首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B. Oliver  N. Perrimon    A. P. Mahowald 《Genetics》1988,120(1):159-171
Females homozygous for sans fille1621 (= fs(1)1621) have an abnormal germ line. Instead of producing eggs, the germ-line cells proliferate forming ovarian tumors or excessive numbers of nurse cells. The Sex-lethal gene product(s) regulate the branch point of the dosage compensation and sex determination pathways in the soma. The role of Sex-lethal in the germ line is not clear but the germ line of females homozygous for female sterile Sex-lethal alleles or germ-line clones of loss-of-function alleles are characterized by ovarian tumors. Females heterozygous for sans fille1621 or Sex-lethal are phenotypically wild type with respect to viability and fertility but females trans-heterozygous for sans fille1621 and Sex-lethal show ovarian tumors, somatic sexual transformations, and greatly reduced viability.  相似文献   

2.
A comparative cytological study was made of oogenesis in flies carrying various mutant alleles of the female sterile gene otu. It resides at 22.7 on the genetic map and within subdivision 7F of the cytological map of the X-chromosome. Each of the five ethyl methane sulfonate-induced mutations observed falls into one of three classes. In class 1, most mutant ovarioles lack germ cells; in class 2, most mutant ovarioles contain tumorous chambers; and in class 3 mutants, chambers occur that possess defective oocytes. The otu2 allele belongs to class 1; otu1 to class 2; and otu3, otu4, and otu5 to class 3. The mutations have no effects upon female viability or upon the viability and fertility of hemizygous males. Heterozygous females are fertile and have cytologically normal ovaries. In otu5 homozygotes, all ovarioles contain egg chambers, but oogenesis is prematurely terminated to produce a pseudo-stage 12 oocyte. Ovarioles from otu3 and from otu4 homozygotes contain both ovarian tumors and oocytes. Pseudonurse cells (PNC), which are cystocytes that have stopped dividing and have entered the nurse cell mode of development, are also abundant. PNCs contain polytene chromosomes. Since the homologs are paired, each nucleus has the haploid number of chromosomes. In chambers lacking an oocyte, the number of PNCs is less than the normal number of nurse cells. In chambers containing an oocyte, the number of accompanying nurse cells may be 15, or above or below normal. In vitellogenic chambers, the chromosomes in the nurse cells connected directly to the oocyte are more expanded than those in more distant nurse cells. The KA14 deficiency lacks the plus allele of otu. KA14 heterozygotes are fertile and have cytologically normal ovaries. When females carry KA14 and otu1, otu3, otu4, or otu5, 80% of their ovarioles are agametic. When females carry otu2 and one of the other mutant alleles, the ovarioles proceed further in development. So otu2 produces a product that has a beneficial effect on the test allele. When two different otu alleles are combined in a single fly, the phenotype of the hybrid ovary usually most resembles that of the ovary homozygous for the “stronger” allele (the otu mutant that allows oogenesis to proceed farthest). The results indicate that the product of the otu+ locus functions at least three different times during oogenesis; first to permit oogonia to proliferate, second to control the division and differentiation of germarial cystocytes, and third to facilitate the normal growth of the ooplasm. The gene product appears to be required in higher concentrations at each developmental period. The lesions produced by the mutations are thought to interfere with the stability or functioning of the gene product, and the ovarian phenotype produced by a given genotype depends upon the concentration of functional gene product available to the germ cells.  相似文献   

3.
In otu mutants of Drosophila melanogaster ovarian tumours develop because of the high mitotic activity of the mutant cystocytes; the latter are normally endopolyploid. In certain alleles of otu, however, a varying proportion of the mutant ovarian cystocytes undergo polyteny. Mutant cystocytes with polytene chromosomes are termed pseudonurse cells (PNC). Polytene chromosome morphology and banding patterns in PNC of otu 1/otu3 flies were cytologically analysed. Extensive variability was noted in the quality of the banding pattern of the PNC chromosomes which ranged from highly condensed (condensed PNC chromosomes) to those with a banding pattern (banded PNC chromosomes) similar to that in larval salivary gland cells (SGC). Both the condensed and banded PNC chromosomes frequently enter into a diffuse state characterised by weakened synapsis of the polytene chromatids and alterations in their banding pattern (diffuse PNC chromosomes). Analysis of DNA synthesis patterns in the various morphological forms of PNC polytene chromosomes by 3H-thymidine autoradiography revealed a basic similarity to the pattern seen in polytene nuclei of larval SGC. Independently replicating sites, however, could be unambiguously identified only in banded PNC chromosomes. Comparison of late replicating sites in such PNC chromosomes with those of larval SGC showed a remarkable similarity in the two cell types. These results suggest a close correlation between the polytene chromosome banding pattern and its replicative organization.  相似文献   

4.
The mutation Ddcts1 effects female sterility when homozygous, hemizygous, or heterozygous over a series of Ddc null alleles (Ddcx) indicating that some aspect of Ddc gene function is necessary for female fertility. Ovary transplant experiments demonstrate that the female sterility phenotype is ovary autonomous. Two to 3% of the total DDC activity measurable in newly hatched females is localized in their previtellogenic ovaries. The degree to which females heterozygous for Ddcts1 over different Ddc null alleles are fertile at 22°C reflects a continuous spectrum of allelic complementation similar to that observed for the effects of these genotypes on viability at 30°C. Fertility of all the Ddcts1/Ddcx females tested is significantly depressed at 30 vis-a-vis 22°C providing evidence that it is the DDC enzyme activity itself which is required for female fertility. Ddcts1/Ddcts1 homozygous and Ddcts1/Df hemizygous females are nonconditionally, completely sterile at 18, 20, 22, 25, and 30°C. Although all homo- and hemizygous females do lay some eggs, no evidence of embryogenesis or fertilization has ever been detected. The absolute, nonconditional sterility of Ddcts1 homo- and hemizygous females stands in stark contrast to the conventional temperature dependent effects of these same genotypes on viability and to the temperature sensitive effects of Ddcts1/Ddcx heterozygous females on both fertility and viability. Reasons for these tissue-specific and genotypic differences are discussed.  相似文献   

5.
DNA replication patterns in the nurse and follicle cells of wild type and a female sterile mutant, fs(1)1304, of Drosophila melanogaster have been studied by DNA-Feulgen cytophotometry, using a cell dispersal technique that allowed the measurement of DNA amounts in individual nuclei from egg chambers of known developmental stages. DNA-Feulgen values associated with various ovarian nuclei from egg chambers at different stages of development were used to assess a base line DNA content for ovarian tissues and to estimate the extent of DNA replication in the nurse cells and follicle cells of growing and mature egg chambers. Our data show that both the nurse and follicle cells undergo multiple cycles of endonuclear DNA replication and that there may be selective amplification as well as underreplication by portions of the genome in these highly polyploid, ovarian cells. Alternative models are proposed to account for the DNA replication patterns observed. Comparisons of DNA-Feulgen levels in wild type ovarian nuclei with those found for the fs(1)1304 mutant and its heterozygote in the balanced stock fs/FM3, show that equivalent DNA levels are present in follicle cell nuclei from all three types of females. Nurse cell nuclei in the homozygous fs stock, however, fail to achieve the same high DNA levels observed in both fs/FM3 and wild type nurse cell nuclei. Although the nuclei of follicle cells in ovaries from fs/fs females appear morphologically like those surrounding egg chambers in wild type ovaries, nurse cell nuclei from mutant females show a more compacted organization of their chromatin than found for nurse cell nuclei from wild type ovaries at similar developmental stages. Our findings suggest that a major effect of the fs(1)1304 mutation may be on the coiling behavior of chromatin and the conformation of DNA-protein moieties in both nurse cell and follicle cell nuclei. These changes in chromatin structure apparently are manifest by perturbations in DNA replication patterns and normal gene function in these biosynthetically active cells.  相似文献   

6.
Tapio I. Heino 《Chromosoma》1989,97(5):363-373
Certain mutant alleles of the otu locus in Drosophila melanogaster produce abnormal nurse cells in the ovaries. These cells are called pseudonurse cells (PNC), since they generate polytene chromosomes instead of endopolyploid ones and do not normally have an oocyte to nurse. The banding pattern of polytene chromosome 3 from the salivary glands (SG) and from PNCs of homozygous otu 1 females was compared and a detailed photomap of PNC chromosomes with different degrees of polyteny is presented. The banding pattern was found to be strikingly similiar in the two tissues. The puffing pattern of the PNC chromosomes was also studied and the function of the PNC chromosomes is discussed. No constrictions or breaks were found in the PNC chromosomes which seems to indicate that these sites, which are known to be underreplicated in the SG chromosomes, are equally replicated along with the rest of the chromosomes in the PNC nuclei.  相似文献   

7.
In the polytene nuclei of germ-line cells (ovarian pseudonurse cells) of Drosophila melanogaster females mutant for otu 11 (ovarian tumor), the pericentric heterochromatin is much more abundant than in somatic salivary gland cells. This is due to the degree of heterochromatin compaction (and consequently the level of underreplication) being lower in the nurse cells than in the salivary gland cells. The lower level of compaction probably results in a very low degree of position effect gene inactivation in the ovarian nurse cells.  相似文献   

8.
Joyce A. Mitchell 《Genetics》1977,87(4):763-774
Drosophila melanogaster X chromosomes were mutagenized by feeding males sucrose solutions containing ethyl methanesulfonate (EMS); the concentrations of EMS in the food were 2.5 mM, 5.0 mM, and 10.0 mM. Chromosomes were exposed to the mutagen up to three times by treating males in succeeding generations. After treatment, the effective exposures were 2.5, 5.0, 7.5, 10.0, 15.0, and 30.0 mM EMS. X chromosomes treated in this manner were tested for effects on fitness in both hemizygous and heterozygous conditions, and for effects on viability in hemizygous and homozygous conditions. In addition, untreated X chromosomes were available for study. The viability and heterozygous fitness effects are presented in this paper, and the hemizygous fitness effects are discussed in the accompanying one (MITCHELL and SIMMONS 1977). Hemizygous and homozygous viability effects were measured by segregation tests in vial cultures. For hemizygous males, viability was reduced 0.5 percent per mM EMS treatment; for homozygous females, it was reduced 0.7% per mM treatment. The decline in viability appeared to be a linear function of EMS dose. The viabilities of males and females were strongly correlated. Heterozygous fitness effects were measured by monitoring changes in the frequencies of treated and untreated X chromosomes in discrete generation populations which, through the use of an X-Y translocation, maintained them only in heterozygous condition. Flies that were heterozygous for a treated chromosome were found to be 0.4% less fit per mM EMS than flies heterozygous for an untreated one.  相似文献   

9.
The location of the Drosophila orena chromocenter in polytene chromosomes of pseudonurse cells of the D. melanogaster ovaries (the otu11 mutation) and salivary glands has been studied. Numerous sites of location of the D. orena chromocenter DNA have been found throughout the length of D. melanogaster chromosomes. The specific distribution of the binding sites for the DNA probe has made it possible to identify chromosomes and analyze their mutual positions in the three-dimensional space of the nuclei of pseudonurse cells. The mutual positions of chromosomes have been found to vary, the pericentromeric regions of different chromosomes differing from one another in associative ratios.  相似文献   

10.
Eanes WF  Hey J  Houle D 《Genetics》1985,111(4):831-844
We report here a study of viability inbreeding depression associated with the X chromosome of Drosophila melanogaster. Fifty wild chromosomes from Mt. Sinai, New York, and 90 wild chromosomes from Death Valley, California, were extracted using the marked FM6 balancer chromosome and viabilities measured for homozygous and heterozygous females, and for hemizygous males, relative to FM6 males as a standard genotype. No statistically significant female genetic load was observed for either chromosome set, although a 95% confidence limit estimated the total load <0.046 for the samples pooled. About 10% of the Death Valley chromosomes appear to be "supervital" as homozygotes. There is little evidence for a pervasive sex-limited detrimental load on the X chromosome; the evidence indicates nearly identical viability effects in males and homozygous females excluding the supervital chromosomes. The average degree of dominance for viability polygenes is estimated between 0.23 to 0.36, which is consistent with autosomal variation and implies near additivity. We conclude that there is little genetic load associated with viability variation on the X chromosome and that the substantial reduction in total fitness observed for chromosome homozygosity in an earlier study may be due largely to sex-limited fertility in females.  相似文献   

11.
G V Pokholkova  I V Solov'eva 《Genetika》1989,25(10):1776-1785
19 new mutations in the 9F12-10A7 region of Drosophila melanogaster X chromosome was obtained in the system of P-M hybrid dysgenesis. They appeared to be lethals, as judged from viability of homo- or hemizygous females. In situ hybridization of P DNA with polytene chromosomes revealed P-element insertion in the 10A1-2 band in the majority of the mutants. As a result of complementation analysis, all these mutations were localized at previously known loci: l(1)BP1, l(1)BP5, l(1)BP8, l(1)BP7. No insertion mutations were found at the vermilion locus. This can imply for non-random distribution of insertion mutations in the region studied. Further comparison of these mutations with previously EMS-induced ones revealed that insertion mutations are predominantly hypomorph lethals which do not influence the viability, morphology and fertility of homozygous males and females, but drastically reduce viability of hemizygous females.  相似文献   

12.
We have analyzed the 2E1-3A1 area of the X chromosome with special attention to loci related to embryogenesis. Published maps indicate that this chromosomal segment contains ten bands. Our genetic analysis has identified 11 complementation groups: one recessive visible (prune), two female steriles and eight lethals. One of the female sterile loci is fs(1)k10 for which homozygous females produce both egg chambers and embryos with a dorsalized morphology. The second female sterile is the paternally rescuable fs(1)pecanex in which unrescued embryos have a hypertrophic nervous system. Of the eight lethal complementation groups two are recessive embryonic lethals: hemizygous giant (gt) embryos possess segmental defects, and hemizygous crooked neck (crn) embryos exhibit a twisted phenotype. Analysis of these mutations in the female germ line indicates that gt does not show a maternal effect, whereas normal activity of crn is required for germ cell viability. Analysis of the maternal effect in germ line clones of the remaining six recessive lethal complementation groups indicates that four are required for germ cell viability and one produces ambiguous results for survival of the germ cells. The remaining, l(1)pole hole, is a recessive early pupal lethal in which embryos derived from germ line clones and lacking wild-type gene activity exhibit the "torso" or "pole hole" phenotype.  相似文献   

13.
In the polytene nuclei of germ-line cells (ovarian pseudonurse cells) of Drosophila melanogaster females mutant for otu 11 (ovarian tumor), the pericentric heterochromatin is much more abundant than in somatic salivary gland cells. This is due to the degree of heterochromatin compaction (and consequently the level of underreplication) being lower in the nurse cells than in the salivary gland cells. The lower level of compaction probably results in a very low degree of position effect gene inactivation in the ovarian nurse cells.  相似文献   

14.
Summary Mutations at a locus on chromosome II of D. melanogaster suppressing position-effect variegation mutations have been identified which display recessive butyrate sensitivity. Survival of homozygous mutant flies is significantly reduced on medium containing sodium n-butyrate. The butyrate sensitive suppressor mutations are further characterized by recessive female sterility and reduced survival of homozygotes. Complementation analysis showed their allelism. The locus of these mutations, Su-var (2) 1, has been localized to 40.5±0.2 and, by using interstitial duplications, to region 31CD on the cytogenetic map. Moreover, the mutant alleles of the Su-var (2) 1 locus display a lethal interaction with the heterochromatic Y chromosome. The presence or absence of a Y chromosome in males or females has a strong influence on the viability of homozygous or transheterozygous suppressor flies. All the genetic properties of Su-var (2) 1 mutants suggest strongly that this locus affects chromosome condensation.  相似文献   

15.
Ovarian follicle cells of wild type Drosophila melanogaster simultaneously secrete yolk polypeptides (YP1, YP2 and YP3) and vitelline membrane proteins. In order to understand the relationship between these two secretory activities, we have investigated the ultrastructure of a female sterile mutation that alters YP1 secretion and vitelline membrane deposition. Homozygous fs(1)1163 females lay eggs that collapse and contain reduced quantities of YP1. Secretory granules in follicle cells contain an electron-translucent component that is assembled into the developing vitelline membrane in both mutant and wild-type ovaries, and an electron-dense component that disperses after secretion in wild-type ovaries. Mutant ovaries differ from wild-type by (1) having larger secretory granules (2) forming clumps of the dense secretory component within the developing vitelline membrane (3) accumulating more tubules in the cortical ooplasm of vitellogenic oocytes, and (4) possessing altered yolk spheres. Mutant ovaries implanted into wild-type hosts showed no improvement in the secretory granules and slight improvement in the vitelline membrane clumps but amelioration of the oocyte phenotypes. Since genetic evidence suggests that the fs(1)1163 mutation resides in or near the Yp1 gene and biochemical data show that the mutation alters YP1 structure, we conclude that the ultrastructural phenotypes are due to a structurally abnormal YP1 in the mutant. The alteration in vitelline membrane structure caused by the dense clumps could account for collapsed eggs and, hence, the female sterility of the mutant.  相似文献   

16.
The ovaries of female lac insects, Kerria chinensis Mahd (Sternorrhyncha: Coccoidea: Kerridae), at the last nymphal stage are composed of several balloon‐like clusters of cystocytes with different sizes. Each cluster consists of several clusters of cystocytes arranging in rosette forms. At the adult stage, the pair of ovaries consists of about 600 ovarioles of the telotrophic‐meroistic type. An unusual feature when considering most scale insects is that the lateral oviducts are highly branched, each with a number of short ovarioles. Each ovariole is subdivided into an anterior trophic chamber (tropharium) containing six or seven large trophocytes and a posterior vitellarium harbouring one oocyte which is connected with the trophic chamber via a nutritive cord. No terminal filament is present. Late‐stage adult females show synchronized development of the ovarioles, while in undernourished females, a small proportion of ovarioles proceed to maturity.  相似文献   

17.
The female sterile mutant of Drosophila melanogaster, fs(1)1304 (1-19 +/- 2), has been characterized. Our studies show that the mutation affects the organization of nucleolar material in the ovarian nurse cells and the pattern of RNA metabolism in the ovary. Autoradiographic analysis of incorporation of 3H-uridine in vivo and analysis of 3H-uridine incorporation into high molecular weight RNA in vitro suggest that RNA from the ovaries of homozygous fs flies is degraded at a higher rate than that from heterozygous fs and wild-type ovaries. It is likely that the RNA class affected is ribosomal RNA. These data are discussed in the context of the functional role for the wild-type gene allelic to fs(1)1304, and it is suggested that one of the effects of the mutation may be on the biogenesis of ribosomes that are to be stored in the oocyte.  相似文献   

18.
The paired, spindle-shaped ovaries of the second instar of the Polish cochineal, Porphyrophora polonica (L.) (Hemiptera: Coccinea) are filled with cystocytes that are arranged into rosettes. In the centre of each rosette, there is a polyfusome. During the third instar, cystocytes differentiate into oocytes and trophocytes (nurse cells) and ovarioles are formed. Ovaries of adult females are composed of about 300 ovarioles of the telotrophic type. Each of them is subdivided into a tropharium (trophic chamber) and vitellarium. The tropharium consists of trophocytes and arrested oocytes that may develop. The number of germ cells in the trophic chambers varies from 11 to 18 even between the ovarioles of the same ovary. The obtained results seem to confirm the concept of a monophyletic origin of the primitive scale insects (Archaeococcoidea).  相似文献   

19.
Summary In Drosophila melanogaster, the gene Sex-lethal (Sxl) controls the processes of sex determination, dosage compensation, oogenesis and sexual behaviour. The control of Sxl is by alternative splicing of its primary RNA. We have identified a gene, female-lethal-2-d (fl(2)d), which is needed for the female-specific splicing of Sxl RNA and which also has a vital function independent of Sxl. Here we analyse other aspects of the gene fl(2)d. Specifically, we have analysed the effect of the temperature-sensitive mutation fl(2)d 1 on the viability of adult flies homozygous for this mutation. We have found that the viability of the mutant females is reduced, while that of the mutant males is not affected. In addition, the capacity of the mutant females to be inseminated is considerably reduced, whilst all the mutant males are able to inseminate females. These effects on females are suppressed by Sxl M1. However, the fat body cells of fl(2)d 1 homozygous females are able to synthesize yolk proteins at the restrictive temperature. We have also carried out, in males, a clonal analysis of fl(2)d 2, a mutation lethal in both sexes. We have found that the clones are fully viable. We conclude that the gene fl(2)d seems to be necessary during the adult life of females for the processes that require Sxl + activity. Moreover, the Sxl-independent vital function of fl(2)d seems to be required in both sexes only during larval development. Offprint requests to: L. Sánchez  相似文献   

20.
Summary

Using the peroxidase antiperoxidase immunocytochemical method (PAP) Met-enkephalin immunoreactivity has been demonstrated in brains (males and females) and ovaries of Calliphora vomitoria. The Met-enkephalir immunoreactive neuronal structures are present in the cerebrum, sub- oesophageal ganglion and optic lobes. A similar distribution pattern of Met- enkephalin immunoreactivity is observed in both brains and ovaries of severa stages from 0.30 hr to 48 hr after copulation. In the ovaries, the distributior of the Met-enkephalin-like peptide is dependent in the stage of development o: the ovarian follicles. In trophocytes and oocytes, the immunoreactivity firsl appears around the nuclei, and is then dispersed in the cytoplasm. Later, al the end of vitellogenesis it is only present in the periphery of the cells and finally, it disappears. No Met-enkephalin immunoreactivity is found in tht follicle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号