首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究A、C、Y、W 135群流脑多糖疫苗,针对W 135群脑膜炎球菌的生长特性,采用国产50L发酵罐,针对流脑半综合液体培养基中葡萄糖浓度;培养温度、菌种接种浓度、pH、通氧量及搅拌速度等因素对W 135群脑膜炎球菌生长的影响,选择最适的培养条件。结果表明,选择半综合培养基中补加1%的葡萄糖培养效果良好,菌种接种浓度直接影响多糖复合物产量;最适pH值6.5~7.5的范围可维持W 135群链球菌快速生长;温度控制在36.5±0.2℃可得到较高的培养产物;培养过程中加大通气量及搅拌速度对培养结果有明显改善。确立了W 135群脑膜炎球菌的最适培养条件,在确定培养条件后连续进行3批500L罐放大中试培养,达到规模化生产要求。  相似文献   

2.
To grow yeast rapidly, it is necessary to supply sufficient oxygen to the yeast and to effectively remove the heat of the fermentation. We succeeded in developing a commercial-scale fermentor for growing a food yeast (Candida utilis) to produce RNA rapidly. This fermentor is an internal-loop airlift type with vertical heat transfer tubes between inner and the outer columns. The volume of the fermentor is 145 m3 (working volume 75 m3). The oxygen transfer rate (OTR) was 9.9 kg-O2/m3/h using a superficial gas velocity of 30 cm/s based on the outer column. Much of the heat of fermentation and the energy resulting from aeration could be removed effectively by the heat transfer tubes. This unique airlift fermentor was driven at a dilution rate of 0.43 h−1 for about 70 d, with the yeast concentration being maintained at 22.8 kg-dry cell/m3. The yeast production rate was 9.79 kg-dry cell/m3/h. Compared with a traditional stirred-type fermentor, two Vogelbush-type fermentors and another airlift fermentor, our fermentor was far superior with respect to OTR and yeast productivity.  相似文献   

3.
A stable continuous culture has been maintained for 30 days at a high 20 g/l solvent concentration. This substantial increase in the stability of the continuous culture ofClostridium acetobutylicum at the maximal solvent level was achieved by using a two-stage process with a dilution rate of 0.1 h–1 in the first fermentor and 0.04 h–1 in the second fermentor. The two-stage continuous fermentation allows an optimal growth of cells and induction of solvent metabolism in the first stage, and a maximal production yield of solvents in the second stage.  相似文献   

4.
Central composite experimental designs realized with flask cultures and completed by fermentor studies were used to developB. japonicum liquid inoculants. Two different media are described, using glycerol or glucose, in the presence of only 1 g/l yeast extract. They allow the production of cultures containing more than 1010 viable cell/ml, able to nodulate soybean efficiently.  相似文献   

5.
A small jar fermentor was developed in order to investigate the effect of oxygen supply on hydrocarbon fermentation. Several indices to oxygen transfer were examined with this small jar fermentor. Conditions for suitable oxygen supply were examined in l-glutamic acid fermentation from hydrocarbon by use of shaking flasks and these small jar fermentors. The data indicated that the rate of oxygen transfer ought to be more than 14.3 × 10?7 mole/ml·min in order to obtain satisfactory results. The coefficient of oxygen transfer rate (KLa/H) decreased as the fermentation went on, so the supply of oxygen enriched gas mixture was effective to increase the production of l-glutamic acid.  相似文献   

6.
On-line, "real-time" monitoring of product concentration is important for mammalian cell culture fermentation. The continuous measurement of monoclonal antibodies allows for instantaneous determination of cell productivity and effective manipulation of the fermentor operating conditions for optimal production. This article will present the evaluation and application of a BioCad/RPM system (Per Septive Biosystems) for rapid analysis of lgG concentration for hybridoma cell cultivation. Several commercial crossflow filtration devices are tested for low protein retention and fouling properties. A protein G column is used successfully for analyzing about 400 samples of lgG(1), without significant loss in separation efficiency. The Immuno Detection system is integrated into a computer-controlled 15-L fermentor. This fermentor could be operated in batch and perfusion modes with cell densities up to 20 million cells/mL. A continuous cell-free sample stream obtained by a hollow fiber filter system is introduced to the BioCad/RPM for analysis. The speed of this system allows for real-time monitoring even at high densities with fast dynamics. A murine hybridoma cell (A10G10) is cultivated in batch and continuous reactors and antibody concentration is measured continuously with complete sterility. The results are compared to offline measurements with good agreement. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
A distributed parameter model for an airlift fermentor is presented. A riser represents the airlift fermentor, with plug flow in both gas and liquid phases, a well-mixed section that acts as gas separator, and a downcomer with plug flow. The set of equations proposed makes possible both the understanding and design of the system. Macroscopic balances shows a behavior that is very close to conventional continuous stirred tank fermentor from the viewpoint of biomass production. In addition, the model predicts concentration profiles of biomass, substrate and oxygen in the liquid, and oxygen in the gas phase. This allows estimation of optimal gas flow rate for sufficient oxygen transfer with minimum energy input.  相似文献   

8.
Sequential heterotrophic/autotrophic cultivation method was investigated for production of high concentration of Chlorella biomass with high cellular protein and chlorophyll contents. By using autotrophic growth medium, which contains glucose as organic carbon source, for heterotrophic culture, the protein and chlorophyll contents of the cells could be increased by simply illuminating the culture broth and aerating with CO2-enriched air at the end of the heterotrophic culture. A system was then constructed for continuous sequential heterotrophic/autotrophic production of algal biomass. The system was composed of the conventional mini-jar fermentor for the heterotrophic phase and a tubular photobioreactor for the autotrophic phase. The exhaust gas from the heterotrophic phase was used for aeration of the autotrophic phase in order to reduce the CO2 emission into the atmosphere. With this system, it was possible to produce high Chlorella biomass concentration (14 g L-1) containing 60.1% protein and 3.6% chlorophyll continuously for more than 640 h. During the steady state, about 27% of the CO2 produced in the heterotrophic phase was re-utilized in the autotrophic phase. When the tubular photobioreactor was replaced with a 3.5-L internally illuminated photobioreactor, the productivity increased from 2 g L-1 d-1 to 4 g L-1 d-1. However, the chlorophyll content of the cells was lower due to the lower light supply coefficient of the photobioreactor. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
As a prelude to our studies on TL and Thy-1 differentiation alloantigens, three murine lymphobhastoid cell lines were examined for expression of these components. Optimal conditions for their mass culture were also determined. Several suspension culture systems were evaluated: (a) 50 ml through 500 ml Wheaton and Bellco spinner flasks as well as 1, 4, and 8 liter Wheaton flasks modified for semicontinuous culture conditions, (b) 3 liter Chemapec Vibrofermentor, and (c) 14 liter New Brunswick fermentor. Utilizing these types of vessels the optimal culture conditions were evaluated as to the effect of: (1) pH, (2) initial concentration of cell inoculum, (3) types of media, and (4) methods of gassing and gas mixtures on the rate of growth and alloantigen expression. This study demonstrated that cells could be cultured on a semicontinuous basis up to densities of 2–4 × 106 cells/ml if a vessel of appropriate dimensions was utilized, the appropriate medium selected, and the pH controlled by CO2 and air overlay. Once these parameters were established the growth of a given cell line was highly reproducible: Under optimal culture conditions the expression of Thy-1 was maximum while the cells were in the exponential stage of growth and reduced during the lag and stationary phases of growth. The expression of TL did not vary as significantly during the various stages of growth. One cell line grown in medium supplemented with 10% horse serum expressed lass Thy-1 than those grown in medium containing 10% fetal calf serum. The factors affecting cell growth and alloantigen expression have been considered in the design of a large-scale suspension culture facility for culturing 1000 liters of cells per week.  相似文献   

10.
In this article a modeling of a draft-tube airlift fermentor (ALF) based on perfect backmixing of liquid and plugflow for gas bubbles has been carried out to optimize the design and operation of fermentation units at different working capacities. With reference to a whey fermentation by yeasts the economic optimization has led to a slim ALF with an aspect ration of about 15. As far as power expended per unit of oxygen transfer is concerned, the responses of the model are highly influenced by kLa However, a safer use of the model has been suggested in order to assess the feasibility of the fermentation process under study.  相似文献   

11.
A 22 m long. 20 liter tubular loop fermentor (TLF) has been tested for oxygen transfer characteristics and as a reactor for mycelial growth. Model calculations show that the flow pressure drop has an important influence on the axial oxygen profiles. A design model that accounts for this influence is presented. Using the model, KL a values are calculated from the results of sulfite oxidation experiments. These are correlated with power consumption and aeration rates. The KL a dependence on aeration rate was found to be less than found with tank reactors. The growth kinetics of three metabolite-producing mycelial organisms in the TLF are presented: a Streptomyces, a Fusarium, and a Acrophialophora. In order to determine the influence of reactor type on the growth and product formation, these cultures have been grown in tanks and shake flasks. The antibiotic, product spectrum of Streptomyces is compared on the basis of inhibition tests and it is shown that the distribution of products is reactor dependent. The Fusarium culture produced a previously unknown metabolite, whose concentration in the loop fermentor was four times higher than in a shake flask. The Acrophialophora culture grew twice as fast in the loop fermentor, but produced essentially none of the specific product. Power Consumptions of up to 8 kW/m3 in the tubular fermentor did not appear to harm the mycelia.  相似文献   

12.
Several probes for measuring dissolved carbon dioxide (CO2) concentration were installed in a 68-litre fermentor and their effectiveness compared. Submerged silastic rubber tubing gave reproducible results over a wide range of operating conditions and was generally superior to all other probes evaluated. The silastic rubber probe was used to compare the partial pressure of CO2 in viscous fermentation media with that in the fermentor exhaust gas. No significant difference was found. Results show that determination of the CO2 partial pressure in the exhaust gas gives an excellent approximation of the partial pressure of dissolved CO2 in the liquid medium, eliminating the need for measurement of CO2 concentration in the broth.  相似文献   

13.
The growth and citric acid production kinetics of Saccharomycopsis lipolytica on glucose is investigated in a trickle-flow fermentor. Liquid hold-up and oxygen-transfer coefficient in the reactor column filled with cylindrical wood chips have been determined and found in agreement with chemical engineering correlations. Citric acid production starts at the end of the growth phase and proceeds at a constant specific rate of 0.025 hr?1for about 80 hr. The fermentor can then be regenerated by addition of ammonia, which induces new growth and excretion phases. Comparing the metabolic behavior of free and immobilized cells, two main kinetic differences are observed. First, the growth phase is linear with the bound cells instead of exponential in the stirred fermentor. Second, in the trickle-bed fermentor acid productivity and oxygen acid yield are reduced by 30%. Oxygen diffusional limitations, mainly in the biomass film, and alterations in bound cell metabolism are shown to be responsible of the kinetic modifications. Simple modelizations of oxygen diffusion effects are also presented to support the interpretation of the experimental data.  相似文献   

14.
Isolation of thermophilic hydrogen bacteria was performed at 50°C using enrichment culture method. One of the four strains isolated, strain TH-1 grew most rapidly. Culture conditions of strain TH-1 were investigated. Optimum temperature and pH for growth proved to be 52°C and 7.0, respectively. There existed a positive correlation between the specific growth rate and the partial pressure of carbon dioxide in the gas phase. Ammonium and nitrate are the good nitrogen sources in that order. Effect of concentrations of nitrogen source, magnesium, ferrous and phosphate ions on the cell growth was also investigated. The maximum specific growth rate (μmax) of strain TH-1 was determined as 0.68 hr?1 by the cultivation at 52°C in a jar fermentor containing the optimal medium at pH 7.0.  相似文献   

15.
For a laboratory stirred-tank fermentor (STF) with foaming system of 0.5M sulfite solution containing an anionic soft detergent, the performing of a foam-breaking apparatus with a rotating disk (FARD)fitted to the STF was evaluated. The gas holdup in a mechanical foam-control system (MFS), i.e., the stirred-tank fermentor with the rotating disk foambreaker, was confirmed to be larger than that in a nonfoaming system (NS), i.e., the STF with an antifoam agent added. The agitation power in the mechanical foam control system was found to be smaller compared with the agitation power in the nonfoaming system, due to the increased gas holdup. Comparison of the oxygen absorption coefficient between the mechanical foam control system and the nonfoaming system in terms of the specific power input also demonstrated the superiority of the mechanical foam control system, not only in oxygen transfer performance but also in power input economy.  相似文献   

16.
We developed procedures for large-scale cultivation of Helicobacter pylori in flasks and fermentors. Flasks incubated closed under a microaerophilic gas phase with a cotton plug covered by a plastic bag, followed by removal of the bag after 8 h, gave excellent growth. Growth in a 10-liter fermentor led to excessive foaming if the medium was sparged with gas; silicone- or polyglycol-based antifoaming agents were severely inhibitory. Use of fermentor surface gassing, first with a microaerophilic 6% oxygen gas mixture, then with air, and then with 95% oxygen, allowed the culture to grow to an A600 of 2.5 in < 24 h. This method was modified for scale-up to a 100-liter fermentor.  相似文献   

17.
Concentrated chemostatic cultures of HeLa S3-1, KB, and HEp # 2 cells have been grown in a dialysis fermentor. Stationary cell concentrations of approximately 1.2 × 106 cells per ml have been produced at rates of 15 × 10-3 to 20 × 10-3 cells per hour for as long as 40 days. The dialysis fermentor appears to be useful in controlling the effects of nutrients on the growth rate of the cultures. Theoretical considerations are offered.  相似文献   

18.
To produce recombinant β-carotene in vitro, synthetic operons encoding genes governing its biosynthesis were engineered into Escherichia coli. Constructs harboring these operons were introduced into either a high-copy or low-copy cloning vector. β-Carotene production from these recombinant E. coli cells was either constitutive or inducible depending upon plasmid copy number. The most efficient β-carotene production was with the low-copy based vector. The process was increased incrementally from a 5 l to a 50 l fermentor and finally into a 300 l fermentor. The maximal β-carotene yields achieved using the 50 l and 300 l fermentor were 390 mg l−1 and 240 mg l−1, respectively, with overall productivities of 7.8 mg l−1 h−1 and 4.8 mg l−1 h−1.  相似文献   

19.
This paper is concerned with optimization of the operating mode of a fermentor. Combining the various modes of operation—batch, semibatch, and continuous—the operating pattern which maximizes the desired metabolic product in a single fermentor is determined by using Kelley's transformation method with Pontryagin's maximum principle. Kelley's transformation method is a device which avoids the singular situation which occurs when the usual procedure of selecting the optimal control function by the maximum principle breaks down. This is the case in the problem considered in this paper. For lysine fermentation, the best operating mode depends on the fermentor capacity and operating time. The results of this study are summarized thus: (i) when the operating time is “long enough,” optimal conditions require that continuous operation follows either semibatch and/or batch operation, and (ii) when the fermentor capacity becomes “large enough,” semibatch operation becomes important.  相似文献   

20.
Summary The kinetics of a two-stage continuous fermentation of Clostridium acetobutylicum have been studied. The pH and the dilution rate have been shown to be two essential factors for process optimization. An increase in pH or dilution rate in the first stage decreased solvent production in the second fermentor. To achieve optimal solvent production, the pH had to be maintained at 4.5 in the first stage and between 4.5 and 5.0 in the second stage. Dilution rates of 0.08 h–1 and 0.04 h–1,respectively, in the first and second fermentors allowed a high solvent concentration. When the pH was maintained at 4.5 in each stage and when the dilution rates were 0.08 h–1 and 0.04 h–1 in the first and second fermentors respectively, 21 g/l solvent concentration was achieved. A conversion yield of 0.36 g solvents/g glucose consumed was obtained with total consumption of glucose. Biomass was only produced in the first stage together with 40% of the solvents, indicating that solvent production had to be induced in the first fermentor. Offprint requests to: J. M. Engasser  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号