependent on the presence of plasma in the medium. Either somatomedin C (10-20 ng/ml) or insulin (10(-6)-10(-5) M) completely replaced the plasma requirement for late G1 progression and entry into S phase. Once the inhibited cells were released from the IBMX and cholera toxin block a subsequent increase in cyclic AMP did not prevent entry into S phase. The presence of cholera toxin alone inhibited the stimulation of human dermal fibroblasts. The elevation of intracellular cyclic AMP levels in the human dermal fibroblasts by cholera toxin was two to three fold greater than that found in the BALB/c-3T3 cells in the presence of cholera toxin and the IBMX.  相似文献   

6.
R Sheinin  D Mirjah  M Dubsky  J Sigouin 《Biochemistry》1986,25(6):1208-1216
ts 2 BalB/C-3T3 mouse fibroblasts are cdc mutants, which arrest late in G1, at or near the G1/S traverse, upon full expression of the heat-sensitive lesion. The kinetics of temperature inhibition of DNA synthesis in logarithmically growing cultures reveal three stages of heat inactivation. During the first generation time equivalent, normal semiconservative, semidiscontinuous replication proceeds but is reduced as cells exit and do not reenter S phase. During a second such period, a minimal rate of normal DNA synthesis is maintained. Thereafter, as the cells move into a third aborted cell division cycle, the rate of DNA synthesis increases. However, all semiconservative synthesis is then replaced by DNA repair replication. Temperature inactivation of the ts 2 protein results in shutdown of nuclear DNA synthesis. In contrast, normal replication of mitochondrial DNA proceeds at control rate throughout the first stage of temperature inactivation. Synthesis of this organellar genome is quantitatively reduced as the cells move into the second phase of heat inhibition. Titration of chromatin-bound DNA with ethidium bromide revealed that wild-type cells exhibit a changing DNA topology as the temperature is raised. Temperature-inactivated ts 2 cells behave as though their DNA has been topologically frozen in the configuration of control cells at or near entry into S phase.  相似文献   

7.
S Tominaga 《FEBS letters》1987,226(1):53-57
A 63 kDa protein is detectable in the culture fluid of mouse BALB/c-3T3 cells traversing from the G0 state to the G1 phase, whereas it is undetectable in the culture fluid of quiescent or growing BALB/c-3T3 cells. Secretion of the protein is maximal at 10 h after serum addition. G0-specific ts mutant cells (rat tsJT60) also secrete the 63 kDa protein only when the quiescent cells are stimulated by serum addition at permissive temperature. These facts indicate that the 63 kDa protein is secreted only from cells traversing from the G0 state to the G1 phase.  相似文献   

8.
One of the earliest events to occur upon the addition of serum to quiescent cells is an increase in the intracellular pH (pHin). The relationship between this pH change and proliferation is not known. In the present study, we investigate the consequences of acidifying the cytosol using the weak acid, 5', 5"-dimethyl oxazolidine 2,4-dione (DMO). At a concentration of 50 mM, DMO inhibits the serum-induced increases in pHin, DNA synthesis, and cell number. This concentration of DMO is shown not to inhibit the steady-state rate of mitochondrial respiration and not to inhibit DNA synthesis in a pH-independent fashion. The effects of DMO treatments are also shown to be reversible, indicating that this compound is not cytotoxic. These observations indicate that DMO inhibits cell proliferation by lowering intracellular pH. One important event that must occur prior to the initiation of DNA synthesis is an elevated rate of protein synthesis. The rate of protein synthesis in situ is extremely pH sensitive. Addition of 50 mM DMO to serum-stimulated cultures reduces the rate of leucine incorporation to unstimulated levels. These observations suggest that cytoplasmic acidification may inhibit proliferation through its effects on protein synthesis.  相似文献   

9.
Density-arrested BALB/c-3T3 cells stimulated to proliferate in an amino acid-deficient medium arrest in mid-G1 at a point termed the V point. Cells released from V point arrest require 6 hr to traverse late G1 and enter S phase. As data presented here show that mRNA synthesis is needed for 2–3 hr after release of cells from the V point, after which inhibition of mRNA synthesis does not prevent entry into S phase, we used this mid-G1 arrest protocol to analyze gene expression in late G1. We found that although stimulation of cells in amino acid-deficient medium did not inhibit the induction of genes expressed in early G1, genes normally expressed in late G1 were expressed only after release from the V point. The expression of late G1 genes in cells released from the V point was temporally similar, in respect to G1 location, as was seen in stimulation of quiescent Go cells. As this protocol effectively divides gene expression into early (pre-V point) and late (post-V point) categories, it should be useful in studies of growth factor-modulated events that regulate traverse of late G1 and commitment to DNA synthesis. In addition, we used c-myb antisense oligonucleotides to show that c-myb expression, which occurs in late G1, is required for BALB/c-3T3 fibroblasts to traverse late G1 and initiate DNA synthesis. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Keshava N 《Mutation research》2000,447(2):281-286
4 mm in diameter), invasiveness (smooth vs. invading margins) and other properties (piling vs. spread). In our previous report, we showed that cells from all five types grew in soft agar, transformed normal NIH 3T3 cells and formed foci on normal layer of BALB/c-3T3 cells. In this study, the neoplastic/tumorigenic potential of cells from the five different types of transformed foci was investigated in nude mice. About two million cells from each transformed focus were injected into 4-week-old nude mice. Non-transformed BALB/c-3T3 cells were used as control. The results of this study indicate that all the 45 athymic mice injected with different transformants developed tumors between 2 and 4 weeks after injection. Tumors were not observed in eight mice injected with non-transformed BALB/c-3T3 cells. All tumors were histopathologically confirmed fibrosarcomas. These findings indicate that all five morphologically different foci show tumorigenicity and that any foci of size > or =2 mm regardless of invasiveness and piling could be scored as positive during the cell transformation assay.  相似文献   

11.
A large number of workers are potentially exposed to cadmium during mining and processing. Therefore, there is a concern regarding the potential carcinogenic hazards of cadmium to exposed workers. Studies have been performed to determine if cadmium chloride (CdCl(2)) can induce morphological cell transformation, DNA from CdCl(2)-induced transformed cells can transform other mammalian cells, and the transformed cells induced by CdCl(2) can form tumors in nude mice. BALB/c-3T3 cells were treated with different concentrations of CdCl(2) for 72 h. The frequency of transformed foci from each treatment was determined after cells were cultured for 4 to 5 weeks. DNAs from five CdCl(2)-induced transformed cell lines were isolated and gene transfection assay was performed using NIH-3T3 cells. Non-transformed BALB/c-3T3 cells and cells from 10 transformed cell lines induced by CdCl(2) were injected into both axillary regions of nude mice. Mice were screened once a week for the appearance and size of tumors. CdCl(2) caused a statistically significant, concentration-related increase in the transformation frequency. DNA from all five CdCl(2)-induced transformed cell lines tested was found to induce varying degrees of transfection-mediated transformation in NIH-3T3 cells. All 10 CdCl(2)-induced transformed cell lines formed fibrosarcomas in nude mice within 39 days of inoculation. Within this time period, no tumors were found in nude mice injected with non-transformed BALB/c-3T3 cells. These results indicate that CdCl(2) is capable of inducing morphological cell transformation and that the transformed cells induced by CdCl(2) are potentially tumorigenic.  相似文献   

12.
Treatment with 1000 units/ml of murine beta-interferon enhanced an adenylate kinaselike activity and markedly increased the level of L-alpha-phosphatidyl inositol 4-monophosphate in quiescent BALB/c-3T3 cells. The addition of platelet-derived growth factor (22 units/ml) or poly(I).poly(C) (0.3-1 microgram/ml) to the phosphorylation reaction mixture did not alter this interferon action.  相似文献   

13.
The ability of platelet-derived growth factor and fibroblast growth factor to stimulate the initiation of DNA synthesis in quiescent BALB/c-3T3 cells was enhanced by cholera toxin. However, the addition of cholera toxin to unsupplemented medium was not mitogenic, nor did cholera toxin increase the mitogenic potential of mediuum supplemented with platelet-poor plasma. The enhancement of serum-induced DNA synthesis by cholera toxin was due to a specific effect on competence formation and not plasma-controlled progression. Cholera toxin increased the rate of competence formation during a transient exposure of quiescent cells to platelet-derived growth factor; this rate was further increased by the addition of isobutylmethylxanthine, a cyclic nucleotide phosphodiesterase inhibitor. Intracellular cyclic AMP concentrations in quiescent BALB/c-3T3 cells were increased 2- to 3-fold after the addition of cholera toxin. The addition of cholera toxin plus 30 m?M isobutylmethylxanthine caused an even greater (7- to 8-fold) increase in the cellular levels of cyclic AMP. That these increases in cyclic AMP concentrations mediated at least part of the increased sensitivity of quiescent cells to competence factors was substantiated by the observation that 0.01 to 1 mM monobutrylcyclic AMP or 8-bromocyclic AMP also caused a concentration-dependent potentiation of competence formation in quiescent cells during a transient exposure to platelet-derived growth factor.  相似文献   

14.
The genotoxicity of benzo[a]pyrene, cyclophosphamide, 2-aminoanthracene, 2-nitrofluorene, nitrosated coal-dust extracts, and cigarette-smoke condensate were tested with the micronucleus assay using an established mammalian cell line. The results showed that all chemicals and complex mixtures studied induced micronuclei in BALB/c-3T3 cells. These results indicate that BALB/c-3T3 cells are capable of activating certain promutagens and procarcinogens. It seems, therefore, that in addition to cell transformation, the micronucleus assay in BALB/c-3T3 cells without an exogenous activation system may be useful for in vitro studies to detect genotoxic chemicals and complex mixtures.  相似文献   

15.
S Tominaga 《FEBS letters》1988,238(2):315-319
The amount of murine mRNA for the beta-subunit of integrin is enriched 6-fold when BALB/c-3T3 cells traverse from the G0 state to the G1 phase, whereas it remains at the basal level when the cells are growing continuously. The peak of its appearance is at 10 h after serum stimulation. The increase in integrin mRNA at a specific point in cell proliferation may be correlated with growth-signal transduction.  相似文献   

16.
The addition of whole serum to G0-arrested, confluent Balb/c-3T3 cells induces them to progress through G1 and synthesize DNA after a 12-h lag period. Prior to the onset of DNA synthesis, RNA is synthesized and RNA content increases. Serum has been fractionated into two sets of growth factors: a platelet-derived growth factor present in heat-treated (100 degrees C) platelet extracts and platelet-poor plasma. Addition of whole serum, platelet-derived growth factor or platelet-poor plasma induces quiescent cells to increase their cytoplasmic RNA content, but the cells treated with platelet-poor plasma do not synthesize DNA. Messenger RNA content increases within 2 h after stimulation with whole serum or platelet-poor plasma, and after 18 h, mRNA has accumulated to a greater degree than rRNA.  相似文献   

17.
The effect of heated serum at a concentration of 10% in culture on the in vitro growth of confluent Balb/c 3T3 cells was studied in nine patients with Idiopathic Myelofibrosis and ten normal subjects. Patients showed significant increase in the mitogenic activity in comparison with normals. The growth factors conceivably implied for the observed effect are discussed. Particular attention is paid to Platelet-Derived Growth Factor from which serum mitogenic activity is primarily derived and is thought to take part in the genesis of bone marrow fibrosis.  相似文献   

18.
In order to investigate how growth factors stimulate DNA synthesis, we studied the relationship between early increases in the intracellular concentration of free calcium (Cai) and early mitogenic events (competence) in quiescent BALB/c 3T3 cells. Cai was measured by aequorin luminescence, and DNA synthesis was quantitated by autoradiography. While both serum (2%) and platelet-derived growth factor (2 U/ml) stimulated large increases in Cai without inducing competence, fibroblast growth factor (100-400 ng/ml) produced a large number of competent cells without causing a detectable increase in Cai. Thus, there was no correlation between the magnitude of Cai increase and subsequent competence for DNA synthesis.  相似文献   

19.
Fibroblast growth factor (FGF) plus insulin induced DNA synthesis in and proliferation of NIH/3T3 cells. The protein kinase C-activating phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), inhibited both the DNA synthesis and cell proliferation induced by FGF plus insulin. The concentration of TPA required for 50% inhibition of the DNA synthesis was about 5 nM. Phorbol-12,13-dibutyrate, another protein kinase C-activating phorbol ester, also inhibited the DNA synthesis but 4 alpha-phorbol-12,13-didecanoate, known to be inactive for this enzyme, was ineffective. DNA synthesis started at about 12 h after the addition of FGF plus insulin. The inhibitory action of TPA on the DNA synthesis was observed when it was added within 12 h after the addition of FGF plus insulin. These results suggest that phorbol esters exhibit an antiproliferative action through protein kinase C activation in NIH/3T3 cells, and that this action of phorbol esters is due to inhibition of the progression from the late G1 to the S phase of the cell cycle.  相似文献   

20.
Exposure of BALB/c-3T3 cells (clone A31) to platelet-derived growth factor (PDGF) results in a rapid time- and dose-dependent alteration in the distribution of vinculin and actin. PDGF treatment (6-50 ng/ml) causes vinculin to disappear from adhesion plaques (within 2.5 min after PDGF exposure) and is followed by an accumulation of vinculin in punctate spots in the perinuclear region of the cell. This alteration in vinculin distribution is followed by a disruption of actin-containing stress fibers (within 5 to 10 min after PDGF exposure). Vinculin reappears in adhesion plaques by 60 min after PDGF addition while stress fiber staining is nondetectable at this time. PDGF treatment had no effect on talin, vimentin, or microtubule distribution in BALB/c-3T3 cells; in addition, exposure of cells to 5% platelet-poor plasma (PPP), 0.1% PPP, 30 ng/ml epidermal growth factor (EGF), 30 ng/ml somatomedin C, or 10 microM insulin also had no effect on vinculin or actin distribution. Other competence-inducing factors (fibroblast growth factor, calcium phosphate, and choleragen) and tumor growth factor produced similar alterations in vinculin and actin distribution as did PDGF, though not to the same extent. PDGF treatment of cells for 60 min followed by exposure to EGF (0.1-30 ng/ml for as long as 8 h after PDGF removal), or 5% PPP resulted in the nontransient disappearance of vinculin staining within 10 min after EGF or PPP additions; PDGF followed by 0.1% PPP or 10 microM insulin had no effect. Treatment of cells with low doses of PDGF (3.25 ng/ml), which did not affect vinculin or actin organization in cells, followed by EGF (10 ng/ml), resulted in the disappearance of vinculin staining in adhesion plaques, thus demonstrating the synergistic nature of PDGF and EGF. These data suggest that PDGF-induced competence and stimulation of cell growth in quiescent fibroblasts are associated with specific rapid alterations in the cellular organization of vinculin and actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号