首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibitory effect of the main inhibitors (acetic acid, furfural and 5-hydroxymethylfurfural) formed during steam explosion of wheat straw was studied through ethanol fermentations of model substrates and hydrolysates from wheat straw by Pichia stipitis. Experimental results showed that an increase in acetic acid concentration led to a reduction in ethanol productivity and complete inhibition was observed at 3.5 g/L. Furfural produced a delay on sugar consumption rates with increasing concentration and HMF did not exert a significant effect. Fermentations of the whole slurry from steam exploded wheat straw were completely inhibited by a synergistic effect due to the presence of 1.5 g/L acetic acid, 0.15 g/L furfural and 0.05 g/L HMF together with solid fraction. When using only the solid fraction from steam explosion, hydrolysates presented 0.5 g/L of acetic acid, whose fermentations have submitted promising results, providing an ethanol yield of 0.45 g ethanol/g sugars and the final ethanol concentration reached was 12.2 g/L (10.9 g ethanol/100 g DM).  相似文献   

2.
Whole corn mash fermentations infected with industrially-isolated Brettanomyces yeasts were not affected even when viable Brettanomyces yeasts out-numbered Saccharomyces yeasts tenfold at the onset of fermentation. Therefore, aeration, a parameter that is pivotal to the physiology of Dekkera/Brettanomyces yeasts, was investigated in mixed culture fermentations. Results suggest that aeration strategy plays a significant role in Dekkera/Brettanomyces-mediated inhibition of fuel alcohol fermentations. Although growth of Saccharomyces cerevisiae was not impeded, mixed culture fermentations aerated at rates of ≥20 ml air l−1 mash min−1 showed decreased ethanol yields and an accumulation of acetic acid. The importance of aeration was examined further in combination with organic acid(s). Growth of Saccharomyces occurred more rapidly than growth of Brettanomyces yeasts in all conditions. The combination of 0.075% (w/v) acetic acid and contamination with Brettanomyces TK 1404W did not negatively impact the final ethanol yield under fermentative conditions. Aeration, however, did prove to be detrimental to final ethanol yields. With the inclusion of aeration in the control condition (no organic acid stress) and in each fermentation containing organic acid(s), the final ethanol yields were decreased. It was therefore concluded that aeration strategy is the key parameter in regards to the negative effects observed in fuel alcohol fermentations infected with Dekkera/Brettanomyces yeasts.  相似文献   

3.
The hydrolysis which converts polysaccharides to the fermentable sugars for yeast’s lingocellulosic ethanol production also generates byproducts which inhibit the ethanol production. To investigate the extent to which inhibitory compounds affect yeast’s growth and ethanol production, fermentations by Saccharomyces cerevisiae K35 were investigated in various concentrations of acetic acid, furfural, 5-hydroxymethylfurfural (5-HMF), syringaldehyde, and coumaric acid. Fermentation in hydrolysates from yellow poplar and waste wood was also studied. After 24 h, S. cerevisiae K35 produced close to theoretically predicted ethanol yields in all the concentrations of acetic acid tested (1 ∼ 10 g/L). Both furans and phenolics inhibited cell growth and ethanol production. Ethanol yield, however, was unaffected, even at high concentrations, except in the cases of 5 g/L of syringaldehyde and coumaric acid. Although hydrolysates contain various toxic compounds, in their presence, S. Cerevisiae K35 consumed close to all the available glucose and yielded more ethanol than theoretically predicted. S. Cerevisiae K35 was demonstrated to have high tolerance to inhibitory compounds and not to need any detoxification for ethanol production from hydrolysates.  相似文献   

4.
Summary A method for growing acetic acid bacteria from high percentage submerged vinegar fermentations was established by overflowing soft agar, containing acetic acid, with fermenting reactor fluid. Mixed cultures were found in a submerged process that was working well (1), in a submerged process that had broken down (2), and in a vinegar generator (3). The strains differed in part from each other with respect to tolerance towards acetic acid, ethanol, pH and in other physiological criteria. All strains that were isolated from (1) and some from (3) were specialized for acetate media as they needed acetic acid and low pH values (2.1–3.8) in addition to yeast extract and glucose or ethanol. We suppose that they belonged to the acetic acid-producing strains active in the process. None of the strains derived from (2) was of this acetophilic type. All except one of the stains from (2) belonged to the species Acetobacter hansenii, the other cultures were of A. pasteurianus.  相似文献   

5.
The inhibitory effects of furfural and acetic acid on the fermentation of xylose and glucose to ethanol in YEPDX medium by a recombinant Saccharomyces cerevisiae strain (LNH‐ST 424A) were investigated. Initial furfural concentrations below 5 g/L caused negligible inhibition to glucose and xylose consumption rates in batch fermentations with high inoculum (4.5–6.0 g/L). At higher initial furfural concentrations (10–15 g/L) the inhibition became significant with xylose consumption rates especially affected. Interactive inhibition between acetic acid and pH were observed and quantified, and the results suggested the importance of conditioning the pH of hydrolysates for optimal fermentation performance. Poplar biomass pretreated by various CAFI processes (dilute acid, AFEX, ARP, SO2‐catalyzed steam explosion, and controlled‐pH) under respective optimal conditions was enzymatically hydrolyzed, and the mixed sugar streams in the hydrolysates were fermented. The 5‐hydroxymethyl furfural (HMF) and furfural concentrations were low in all hydrolysates and did not pose negative effects on fermentation. Maximum ethanol productivity showed that 0–6.2 g/L initial acetic acid does not substantially affect the ethanol fermentation with proper pH adjustment, confirming the results from rich media fermentations with reagent grade sugars. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
Microbial contamination is a pervasive problem in any ethanol fermentation system. These infections can at minimum affect the efficiency of the fermentation and at their worse lead to stuck fermentations causing plants to shut down for cleaning before beginning anew. These delays can result in costly loss of time as well as lead to an increased cost of the final product. Lactic acid bacteria (LAB) are the most common bacterial contaminants found in ethanol production facilities and have been linked to decreased ethanol production during fermentation. Lactobacillus sp. generally predominant as these bacteria are well adapted for survival under high ethanol, low pH and low oxygen conditions found during fermentation. It has been generally accepted that lactobacilli cause inhibition of Saccharomyces sp. and limit ethanol production through two basic methods; either production of lactic and acetic acids or through competition for nutrients. However, a number of researchers have demonstrated that these mechanisms may not completely account for the amount of loss observed and have suggested other means by which bacteria can inhibit yeast growth and ethanol production. While LAB are the primary contaminates of concern in industrial ethanol fermentations, wild yeast may also affect the productivity of these fermentations. Though many yeast species have the ability to thrive in a fermentation environment, Dekkera bruxellensis has been repeatedly targeted and cited as one of the main contaminant yeasts in ethanol production. Though widely studied for its detrimental effects on wine, the specific species–species interactions between D. bruxellensis and S. cerevisiae are still poorly understood.  相似文献   

7.
Fermentation of sugars released from lignocellulosic biomass (LCMs) is a sustainable option for the production of bioethanol. LCMs release fermentable hexose sugars and the currently non-fermentable pentose sugars; ethanol yield from lignocellulosic residues is dependent on the efficient conversion of available sugars to ethanol, a side-product of the process is acetic acid production. Presence of acetic acid reduced metabolic output and growth when compared with controls; however, it was observed that incubation with proline had a protective effect, which was proline specific and concentration dependent; the protective effect did not extend to furan or phenolic stressed yeast cells. Proline accumulating strains displayed tolerance to acetic acid when compared with background strains, whereas, strains with a compromised proline metabolism displayed sensitivity. Sensitivity to weak acids appears to be reduced with the addition of proline; proline is an imino acid freely available as a nitrogen source in the aerobic phase of fermentations. Yeast strains with higher intracellular proline concentrations would be desirable for industrial bioethanol fermentations.  相似文献   

8.
Whereas Saccharomyces cerevisiae uses the Embden‐Meyerhof‐Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner‐Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ~100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost‐effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass.  相似文献   

9.
Glycerol dehydrogenase (GDH) and 1,3-propanediol (1,3-PD) oxidoreductase had been proved two key enzymes for 1,3-PD production by Klebsiella pneumoniae. Fed-batch fermentations of the recombinant K. pneumoniae strains, over-expressing the two enzymes individually, were carried out under micro-aerobic conditions, and the behaviors of the recombinants were investigated. Results showed that over-expression of 1,3-PD oxidoreductase did not affect the concentration of 1,3-PD. However, it enhanced the molar yield from 50.6 to 64.0% and reduced the concentration of by-products. Among them, the concentrations of lactic acid, ethanol and succinic acid were decreased by 51.8, 50.6 and 47.4%, respectively. Moreover, in the recombinant the maximal concentration of 3-hydroxypropionaldehyde decreased by 73.6%. Over-expression of GDH decreased the yield of ethanol and 2,3-butanediol, meanwhile it increased the concentration of acetic acid. No significant changes were observed both in 1,3-PD yield and glycerol flux distributed to oxidative branch.  相似文献   

10.
The effect of the dilution rate on biomass and product synthesis in fermentations of glucose, fructose and a commercial mixture of fructooligosaccharides (FOS) by Bifidobacterium longum ATCC 15707 was studied. Kinetic parameters (maximum specific growth rate, Monod constant, maintenance, and yield coefficients) in the mathematical model of the fermentation were estimated from experimental data. In the FOS mixture fermentations, approximately 12% of the total reducing sugars (mainly fructose) in the feed were not metabolized by the bacterium. In fermentations of fructose and the FOS mixture, biomass concentration increased as the dilution rate increased and, once maximum values were reached [3.90 (D=0.20 h–1) and 2.54 g l–1 (D=0.15 h–1), respectively], decreased rapidly as the culture was washed out. Formic acid was detected at low dilution rates in glucose and fructose fermentations. The main products in fermentations of the three carbon sources were lactic and acetic acids. Average values of the molar ratio between acetic and lactic acids of 1.18, 1.21 and 0.83 mol mol–1 were obtained in glucose, fructose and FOS mixture fermentations, respectively. In batch fermentations carried out without pH control this molar ratio was lower than 1.5 only when fructose was used as the carbon source.  相似文献   

11.
This work describes the characterization of recombinantEsherichia coli ATCC 11303 (pLOI 297) in the production of ethanol from cellulose and xylose. We have examined the fermentation of glucose and xylose, both individually and in mixtures, and the selectivity of ethanol production under various conditions of operation. Xylose metabolism was strongly inhibited by the presence of glucose. Ethanol was a strong inhibitor of both glucose and xylose fermentations; the maximum ethanol levels achieved at 37°C and 42°C were about 50 g/l and 25 g/l respectively. Simmultaneous sacharification and fermentation of cellulose with recombinantE. coli and exogenous cellulose showed a high ethanol yield (84% of theoretical) in the hydrolysis regime of pH 5.0 and 37°C. The selectivity of organic acid formation relative to that of ethanol increased at extreme levels of initial glucose concentration; production of succinic and acetic acids increased at low levels of glucose ( <1 g/l), and lactic acid production increased when initial glucose was higher than 100 g/l.  相似文献   

12.
In this study we investigated the possibility of using Candida zemplinina, as a partner of Saccharomyces cerevisiae, in mixed fermentations of must with a high sugar content, in order to reduce its acetic acid production. Thirty-five C. zemplinina strains, which were isolated from different geographic regions, were molecularly characterized, and their fermentation performances were determined. Five genetically different strains were selected for mixed fermentations with S. cerevisiae. Two types of inoculation were carried out: coinoculation and sequential inoculation. A balance between the two species was generally observed for the first 6 days, after which the levels of C. zemplinina started to decrease. Relevant differences were observed concerning the consumption of sugars, the ethanol and glycerol content, and acetic acid production, depending on which strain was used and which type of inoculation was performed. Sequential inoculation led to the reduction of about half of the acetic acid content compared to the pure S. cerevisiae fermentation, but the ethanol and glycerol amounts were also low. A coinoculation with selected combinations of S. cerevisiae and C. zemplinina resulted in a decrease of ~0.3 g of acetic acid/liter, while maintaining high ethanol and glycerol levels. This study demonstrates that mixed S. cerevisiae and C. zemplinina fermentation could be applied in sweet wine fermentation to reduce the production of acetic acid, connected to the S. cerevisiae osmotic stress response.  相似文献   

13.
Ethanol recovery from corn fiber hydrolysate fermentations by pervaporation   总被引:6,自引:0,他引:6  
Corn fiber, a byproduct of corn wet milling, is an attractive feedstock for biomass ethanol production. Corn fiber was hydrolyzed by dilute sulfuric acid and neutralized by one of two methods: conventional lime treatment or neutralization by strongly basic anion exchange. The anion exchange neutralized (AEN) hydrolysate contained substantially lower levels of the inhibiting compounds furfural, 5-hydroxymethylfurfural, and acetic acid compared to the lime neutralized hydrolysate. In batch fermentations the ethanol yields and final ethanol concentration of the two hydrolysates were similar at 0.32-0.43 g/g and 29-44 g/l, respectively. Sugar consumption in the AEN fermentations was superior. Coupling of a membrane pervaporation unit to a fed-batch fermentation of AEN hydrolysate maintained the ethanol concentration below 25 g/l with complete sugar utilization for approximately 5 days. A concentrated ethanol stream of 17 wt.% ethanol was produced by the pervaporation unit.  相似文献   

14.
Summary The stability of solvent production by Clostridium acetobutylicum has been studied in continuous single-stage and two-stage fermentations. At low dilution rates, metabolic oscillations resulting from product inhibition have been observed especially in the case of fermentations controlled by product accumulation. A second type of instability also observed in product-controlled fermentations, but not in fermentations controlled by nitrogen limitation, was a long-term metabolic drift towards acid production. This acid drift has been shown to be identical to the phenomenon of culture degeneration occurring upon subculturing in batch fermentation. In addition, it was found that acid drift could be reversed by decreases in pH, temperature and dilution rate, by growth limitation in nitrogen-deficient conditions and by the addition of butyric and acetic acids. The existence of two distinct mechanisms, a short-term control (shift) and a long-term control (drift), both triggered by the same physiological conditions, is proposed in the regulation of acid and solvent production.  相似文献   

15.
Summary Controlled aeration ofLeuconostoc mesenteroides was studied as a possible mechanism for control of the formation of acetic acid a metabolite of major influence on the taste of lactic fermented foods. Fermentations were carried out in small scale in a medium in which growth was limited by the buffer capacity only. Ethanol and acetic acid formed during the fermentation were analyzed by rapid head space gas chromatography, and the ratio of the molar concentrations of these two volatiles quantitatively predicted the balance between the formation of acetic acid and lactic acid. The oxygen concentration during the fermentations decreased rapidly to zero, meaning that oxygen transfer was limited by the volumetric oxygen transfer rate,k 1 aC *. A linear correlation between k1aC* and the quantity of acetic acid produced was established, and it is suggested that such oxygenated heterolactic fermentation processes should be analyzed as fed-batch fermentations with oxygen as the limiting substrate. Addition of fructose in limited amounts leads to the formation of one half mole of acetic acid for each mole fructose, thus offering an alternative mechanism for controlling acetic acid formation.  相似文献   

16.
Growth rates determined by linear regression analysis revealed that Saccharomyces cerevisiae consistently grew more rapidly than Brettanomyces yeasts under a wide array of batch fermentative conditions, including acetic acid stress, in normal gravity (ca. 20°Plato) mashes made from ground corn. Brettanomyces yeasts only grew more rapidly than S. cerevisiae when acetic acid concentrations were elevated to industrially irrelevant levels (>0.45%, w/v). Furthermore, the three Brettanomyces isolates used in this study failed to produce significant quantities of acetic acid under pure culture fermentative conditions. In fact, the small amounts of acetic acid which accumulated in pure culture fermentations of whole corn mash were below the concentration required to inhibit the growth and metabolism of S. cerevisiae. Acetic acid concentrations in pure culture Brettanomyces fermentations exceeded 0.05% (w/v) only in media containing low levels of glucose (<4%, w/v) or when aeration rates were elevated to at least 0.03 vol. air vol.–1 mash min–1. Consequently, it was concluded that Brettanomyces yeasts would not be capable of competing with S. cerevisiae in industrial batch fermentations of whole corn mash based solely on growth rates, nor would they be capable of producing inhibitory concentrations of acetic acid in such fermentations.  相似文献   

17.
Intracellular adenosine-5'-triphosphate (ATP) levels were measured in a metabolically engineered Zymomonas mobilis over the course of batch fermentations of glucose and xylose mixtures. Fermentations were conducted over a range of pH (5-6) in the presence of varying initial amounts of acetic acid (0-8 g/L) using a 10% (w/v) total sugar concentration (glucose only, xylose only, or 5% glucose/5% xylose mixture). Over the design space investigated, ethanol process yields varied between 56.6% and 92.3% +/- 1.3% of theoretical, depending upon the test conditions. The large variation in process yields reflects the strong effect pH plays in modulating the inhibitory effect of acetic acid on fermentation performance. A corresponding effect was observed on maximum cellular specific growth rates, with the rates varying between a low of 0.15 h(-1) observed at pH 5 in the presence of 8 g/L acetic acid to a high of 0.32 +/- 0.02 h(-1) obtained at pH 5 or 6 when no acetic acid was initially present. While substantial differences were observed in intracellular specific ATP concentration profiles depending upon fermentation conditions, maximum intracellular ATP accumulation levels varied within a relatively narrow range (1.5-3.8 mg ATP/g dry cell mass). Xylose fermentations produced and accumulated ATP at much slower rates than mixed sugar fermentations (5% glucose, 5% xylose), and the ATP production and accumulation rates in the mixed sugar fermentations were slightly slower than in glucose fermentations. Results demonstrate that higher levels of acetic acid delay the onset and influence the extent of intracellular ATP accumulation. ATP production and accumulation rates were most sensitive to acetic acid at lower values of pH.  相似文献   

18.
Acetic acid at concentrations as may occur during vinification and other alcoholic yeast fermentations induced death of glucose-grown cell populations of Saccharomyces cerevisiae IGC 4072 at temperatures at which thermal death was not detectable. The Arrhenius plots of specific death rates with various concentrations of acetic acid (0-2%, w/v) pH 3.3 were linear and could be decomposed into two distinct families of parallel straight lines, indicating that acetic acid induced two types of death: (1) High enthalpy death (HED) predominated at lower acetic acid concentrations (> 0.5%, w/v) and higher temperatures; its enthalpy of activation (DeltaH( not equal)) approached that of thermal death (12.4 x 10(4) cal/mol); (2) Low enthalpy death (LED) predominated at higher acetic acid concentrations and lower temperatures with DeltaH( not equal) of 3.9 x 10(4) cal/mol. While the DeltaH( not equal) values for HED induced by acetic acid were similar with those reported earlier for HED induced by other fermentation endproducts, the values for the entropy coefficients were different: 127-168 entropy units mol(-1)L for acetic acid as compared with 3.6-5.1 entropy units mol(-1)L for ethanol, which agreed with experimental results indicating that acetic acid is over 30-times more toxic than ethanol with respect to yeast cell viability at high process temperatures.  相似文献   

19.
Autoselective xylose-utilising strains of Saccharomyces cerevisiae expressing the xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) genes of Pichia stipitis were constructed by replacing the chromosomal FUR1 gene with a disrupted fur1::LEU2 allele. Anaerobic fermentations with 80 g l−1 d-xylose as substrate showed a twofold higher consumption of xylose in complex medium compared to defined medium. The xylose consumption rate increased a further threefold when 20 g l−1 d-glucose or raffinose was used as co-substrate together with 50 g l−1 d-xylose. Xylose consumption was higher with raffinose as co-substrate than with glucose (85% versus 71%, respectively) after 82 h fermentations. A high initial ethanol concentration and moderate levels of glycerol and acetic acid accompanied glucose as co-substrate, whereas the ethanol concentration gradually increased with raffinose as co-substrate with no glycerol and much less acetic acid formation. Received: 12 March 1999 / Received revision: 31 June 1999 / Accepted: 5 July 1999  相似文献   

20.
Lactic acid was added to batch very high gravity (VHG) fermentations and to continuous VHG fermentations equilibrated to steady state with Saccharomyces cerevisiae. A 53% reduction in colony-forming units (CFU) ml–1 of S. cerevisiae was observed in continuous fermentation at an undissociated lactic acid concentration of 3.44% w/v; and greater than 99.9% reduction was evident at 5.35% w/v lactic acid. The differences in yeast cell number in these fermentations were not due to pH, since batch fermentations over a pH range of 2.5–5.0 did not lead to changes in growth rate. Similar fermentations performed in batch showed that growth inhibition with added lactic acid was nearly identical. This indicates that the apparent high resistance of S. cerevisiae to lactic acid in continuous VHG fermentations is not a function of culture mode. Although the total amount of ethanol decreased from 48.7 g l–1 to 14.5 g l–1 when 4.74% w/v undissociated lactic acid was added, the specific ethanol productivity increased ca. 3.2-fold (from 7.42×10–7 g to 24.0×10–7 g ethanol CFU–1 h–1), which indicated that lactic acid stress improved the ethanol production of each surviving cell. In multistage continuous fermentations, lactic acid was not responsible for the 83% (CFU ml–1) reduction in viable S. cerevisiae yeasts when Lactobacillus paracasei was introduced to the system at a controlled pH of 6.0. The competition for trace nutrients in those fermentations and not lactic acid produced by L. paracasei likely caused the yeast inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号