首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated pellicles (cell ‘ghosts’) have been prepared from Tetrahymena thermophila strain B by two different methods. Using differential solubilization in combination with polyacrylamide gel electrophoresis and electron microscopy, we have tentatively identified the major proteins found in the surface-associated cytoskeleton. The ‘epiplasm’, a continuous layer of fibrous material found just beneath the surface membranes, appears to contain two major proteins. The smaller of the two (mol. wt 122 000 D) is believed to be present throughout the layer, whereas the larger protein (mol. wt 145 000 D) appears to be localized in the regions where ciliary basal bodies connect to the epiplasmic layer and to surface membranes. Evidence is presented which suggests that actin may also be present in this structure. Tubulin has been isolated from the cytosol of Tetrahymena and compared with cytoskeletal tubulin and porcine brain tubulin. A major protein of mol. wt 250 000 D which is found in Tetrahymena pellicles appears to be the major component of kinetodesmal fibers (striated elements which attach to the ciliary basal bodies).  相似文献   

2.
The ciliate Tetrahymena thermophila possesses a multitude of cytoskeletal structures whose differentiation is related to the basal bodies the main mediators of the cortical pattern. This investigation deals with immunolocalization using light and electron microscopy of filaments labeled by the monoclonal antibody 12G9, which in other ciliates identifies filaments involved in transmission of cellular polarities and marks cell meridians with the highest morphogenetic potential. In Tetrahymena interphase cells, mAb 12G9 localizes to the sites of basal bodies and to the striated ciliary rootlets, to the apical band of filaments and to the fine fibrillar oral crescent. We followed the sequence of development of these structures during divisional morphogenesis. The labeling of the maternal oral crescent disappears in pre-metaphase cells and reappears during anaphase, concomitantly with differentiation of the new structure in the posterior daughter cell. In the posterior daughter cell, the new apical band originates as small clusters of filaments located at the base of the anterior basal bodies of the apical basal body couplets during early anaphase. The differentiation of the band is completed in the final stages of cytokinesis and in the young post-dividing cell. The maternal band is reorganized earlier, simultaneously with the oral structure.The mAb 12G9 identifies two transient structures present only in dividing cells. One is a medial structure demarcating the two daughter cells during metaphase and anaphase, and defining the new anterior border of the posterior daughter cell. The other is a post-oral meridional filament marking the stomatogenic meridian in postmetaphase cells. Comparative analysis of immunolocalization of transient filaments labeled with mAb12G9 in Tetrahymena and other ciliates indicates that this antibody identifies a protein bound to filamentous structures, which might play a role in relying polarities of cortical domains and could be a part of a mechanism which governs the positioning of cortical organelles in ciliates.  相似文献   

3.
The present study reveals a deficiency in the number of ciliated basal bodies along 180° rotated ciliary rows (IRs) in Tetrahymena. This feature is common to IRs recently generated in young clones with stable corticotypes (total number of ciliary rows per cell), irrespective of the number of IRs present per cell or their cellular location, and is found before the cell loses any of the IRs. In cells bearing three IRs, the IRs on the two sides of the inversion immediately next to normal ciliary rows (junctures) exhibit an even greater deficiency in ciliated basal bodies, compared to the IR located internally between two other IRs; the normal ciliary rows flanking the inversion are also somewhat deficient. These observations show that the IRs of Tetrahymena are structurally deficient, hence developmentally defective, and suggest that they are intrinsically unstable. We propose that basal body development along IRs tends to be truncated before the stage of ciliation; such basal bodies would fail to acquire the potential to serve as nucleating centers for new basal body development in the next round of basal body proliferation, leading to the eventual loss of the IRs. © 1992 Wiley-Liss, Inc.  相似文献   

4.
Microtubular basal bodies and epiplasm (membrane skeleton) are the main components of the cortical skeleton of Tetrahymena. The aim of this report was to study functional interactions of basal bodies and epiplasm during the cell cycle. The cortex of Tetrahymena cells was stained with anti-epiplasm antibody. This staining produced a bright epiplasmic layer with a dark pattern of unstained microtubular structures. The fluorescence of the anti-epiplasm antibody disappeared at sites of newly formed microtubular structures, so the new basal body domains and epiplasmic layer could be followed throughout the cell cycle. Different patterns of deployment of new basal bodies were observed in early and advanced dividers. In advanced dividers the fluorescence of the epiplasmic layer diminished locally within the forming fission line where the polymerization of new basal bodies largely extincted. In wild type Tetrahymena, the completion of the micronuclear metaphase/anaphase transition was associated with a transition from the pattern of new basal body deployment and epiplasm staining of the early divider to the pattern of the advanced dividers. The signal for the fission line formation in Tetrahymena (absent in cdaA1 Tetrahymena mutationally arrested in cytokinesis) brings about 1) transition of patterns of deployment of basal bodies and epiplasmic layer on both sides of the fission line; and 2) coordination of cortical divisional morphogenesis with the micronuclear mitotic cycle.  相似文献   

5.
The coupled resorption and redifferentiation of oral structures which occurs in Tetrahymena pyriformis under conditions of amino acid deprivation has been studied by transmission electron microscopy. Two patterns of ciliary resorption have been found, (a) in situ, and (b) after withdrawal into the cytoplasm. No autophagic vacuoles containing cilia or ciliary axonemes have been seen. Stomatogenic field basal bodies arise by a process of rapid sequential nucleation, with new ones always appearing next to more mature ones, even though the latter may not be fully differentiated. Accessory radial ribbons of microtubules develop immediately adjacent to oral field basal bodies as a late step in their maturation. It can be seen that the formation of basal bodies and their orientation within the oral complex are separate processes. This is true for about 130 of the approximately 170 oral basal bodies; the remaining 40 or so form within the patterned groups of ciliary units as a later event. Clusters of randomly oriented thin-walled microtubules are found surrounding oral basal bodies at all times during stomatogenesis. They may either represent stores of microtubule subunit protein, or serve as effectors of basal body movement during their orientation into pattern.  相似文献   

6.
Several proteins, including microtubule proteins, have been isolated from the oral apparatus of the ciliate Tetrahymena. The synthesis of these proteins has been studied in relation to formation of this organelle system by the cell. Electron microscopy has shown that the isolated oral apparatus consists primarily of basal bodies, pellicular membranes, and a system of subpellicular microtubules and filaments. Cilia were removed during the isolation; therefore none of the proteins studied was from these structures. Evidence was obtained from the study of total oral apparatus protein which indicates that at least some of the proteins involved in formation of this organelle system may be synthesized and stored in the cytoplasm for use over long periods. This pattern of regulation was found for three individual proteins isolated from the oral apparatus fraction after extraction with a phenol-acetic acid solvent. A different pattern of regulation was found for microtubule proteins isolated from the oral apparatus of Tetrahymena. The data suggest that microtubule proteins, at least in logarithmically growing cells, are not stored in a cytoplasmic pool but are synthesized in the same cell cycle in which they are assembled into oral structures.  相似文献   

7.
Cilia on the ventral surface of the hypotrich ciliate Euplotes are clustered into polykinetids or compound ciliary organelles, such as cirri or oral membranelles, used in locomotion and prey capture. A single polykinetid may contain more than 150 individual cilia; these emerge from basal bodies held in a closely spaced array within a scaffold or framework structure that has been referred to as a basal‐body “cage”. Cage structures were isolated free of cilia and basal bodies; the predominant component of such cages was found on polyacrylamide gels to be a 45‐kDa polypeptide. Antisera were raised against this protein band and used for immunolocalizations at the light and electron microscope levels. Indirect immunofluorescence revealed the 45‐kDa polypeptide to be localized exclusively to the bases of the ventral polykinetids. Immunogold staining of thin sections of intact cells further localized this reactivity to filaments of a double‐layered dense lattice that appears to link adjoining basal bodies into ordered arrays within each polykinetid. Scanning electron microscopy of isolated cages reveals the lower or “basal” cage layer to be a fine lacey meshwork supporting the basal bodies at their proximal ends; adjoining basal bodies are held at their characteristic spacing by filaments of an upper or “medial” cage layer. The isolated cage thus resembles a miniature test‐tube rack, able to accommodate varying arrangements of basal‐body rows, depending on the particular type of polykinetid. Because of its clear and specific localization to the basal‐body cages in Euplotes, we have termed this novel 45‐kDa protein “cagein”.  相似文献   

8.
A rabbit antiserum specific for Tetrahymena calmodulin was prepared and characterized: In Ouchterlony's immunodiffusion test, the antiserum gave rise to a single precipitin line only with calmodulin in the reaction with crude Tetrahymena extract and the antiserum cross-reacted with a calmodulin fraction from Paramecium, but not with several calmodulin fractions, from higher organisms. Calmodulins from the ciliates appear to share some antigenic determinants which are absent in calmodulins from higher organisms. The intracellular localization of calmodulin was investigated by indirect immunofluorescent method using anti-Tetrahymena calmodulin antibody purified on an antigen-Sepharose affinity column. Immunofluorescence was localized in the oral apparatus, cilia, basal bodies, the anterior end of the cell, and the contractile vacuole pores. The localization suggested involvement of calmodulin in food vacuole formation (nutrient uptake), excretion of contractile vacuole contents (regulation of osmotic pressure), and in ciliary movement (reversal). The suggestion was supported by the observation that trifluoperazine markedly suppressed food vacuole formation and excretion of contractile vacuole contents and affected the ciliary motion.  相似文献   

9.
Summary— In ciliates, the basic pattern of ciliature consists of longitudinal polarized ciliary rows. This basic pattern is expected to be retained through successive binary fissions by means of the so-called cytotactic mechanisms, as a consequence of autogenetic proliferation of basal bodies within each row. This idea is supported by the hereditary transmission of 180° rotated rows in Tetrahymena and Paramecium. These mechanisms should theoretically ensure intraclonal homogeneity for ciliary row number. In fact, some alterations are responsible for either loss or addition of rows. Such alterations are not strictly random processes, since they have been shown to be controlled by nuclear genes. Cytotaxis does not account for exact positioning of primordia for complex structures (buccal ciliature, for instance): the sites of basal body proliferation are determined by certain “positional information” which, in turn, is controlled by chromosomal genetic material more or less independently of pre-existing structures, as illustrated by many spontaneous or induced mutations. All deviations from the wild-type phenotype seem to be associated with very reduced fitness, at least in laboratory conditions. On the other hand, the currently known variants cannot account for intraspecific diversity. Thus, the evolutionary significance of these phenomena remains somewhat obscure.  相似文献   

10.
The morphology is described of a scuticociliate, isolated from a sediment from Terra Nova Bay, Ross Sea, in the Antarctica. The studies, using light microscopy of silver impregnated specimens and by scanning electron microscopy, permit an assignment to the species, Uronema marinum. The main steps of micronuclear events during conjugation, that appear to be similar to the general plan of Tetrahymena and Paramecium aurelia complex, are shown.  相似文献   

11.
Summary The unique monoclonal antibody FXXXIX 12G9 obtained againstTetrahymena cortices was used to label cytoskeletal structures related to basal body proliferation inParaurostyla weissei. The antibody binds to an amorphous material interconnecting basal bodies in compound ciliary structures: dorsal units, cirri and membranelles in interfission cells, and filamentous structures supporting the primordia of ciliary structures and fission line in dividing cells. The antibody visualized meridional filaments preceding proliferation of new basal bodies in the oral primordium and structures accompanying all developing ciliary primordia. It congregated in differentiating new procirri and membranelles, whereas another population of transient meridional structures accompanied the final distribution of new structures. A meridional filament connecting transverse cirri with the oral apparatus, marking the future stomatogenic meridian, persisted in both division products until completion of cell elongation. The fission line was found to originate from an anterior extension of the pre-oral filament toward the parental oral structures. It then encircled the cell's midbody demarcating the boundary between daughter cells; two additional circumferential structures bordering the anterior and posterior ends of differentiating division products participate in formation of the new poles. They disappear after separation of daughter cells and completion of resorption of parental ciliature. In the enhanced multi-left-marginal mutant expressing gross hyperduplication of basal bodies, the location of the 12G9 antigen corresponded to that in wild-type cells. The sequence of formation of meridional filaments in the mutant was found to be altered. The filaments in the left lateral domain preceded the formation of the preoral filament, yet the temporal pattern of basal body assembly was not modified. The fission line, as in wild-type cells, originated in connection with the oral primordium. We conclude that the nucleation of the filamentous structures bearing the 12G9 antigen and the basal body assembly occur by independent mechanisms reading the same cell cycle signals. We suggest that the 12G9-antigen-bearing protein might be similar to septins: involved in signaling the position of the oral primordium and the fission line and functioning in establishing and maintaining the asymmetric cortical domain characteristics.Abbrevations AZM zone of adorai membranelles - bb basal bodies - CC caudal cirri - FC frontal cirri - Fmf frontal meridional filament - FTV the primordia of fronto-ventro-transverse cirri - LD, RD dorsal rows of bristle units - LM, RM left or right marginal cirral row - OA oral apparatus - OP primordium of the adoral membranelles - pLM, pRM primordium of the left or right marginal cirri - pLD, pRD primordia of the left or right dorsal bristle rows - pUM primordium of the undulating membranes - TC transverse cirri - UM undulating membranes - VC ventral cirral rows  相似文献   

12.
There is a complex system of 2- to 5-nm filaments in the oral apparatus of Tetrahymena. Four major subunit proteins, called tetrins, have been isolated from the filaments. These proteins, showing apparent molecular weights in polyacrylamide gels of 79-89 kDa, will assemble in vitro into 2- to 5-nm filaments. Tetrin filaments in vivo show different packing arrangements in different regions of the oral apparatus. We sought to determine the distributions of tetrin polypeptides within the complex oral structure by obtaining monoclonal antibodies specific for individual tetrins, then mapping their distributions within the oral apparatus using standard fluorescence microscopy, confocal laser scanning fluorescence microscopy, and electron microscopy. The results indicate that the four tetrin polypeptides are colocalized everywhere within the oral apparatus of Tetrahymena. Tetrin-binding proteins or specific nucleating structures may need to be invoked to explain the complex organization of the tetrin network. The 16 monoclonal antibodies obtained were also used to search for evidence of immunological relationships between tetrin and cytoskeletal proteins in multicellular organisms. None was found.  相似文献   

13.
In quail oviduct epithelium, as in all metazoan and protozoan ciliated cells, cilia beat in a coordinated cycle. They are arranged in a polarized pattern oriented according to the anteroposterior axis of the oviduct and are most likely responsible for transport of the ovum and egg white proteins from the infundibulum toward the uterus. Orientation of ciliary beating is related to that of the basal bodies, indicated by the location of the lateral basal foot, which points in the direction of the active stroke of ciliary beating. This arrangement of the ciliary cortex occurs as the ultimate step in ciliogenesis and following the oviduct development. Cilia first develop in a random orientation and reorient later, simultaneously with the development of the cortical cytoskeleton. In order to know when the final orientation of basal bodies and cilia is determined in the course of oviduct development, microsurgical reversal of a segment of the immature oviduct was performed. Then, after hormone-induced development and ciliogenesis, ciliary orientation was examined in the inverted segment and in normal parts of the ciliated epithelium. In the inverted segment, orientation was reversed, as shown by a video recording of the direction of effective flow produced by beating cilia, by the three-dimensional bending forms of cilia immobilized during the beating cycle and screened by scanning electron microscopy, and by the position of basal body appendages as seen in thin sections by transmission electron microscopy. These results demonstrate that basal body and ciliary orientation are irreversibly determined prior to development by an endogenous signal present early in the cells of the immature oviduct, transmitted to daughter cells during the proliferative phase and expressed at the end of ciliogenesis.  相似文献   

14.
In Paramecium, the morphogenesis of the cortex at cell division, which assures reconstruction of shape and surface pattern, has been shown to involve transcellular signals which spread across the cortex like a wave, originating principally from the oral apparatus. One of the events these signals control is the reorganization of the ciliary rootlets through a cycle of regression and regrowth. The ciliary rootlets are nucleated on the ciliary basal bodies and form a scaffold extending over the entire cell surface that is important in aligning the basal bodies and the unit territories organized around them in longitudinal rows. We present evidence that the mechanism underlying their reorganization is cell-cycle-dependent phosphorylation of the structural proteins which compose the ciliary rootlets. We have isolated the rootlets and prepared a polyclonal antibody against them. In situ immunofluorescence of dividing cells with the anti rootlet antibody, and with the monoclonal antibody MPM-2 specific for phosphoproteins shows that a wave of phosphorylation of the ciliary rootlets spreads across the cell at division and just precedes their regression. Two-dimensional Western blot analysis of cytoskeleton and isolated rootlets along with alkaline phosphatase treatment demonstrates that the rootlets are composed of phosphoproteins, while experiments with interphase and dividing cells provide direct evidence that hyperphosphorylation of these proteins at division brings about disassembly of the structure.  相似文献   

15.
The number of basal bodies and cilia along pole-to-pole ciliary rows was enumerated in Tetrahymena thermophila cells sampled during the rapid-exponential phase of culture growth in three different media that supported generation times ranging from 2 to 4 hr. The time required for oral development was nearly constant in the three media, and thus most of the differences in generation time were accounted for by differences in the interval prior to the onset of oral development (stage 0), which ranged from 50% of the generation time in the “poorest” medium to 20% in the “richest.” There was very little increase in number of basal bodies and of cilia along ciliary rows during stage 0, irrespective of the duration of this stage. The bulk of the increase took place during oral development, following a time course suggestive of coordination wth oral development. The same temporal pattern of increase was found in several ciliary rows, although the proportion of basal bodies that were ciliated differed among rows. There is no simple relationship between the number of basal bodies along ciliary rows and cell length, surface area, or volume. However, a large and constant proportion of the total division-to-division cell growth took place during the interval prior to the onset of oral development, suggesting that an ensemble of developmental events, including oral development and an associated activation of the remainder of the cell surface, may be triggered by attainment of a threshold cell size.  相似文献   

16.
ABSTRACT. The sequence of formation and ciliation of basal bodies and the subsequent organization of compound ciliary structures of the oral apparatus of Tetrahymena thermophila was reanalyzed with the aid of scanning electron microscopy of cells in which the epiplasmic layer was exposed, as well as by light microscopy of protargol-impregnated specimens. This combination of methods allowed the delineation of numerous steps in the patterning of the oral ciliature, some of which have received little or no previous attention. Highlights include: the initial formation of “strings” of nonciliated new basal bodies in juxtaposition to relatively few basal bodies of the stomatogenic kinety; generation of basal body pairs, roughly oriented along the anteroposterior axis of the cell, that later align side-by-side to assemble promembranelles; condensation and reorientation of promembranelles simultaneous with addition of a third row of basal bodies anterior to the original two rows; production of a very short fourth row of basal bodies at the anterior right end of each developing membranelle; generation of the outer basal body row of the undulating membrane (UM) after alignment of the inner row, with transient ciliation of the inner row preceding permanent ciliation of the outer row; limited basal body resorption at the ends of membranelles; and sculpturing of the right ends of membranelles by a movement of basal bodies associated with formation of the ribbed wall adjacent to the UM. In the old anterior oral apparatus a repetition of the processes of generation of a new outer UM row and sculpturing of right ends of membranelles takes place in synchrony with the corresponding events in the oral primordium, following prior shedding of the old outer UM row and loss of the sculptured pattern in association with temporary regression of the ribbed wall micro-tubules. Oral development is complex, with different processes involved in the assembly of the membranelles and the UM, and with a sequence of distinct events involved in the generation of each of these structures. Speaking comparatively, membranelle development follows the same pathway in many, perhaps all, ciliates in which these structures or their homologues develop from a common stomatogenic field.  相似文献   

17.
ABSTRACT. Filaments in the oral apparatus of Tetrahymena appear similar, but not identical, to the intermediate filaments of multicellular organisms. The mean diameter of filaments measured in the present study was 16.4 nm, but the range of variation was much greater than has been reported for intermediate filaments. The organization of filaments within the oral apparatus has been studied by indirect immunofluorescence microscopy and immunogold localization at the electron microscopical level using antiserum raised in rabbits against the major subunit protein of the oral filaments (87K). The filaments were found to be organized into cables, networks, and chambers or cages which encase the basal bodies. At the highest level of organization, the filaments connect into a rigid framework capable of maintaining the overall architecture in the absence of microtubules. Like intermediate filaments, the oral filaments are insoluble at high ionic strength, have evolutionarily non-conservative subunit proteins, are probably non-contractile, and serve to stabilize persistent cellular architecture.  相似文献   

18.
In vitro effects of benzodiazepines on ciliogenesis in the quail oviduct   总被引:1,自引:0,他引:1  
Immature oviduct implants from quails stimulated by estrogen to induce ciliogenesis were submitted to the in vitro action of benzodiazepines in organotypic culture. Diazepam and medazepam were added to the culture medium for 24 or 48 hours and tissues were examined by transmission and scanning electron microscopy for alterations in ciliary differentiation. Ciliogenesis was inhibited by both diazepam and medazepam, which affected mainly the migration of the basal bodies. Assembly of basal bodies was achieved normally in the cytoplasm, but their separation from generative complexes and migration toward the apical membrane were prevented. They remained in clusters around a deuterosome or eventually anchored to the close lateral plasma membrane. Furthermore, the drugs affected mature beating cilia, which then appeared lying tangentially to the cell surface. Relation between basal bodies and cortical cytoskeleton seemed to be altered by the drugs, which implies that the bearing of cilia and probably the ciliary beating movement were modified. Microvillus development was also altered by the action of these drugs.  相似文献   

19.
Alveolins are a recently described class of proteins common to all members of the superphylum Alveolata that are characterized by conserved charged repeat motifs (CRMs) but whose exact function remains unknown. We have analyzed the smaller of the two alveolins of Tetrahymena thermophila, TtALV2. The protein localizes to dispersed, broken patches arranged between the rows of the longitudinal microtubules. Macronuclear knockdown of Ttalv2 leads to multinuclear cells with no apparent cell polarity and randomly occurring cell protrusions, either by interrupting pellicle integrity or by disturbing cytokinesis. Correct association of TtALV2 with the alveoli or the pellicle is complex and depends on both the termini as well as the charged repeat motifs of the protein. Proteins containing similar CRMs are a dominant part of the ciliate membrane cytoskeleton, suggesting that these motifs may play a more general role in mediating membrane attachment and/or cytoskeletal association. To better understand their integration into the cytoskeleton, we localized a range of CRM-based fusion proteins, which suggested there is an inherent tendency for proteins with CRMs to be located in the peripheral cytoskeleton, some nucleating as filaments at the basal bodies. Even a synthetic protein, mimicking the charge and repeat pattern of these proteins, directed a reporter protein to a variety of peripheral cytoskeletal structures in Tetrahymena. These motifs might provide a blueprint for membrane and cytoskeleton affiliation in the complex pellicles of Alveolata.  相似文献   

20.
Swimming behavior of the sperm of Lygodium japonicum (Pteridophyta) and the associated ultrastructure of the flagellar apparatus were studied by video microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The sperm has approximately 70 flagella that emerge from a sinistrally-coiled flagellar apparatus, and swims forward by ciliary beat of these flagella. Backward swimming was not observed even after sperm collided with obstacles. Video microscopy showed that the flagella of the swimming sperm are oriented laterally and oblique-anteriorly. TEM and SEM observations revealed that the basal bodies of these flagella are arranged in at least two rows and oriented in the same directions as observed by video microscopy. These basal bodies (flagella) are categorized into two types according to their orientation: group I (laterally directed) and group II (oblique-anteriorly directed). The directionality of the basal bodies appears to be fixed by electron-dense material around their base. The outer dynein arms of the flagellar axoneme are entirely absent. These morphological characteristics of basal bodies (flagella) may relate to the lack of backward swimming behavior of the sperm. Based on these results, the evolution of swimming behavior in the archegoniates is discussed in connection with lack of backward swimming in a distantly related green alga, Mesostigma viride, and the Streptophyta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号