首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten Egyptian Nubian goat bucks were used to evaluate the effect of season on testicular hormonal activity and ultrastructure. Parameters were recorded for 7 consecutive weeks in the middle of the four seasons, with blood samples being collected weekly. At the end of each of these seasons, testicular biopsies were obtained surgically for histological and cytological studies. Season had a significant effect on plasma testosterone concentration, being at its lowest level (P < 0.01) during winter and spring (1.2 and 2.6 ng/ml, respectively), while at its highest during summer (10 ng/ml). The effect of season on plasma LH concentration was higher (P < 0.01) in autumn (2.9 mIU/ml) and less in spring and summer (0.4 mIU/ml). Season of the year influenced the percentage of sectional tissue area occupied by the seminiferous tubules and interstitial tissue. Seminiferous tubules occupied the majority of the testicular tissue during winter (76.6%), with the least being occupied during spring (49.8%). The thickness of the seminiferous tubules was maximal during autumn, followed by summer (53 and 36 μm, respectively). In summer the Leydig cells contained abundant smooth endoplasmic reticulum (sER), while some areas of the cytoplasm were occupied exclusively by tubular sER, arranged in parallel—indicating the highest activity of these cells. A characteristic multivesicular structure with numerous large lipid droplets and vacuoles was recorded in the Leydig cells during spring and winter, denoting low or even arrested activity of the cells. It could be concluded that season influences the activity of the Leydig cells of Egyptian Nubian bucks, and this is reflected by their ultrastructure and secretive activity.  相似文献   

2.
Summary Using a preparation of highly purified, adult rat Leydig cells and conditions of culture which we found to optimize testosterone production during 24 h, we sought to maintain optimal testosterone production for 3 d. Leydig cells cultured on Cytodex 3 beads at 19% O2 in Dulbecco's modified Eagle's medium-Ham's nutrient mixture F12 (1:1; vol/vol) containing 0.5 mg/ml, total bovine lipoproteins (<1.222 g/ml) with maximal luteinizing hormone (LH) stimulation failed to maintain a constant amount of testosterone for 3 d. These cells did however secrete a similar amount of total delta 4-3-ketosteroids on each of the 3 culture d, indicating that their viability was preserved. The predominance of progesterone and 170H-progesterone relative to the amount of androstenedione found on Days 2 and 3 suggested that the activity of the cytochrome P450 C17-hydroxylase-C17, 20-lyase enzyme in the smooth endoplasmic reticulum was diminished when Leydig cells were maintained in our primary culture for longer than 24 h. Decreasing the oxygen tension of the cultures from 19 to 5%, and decreasing the concentration of LH used to stimulate the Leydig cells from 100 to 0.1 ng/ml, were necessary to achieve maintenance of testosterone secretion without accumulation of other delta 4-3-ketosteroids during a 3-d period. Cells cultured in this fashion were still able to respond to maximal LH stimulation during Day 3, producing as much testosterone as if cultured for 24 h on Day 1 at 19% O2 with 100 ng/ml LH stimulation. This research was supported in part by grant HD-07204 from the National Institutes of Health, Bethesda, MD, The Population Center (grant HD-06268), an EPA cooperative agreement (CR81-2765), an NSF equipment grant, and a Mellon Foundation Postdoctoral Fellowship for Gary Klinefelter. Although the research described herein has been funded in part by the U.S. Environmental Protection Agency through cooperative agreement (CR81-2765) to the Division of Reproductive Biology at Johns Hopkins University, it has not been subjected to the agency's peer and policy review; therefore, it does not necessarily reflect the views of the agency and no official endorsement should de inferred.  相似文献   

3.
Summary Leydig cells of the bat, Myotis adversus, have been examined by electron microscopy throughout fourteen months. During the breeding season the Leydig cells become hypertrophied and are characterised by prominent areas of agranular endoplasmic reticulum and numerous small, membrane-bound granules. Microperoxisomes are also observed. During the period of testicular regression. Leydig cell size and the number of membrane-bound granules are greatly reduced. Lipid droplets and dense bodies are more numerous.  相似文献   

4.
Summary We sought to establish conditions that increased the duration of testosterone production by fully differentiated adult rat Leydig cells in primary culture. A freshly isolated suspension of highly purified adult rat Leydig cells produced 83 ng testosterone/106 Leydig cells·h−1 when incubated in Medium 199 in a 1.5 ml microfuge tube with shaking for 3 h with a maximally stimulating concentration of ovine luteinizing hormone (LH). Unfortunately, adult rat Leydig cells that were allowed to attach only to a plastic culture dish flattened out, and testosterone production diminished rapidly. Leydig cells in Dulbecco's modified Eagles' medium-Ham's F12 (1∶1; vol/vol) containing Cytodex 3 beads pre-equilibrated in culture medium containing fetal bovine serum attached to the beads and remained viable, but produced only 30 ng testosterone/106 Leydig cells·h−1 when incubated for 24 h with similar stimulation. Leydig cells similarly cultured and maximally stimulated with LH, responded to bovine lipoproteins (<1.222 g/ml) producing 105 ng of testosterone/106 Leydig cells·h−1 when incubated with 1 mg/ml bovine lipoprotein. Therefore, lipoproteins maintain the steroidogenic capacity of purified adult rat Leydig cells in primary culture for 24 h. Paper presented at the 38th Annual Meeting of the Tissue Culture Association in Arlington, Virginia, in May 1987. The session was chaired by Dr. Carlton H. Nadolney, member of the TCA Committee on Toxicity, Carcinogenesis and Mutagenesis Evaluation. This research was supported in part by the National Institutes of Health (grant HD-07204), The Population Center (grant HD-06268), and EPA cooperative agreement (CR81-2765), an NSF equipment grant, and a Mellon Foundation Postdoctoral Fellowship for Gary Klinefelter. Although the research described herein has been funded in part by the U.S. Environmental Protection Agency through cooperative agreement (CR81-2765) to the Division of Reproductive Biology at Johns Hopkins University, it has not been subjected to the agency's peer and policy review, and therefore, does not necessarily reflect the views of the agency and no official endorsement should be inferred.  相似文献   

5.
Xiao AJ  Wang JL  Fang L  Kuang HB 《生理学报》2004,56(3):353-356
采用离体细胞体外孵育法,观察反义c-myb寡脱氧核苷酸(oligodeoxynucletides,ODN)对人绒毛膜促性隙激素(humanchorionic-gonadotropin hormone,hCG)诱导的人鼠间质细胞睾酮分泌的影响,并进一步探讨了外源性二丁酰cAMP(dbcAMP)、Ca^2 以及蛋白质抑制剂放线菌酮(cycloheximide,CYX)对间质细胞中c-Myb蛋白表达和睾酮分泌的作用。结果表明,反义c-myb ODN呈剂量依赖性地抑制hCG诱导的离体间质细胞的睾酮分泌,同时使间质细胞中c-Myb蛋白免疫组化染色下降:而无义tat ODN没有相应的作用。100μmol/L的dbc AMP可进一步促使hCG秀导的间质细胞分泌睾酮,并且使间质细胞中c-Myb蛋白免疫组化染色IOD值升高,与hCG组相比,具有统计学意义。钙离子通道阻断剂维拉帕米(10μmol/L)和蛋白质抑制剂放线菌酮(50μg/ml)可使hCG诱导的大鼠间质细胞的睾酮分泌下降,并使间质细胞的c-Myb蛋白免疫组化染色降低。该结果说明c-myb参与hCG诱导的大鼠间质细胞睾酮分泌作用。  相似文献   

6.
Previously we found that the increased plasma testosterone levels in male rats during exercise partially resulted from a direct and luteinizing hormone (LH)-independent stimulatory effect of lactate on the secretion of testosterone. In the present study, the acute and direct effects of lactate on testosterone production by rat Leydig cells were investigated. Leydig cells from rats were purified by Percoll density gradient centrifugation subsequent to enzymatic isolation of testicular interstitial cells. Purified rat Leydig cells (1 x 10(5) cells/ml) were in vitro incubated with human chorionic gonadotropin (hCG, 0.05 IU/ml), forskolin (an adenylyl cyclase activator, 10(-5) M), or 8-bromo-adenosine-3':5'-cyclic monophosphate (8-Br-cAMP, 10(-4) M), SQ22536 (an adenylyl cyclase inhibitor, 10(-6)-10(-5) M), steroidogenic precursors (25-hydroxy-cholesterol, pregnenolone, progesterone, and androstenedione, 10(-5) M each), nifedipine (a L-type Ca(2+) channel blocker, 10(-5)-10(-4) M), or nimodipine (a potent L-type Ca(2+) channel antagonist, 10(-5)-10(-4) M) in the presence or absence of lactate at 34 degrees C for 1 h. The concentration of medium testosterone was measured by radioimmunoassay. Administration of lactate at 5-20 mM dose-dependently increased the basal testosterone production by 63-187% but did not alter forskolin- and 8-Br-cAMP-stimulated testosterone release in rat Leydig cells. Lactate at 10 mM enhanced the stimulation of testosterone production induced by 25-hydroxy-cholesterol in rat Leydig cells but not other steroidogenic precursors. Lactate (10 mM) affected neither 30- nor 60-min expressions of cytochrome P450 side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory (StAR) protein. The lactate-stimulated testosterone production was decreased by administration of nifedipine or nimodipine. These results suggested that the physiological level of lactate stimulated testosterone production in rat Leydig cells through a mechanism involving the increased activities of adenylyl cyclase, cytochrome P450scc, and L-type Ca(2+) channel.  相似文献   

7.
Summary This study examines the effects of cell purity and incubation conditions on testosterone production by rat testis Leydig cells in short-term primary culture. Both basal and luteinizing hormone (LH)-stimulated testosterone production were affected by the purity of the cell preparation, i.e. as the purity of the cell preparation was increased the amount of testosterone produced per Leydig cell was also found to increase. The stimulation ratio of testosterone production, calculated as the secretion of testosterone in the presence of LH (100 ng/ml) divided by the basal secretion of testosterone, increased with the increase in plating density (20 000 to 200 000 cells per well). This pattern of change was independent of the vessel and volume of incubation. In terms of the absolute amount of testosterone produced, increasing the plating density led to a decrease in the amount of steroid produced both basally and in response to LH. Composition of the incubation medium also had an effect on testosterone production; phenol red and sodium bicarbonate exerted negative effects. At all temperatures studied (4°, 24°, 34°, and 37° C), LH increased testosterone production and the degree of stimulation increased with temperature. We conclude that cell purity and incubation conditions markedly affect rat Leydig cell steroidogenesis in vitro. Furthermore, the manner in which the results are presented can affect their interpretation.  相似文献   

8.
Oncostatin M (OSM) is a pleiotropic cytokine within the interleukin six family of cytokines, which regulate cell growth and differentiation in a wide variety of biological systems. However, its action and underlying mechanisms on stem Leydig cell development are unclear. The objective of the present study was to investigate whether OSM affects the proliferation and differentiation of rat stem Leydig cells. We used a Leydig cell regeneration model in rat testis and a unique seminiferous tubule culture system after ethane dimethane sulfonate (EDS) treatment to assess the ability of OSM in the regulation of proliferation and differentiation of rat stem Leydig cells. Intratesticular injection of OSM (10 and 100 ng/testis) from post‐EDS day 14 to 28 blocked the regeneration of Leydig cells by reducing serum testosterone levels without affecting serum luteinizing hormone and follicle‐stimulating hormone levels. It also decreased the levels of Leydig cell‐specific mRNAs (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1 and Hsd11b1) and their proteins by the RNA‐Seq and Western blotting analysis. OSM had no effect on the proliferative capacity of Leydig cells in vivo. In the seminiferous tubule culture system, OSM (0.1, 1, 10 and 100 ng/mL) inhibited the differentiation of stem Leydig cells by reducing medium testosterone levels and downregulating the expression of Leydig cell‐specific genes (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1 and Hsd11b1) and their proteins. OSM‐mediated action was reversed by S3I‐201 (a STAT3 antagonist) or filgotinib (a JAK1 inhibitor). These data suggest that OSM is an inhibitory factor of rat stem Leydig cell development.  相似文献   

9.
Thyrotropin-releasing hormone (TRH) was initially discovered as a neuropeptide synthesized in the hypothalamus. Receptors for this hormone include TRH-receptor-1 (TRH-R1) and -2 (TRH-R2). Previous studies have shown that TRH-R1 and TRH-R2 are localized exclusively in adult Leydig cells (ALCs). We have investigated TRH-R1 and TRH-R2 expression in the testes of postnatal 8-, 14-, 21- 35-, 60-, and 90-day-old rats and in ethane dimethane sulfonate (EDS)-treated adult rats by using Western blotting, immunohistochemistry, and immunofluorescence. The effects of TRH on testosterone secretion of primary cultured ALCs from 90-day-old rats and DNA synthesis in Leydig cells from 21-day-old rats have also been examined. Western blotting and immunohistochemistry demonstrated that TRH-R1 and TRH-R2 were expressed in fetal Leydig cells (in 8-day-old rats) and in all stages of adult-type Leydig cells during development. Immunofluorescence double-staining revealed that newly regenerated Leydig cells in post-EDS 21-day rats expressed TRH-R1 and TRH-R2 on their first reappearance. Incubation with various doses of TRH affected testosterone secretion of primary cultured ALCs. Low concentrations of TRH (0.001, 0.01, and 0.1 ng/ml) inhibited basal and human chorionic gonadotrophin (hCG)-stimulated testosterone secretion of isolated ALCs, whereas relatively high doses of TRH (1 and 10 ng/ml) increased hCG-stimulated testosterone secretion. As detected by a 5-bromo-2′-deoxyuridine incorporation test, the DNA synthesis of Leydig cells from 21-day-old rats was promoted by low TRH concentrations. Thus, we have clarified the effect of TRH on testicular function: TRH might regulate the development of Leydig cells before maturation and the secretion of testosterone after maturation. This research was supported by grants from the National Natural Science Foundation of China (nos. 39870109 and 30370750).  相似文献   

10.
Tu Lin 《Life sciences》1985,36(13):1255-1264
Gonadotropin-releasing hormone agonist (GnRHa) markedly increased testosterone formation from 2.35 ± 0.13 ng/ml of the controls to 14.92 ± 0.33 ng/ml (mean ± SE) in isolated and purified rat Leydig cells. GnRHa-induced testosterone formation was completely blocked by phospholipase A2 inhibitor (chloroquin, 10?4M), but was potentiated by the addition of either cyclo-oxygenase inhibitor (indomethacin) or lipoxygenase inhibitor (nordihydroguaiaretic acid, NDGA). Arachidonic acid also directly stimulated Leydig cell steroidogenesis and activated Ca/phospholipid dependent protein kinase. Steroidogenic effects of arachidonic acid were also potentiated by the addition of either indomethacin or NDGA. These results suggest that arachidonic acid may be important in mediating direct stimulatory effects of GnRH on Leydig cell steroidogenesis, and the conversion of arachidonic acid to either prostaglandins or leukotrienes is not required for its steroidogenic effect.  相似文献   

11.
Fibroblast growth factor homologous factor 1 (FHF1) is an intracellular protein that does not bind to cell surface fibroblast growth factor receptor. Here, we report that FHF1 is abundantly present in Leydig cells with up‐regulation during its development. Adult male Sprague Dawley rats were intraperitoneally injected with 75 mg/kg ethane dimethane sulphonate (EDS) to ablate Leydig cells to initiate their regeneration. Then, rats daily received intratesticular injection of FHF1 (0, 10 and 100 ng/testis) from post‐EDS day 14 for 14 days. FHF1 increased serum testosterone levels without affecting the levels of luteinizing hormone and follicle‐stimulating hormone. FHF1 increased the cell number staining with HSD11B1, a biomarker for Leydig cells at the advanced stage, without affecting the cell number staining with CYP11A1, a biomarker for all Leydig cells. FHF1 did not affect PCNA‐labelling index in Leydig cells. FHF1 increased Leydig cell mRNA (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3, Nr5a1 and Hsd11b1) and their protein levels in vivo. FHF1 increased preadipocyte biomarker Dlk1 mRNA level and decreased fully differentiated adipocyte biomarker (Fabp4 and Lpl) mRNA and their protein levels. In conclusion, FHF1 promotes Leydig cell regeneration from stem cells while inhibiting the differentiation of preadipocyte/stem cells into adipocytes in EDS‐treated testis.  相似文献   

12.
13.
From July to March, the testis of the spring‐spawning freshwater goby Padogobius martensi is characterized by spermatogonial proliferation. A close correlation exists among type of proliferating spermatogonia, gonado‐somatic (IG) profiles and morphological and functional variations of the Leydig cells. The IG reach their minimal levels by the end of summer and increase progressively but modestly during autumn and winter. Declining IG levels are associated with proliferation of primary spermatogonia only, whereas increasing IG levels are associated with predominant proliferation of secondary spermatogonia. Minimal IG levels are reached when the germinal epithelium is formed by a continuum of primary spermatogonia and associated Sertoli cells. The proliferation of secondary spermatogonia begins only at this time. Spermatogenesis in autumn occurs when spermatogonial cysts contain at the most 16 cells and it rarely results in the maturation of several cysts so that the amount of sperm cells produced is either negligible or scarce. A number of degenerating cells are usually present within the spermatogonial and meiotic cysts. Leydig cells are the unique cells that display features of steroidogenic cells: mitochondria with tubular cristae, extensive smooth endoplasmic reticulum (SER), 3β‐hydroxysteroid dehydrogenase (3β‐HSD) and glucose‐6‐phosphate dehydrogenase (G6PD) activity and sudanophilia. Light and dark Leydig cell varieties are always present. During regression, Leydig cells undergo a marked decrease in SER amount, mitochondrial sizes and number of mitochondrial cristae. In parallel, the 3β‐HSD and G6PD activities and sudanophilia decrease progressively until they become undetectable by the end of regression. In autumn, mitochondria increase in size, reaching sizes similar to those observed at the end of the spawning season in the light cells, but not in the dark cells. The SER, on the contrary, undergoes a modest and irregular increase only in a part of the Leydig cells, mostly of the light type. In parallel, the 3β‐HSD and G6PD activities increase until they become moderately intense by the end of autumn. At the end of winter, the SER is extensive and regularly dilated in both Leydig cell types, whereas mitochondria still have sizes similar to those observed in December. The 3β‐HSD and G6PD activities are strong and sudanophilia is again detectable. Sertoli cells undergo changes in shape and position in relation to the proliferation of primary spermatogonia and the development of cysts. A junction modulation occurs in association with these changes. Sertoli cells also undergo changes indicative of a decrease in activity immediately after spawning (loss of mitochondrial cristae and clarification of the mitochondrial matrix) and of an increase in activity by the end of the regressing phase (darkening of the mitochondrial matrix and increase in mitochondrial cristae, rough endoplasmic reticulum (RER) and free ribosomes). In addition, they are involved in the phagocytosis of degenerating germ cells at all stages of their development. Macrophages are found in the testis interstitium only, where they are usually adjacent to Leydig cells, myoid cells and blood capillaries and do not participate in the phagocytosis of degenerating germ cells. Myoid cells do not undergo ultrastructural changes except for an increase in the amount of heterochromatin by the end of spawning. The meaning of the autumnal spermatogenic wave and the relationships between the development of the germinal epithelium and the changes of the Leydig and Sertoli cells are discussed.  相似文献   

14.
In Percoll purified Leydig cells from mature rat we have demonstrated that the basal testosterone production (9.5 ng/106 Leydig cells/24 h) is increased 10-fold in presence of a saturating amount of hCG (1 IU/mL) and diminished in a dose-related manner when larger concentrations of gonadotropin are used to reach 14 ng/106 Leydig cells for 50 IU of hCG. If 40% (v/v) seminiferous tubule medium (STM) is added together with hCG (1 IU/mL) to the incubation medium, a further increase (62%) of testosterone output is noticed. Obviously, when the testosterone production is low as a consequence of a higher dose of hCG (50 IU/mL), the STM (80%) improves the steroid synthesis five-fold (67.4 ng). Concerning the cytoskeletal components (microtubules, intermediate filaments and microfilaments) which have been examined in presence or absence of hCG and STM, we have found a rearrangement of cytoskeletal elements as well as cell-shape changes in relation with hormonal activity of the cells. The most prominent alterations of cytoskeletal elements have been observed after 24 h of incubation with 1 IU/mL of hCG added together with 80% of STM. The obtained results suggest that paracrine factor(s) presents in STM and acting in synergy with LH/hCG generate(s) the rearrangement of cytoskeletal structures which, in turn, facilitates the availability of cholesterol for the mitochondria and finally enhances the testosterone production in the rat Leydig cells.  相似文献   

15.
The production of testosterone occurs within the Leydig cells of the testes. When production fails at this level from either congenital, acquired, or systemic disorders,the result is primary hypogonadism. While numerous testosterone formulations have been developed, none are yet fully capable of replicating the physiological patterns of testosterone secretion. Multiple stem cell therapies to restore androgenic function of the testes are under investigation. Leydig cells derived from bone marrow, adipose tissue, umbilical cord, and the testes have shown promise for future therapy for primary hypogonadism. In particular, the discovery and utilization of a group of progenitor stem cells within the testes, known as stem Leydig cells(SLCs), has led not only to a better understanding of testicular development, but of treatment as well. When combining this with an understanding of the mechanisms that lead to Leydig cell dysfunction, researchers and physicians will be able to develop stem cell therapies that target the specific step in the steroidogenic process that is deficient. The current preclinical studies highlight the complex nature of regenerating this steroidogenic process and the problems remain unresolved. In summary, there appears to be two current directions for stem cell therapy in male primary hypogonadism. The first method involves differentiating adult Leydig cells from stem cells of various origins from bone marrow, adipose, or embryonic sources. The second method involves isolating, identifying, and transplanting stem Leydig cells into testicular tissue. Theoretically, in-vivo re-activation of SLCs in men with primary hypogonadism due to age would be another alternative method to treat hypogonadism while eliminating the need for transplantation.  相似文献   

16.
The present study investigated the effects of aging in the testis interstitium in Sprague Dawley rats. Rats of 3, 6 and 24 months of age were used. Testes of rats (n = 5) were fixed by whole body perfusion using a fixative containing 2.5% glutaraldehyde in cacodylate buffer, processed and embedded in eponaraldite. Using 1 μm sections stained with methylene blue, qualitative and quantitative morphological studies were performed. Purified Leydig cell preparations, obtained by collagenase digestion followed by elutriation and density gradient centrifugation, were used to determine luteinizing hormone (LH; 100 ng/ml) stimulated testosterone secretory capacity per Leydig cell in vitro. Testosterone levels in the incubation medium, and testosterone and luteinizing hormone levels in serum of these three groups of rats were determined via radioimmunoassay. Morphological studies revealed that Leydig cells were more abundant in the testis interstitium at 6 and 24 months when compared to 3 months. Moreover, collagen fiber bundles were more frequently observed in the testis interstitium at older ages. Blood vessels of the testis interstitium in 24-month-old rats frequently showed partial and complete occlusion of their lumen and thickening of vessel walls. This feature was also present at 6 months, but less frequently. The results of the sterological studies revealed that the volumes of seminiferous tubules, interstitium and Leydig cells per testis was significantly higher (P < 0.05), at 6 and 24 months of age than those at 3 months. Moreover, volume of macrophages per testis was observed to be significantly higher (P < 0.05) at 6 months when compared to 3 and 24 months, and volume of connective tissue cells per testis was observed to be significantly lower (P < 0.05) at 6 and 24 months when compared to 3 months of age. No significant difference (P > 0.05) was observed for the volume of lymphatic space per testis in the three age groups studied. Volume of interstitial blood vessels per testis was not significantly different at 3 and 6 months of age, but a significantly greater (P < 0.05) volume was observed at 24 months. However, at 6 and 24 months, only 71% and 31% of the total blood vessel volumes respectively had completely open lumen in them; the rest of the blood vessels were either partially (12.5% at 6 months and 17% at 24 months) or completely (16.5% at 6 months and 52% at 24 months) occluded. The number of Leydig cells per testis was doubled at 6 and 24 months of age compared to 3 months. The average volume of a Leydig cell was not significantly different between 3 and 6 months of age, however, at 24 months a significantly lower (P < 0.05) value was observed. LH stimulated testosterone secretory capacity per Leydig cell in vitro was reduced by 50% at 6 months of age compared to 3 months; a further significant (P < 0.05) reduction was observed at 24 months. Serum testosterone and LH levels were not significantly different between 3 and 6 months of age but at 24 months a significantly lower (P < 0.05) value was observed for both of these hormones.In summary, the present study demonstrated many changes in the components of the testis interstitium in the aged Sprague Dawley rat. Modifications in the blood vessels and the occurrence of abundant collagen fibers in the interstitial space could possibly contribute to the reduced testosterone secretory capacity per Leydig cell with advancing in age. The observed Leydig cell hyperplasia could be suggested as a compensatory effort to maintain the normal androgen status of the aged rat, which is rather successful at 6 months but unsuccessful at 24 months. This investigation further revealed that these characteristic changes in the aged testis interstitium at 24 months are also present to some extent at 6 months of age in Sprague Dawley rats, suggesting that aging of the testis in this strain of rats commences early in life.  相似文献   

17.
Summary Ethane dimethanesulphonate (EDS) was used as a specific cytotoxin to eliminate the Leydig cell population of the adult rat testis. Ultrastructural, morphometric and serum gonadotrophin and testosterone analysis was used to study the response of the intertubular tissue of the testis from 1 day to 10 weeks after EDS treatment. In control animals, the testis contained approximately 28 million Leydig cells and 8 million macrophages. Three to seven days after EDS treatment, Leydig cells were absent and serum testosterone was undetectable. Macrophage numbers increased three-fold by 3 days and returned to pretreatment values thereafter. At 2 and 3 weeks post-EDS, foetal-type Leydig cells (1–2 million per testis) appeared in proximity to perivascular and peritubular tissues, a feature also observed at 4 weeks when numerous such cells (15 million per testis) formed prominent clusters in perivascular and peritubular locations. Between 6 and 10 weeks after EDS treatment, the foetal-type Leydig cells were transformed morphologically into adult-type Leydig cells, they occupied central intertubular positions and their numbers were restored to pretreatment values. Regeneration of Leydig cells was reflected by elevated serum testosterone levels which returned towards the normal range. The results demonstrate the regenerative capacity of the testicular intertubular tissue and indicate a dual site of origin of Leydig cells which initially resemble foetal-type Leydig cells prior to establishing the adult-type Leydig cell population. The morphological pattern of Leydig cell regeneration suggests that in addition to gonadotrophic stimulation, local testicular factors from the seminiferous tubules may stimulate Leydig cell growth.  相似文献   

18.
用光镜及透射电镜观察了乌梢蛇(Zaocys dhumnades)精巢间质细胞的显微与超微结构,并利用放射免疫测定法测定了血清中睾酮浓度.结果表明,在一个年生殖周期中,乌梢蛇间质组织所占区域相对大小、间质细胞数量和显微结构均存在较明显的变化;5月份的间质细胞具有发达的管状嵴线粒体、丰富的滑面内质网、大量的脂滴等合成和分泌...  相似文献   

19.
In neonates (0 to 3-4 months), the testis contained a mean number of 4.6 X 10(6) Leydig cells representing 4.2 % of its volume; Leydig cell cytoplasm contained 10.2 % of SER. In infants (up to 45 months), Leydig cells regressed but their number increased; their volume density did not change. Leydig cell cytoplasmic volume (454 microns3 ), which was about 2.5-fold less than in neonates (1 119 microns3 ) or adults (1 170 microns3 ), contained only 8.7% of SER. During meiosis stage (38-52 months). Leydig cell numbers and volume density did not vary but the cells reached a maximal size and an amount of SER comparable with that at birth was measured. When spermatogenesis was complete, the Leydig cells represented no more than 0.8% of testis volume, but their number and SER content were significantly increased. Except for a significant decrease when spermatogenesis was completed, Leydig cell lipid content did not change during development, and the volume density of mitochondria did not vary. The mean level of plasma testosterone was 2 ng/ml in neonates and 0.4 ng/ml in infants; it increased to 3 ng/ml during onset of meiosis and reached 10 ng/ml in adults. The profile of testosterone was positively and significantly correlated with the total volume and total number of Leydig cells (P less than 0.01 and P less than 0.02, respectively) and with changes in their cytoplasmic volume (P less than 0.001). Moreover, plasma testosterone levels were positively and significantly correlated with changes in Leydig cell SER content i.e. SER volume density and mean absolute volume per cell (P less than 0.001), total SER in the whole testis (P less than 0.01).  相似文献   

20.
Changes in in vitro testosterone production by Leydig cells induced by chorionic gonadotropin, dibutyryl-cAMP, and pregnenolone have been studied during postnatal development of four inbred mouse strains BALB/c, PT, CBA/Lac, and A/He, with contrast hormonal activity of testes in sexually mature males. The interlinear differences significantly change with age of the males by all studied indices indicating genotype-dependent formation of hormonal activity of Leydig cells during postnatal development. Coordinated interlinear variability between all indices of Leydig cells reactivity has been established for each studied period of postnatal development. Hence, we have established coordinated interlinear genetic variability of hormonal function of Leydig cells, which was confirmed by considerable changes in it during postnatal development at puberty. Definitive genotypic differences in hormonal activity of Leydig cells appeared by late pubertal and early postpubertal development (day 60) and coincided with termination of morphological differentiation of Leydig cells and appearance of the differentiated cell population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号