首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes.  相似文献   

2.
Extracellular matrix components play an important role in modulating cellular activity. To study such capacities of the matrix, fibroblasts are frequently cultured in a three-dimensional gel and contraction is assessed as a measure of cellular activity. Since a connective tissue contains several types of collagen, we investigated the effect of gels composed of collagen I alone or in combination with 10% collagen III and/or 5% collagen V on contraction by human periodontal ligament fibroblasts. Gels containing collagen V contracted much faster than those without this type of collagen. Blocking of the integrin beta1-subunit with an activity-blocking antibody delayed (gels with collagen V) or almost completely blocked (gels without collagen V) contraction. Use of an antibody directed against integrin alpha2beta1 resulted in delay of gel contraction for gels both with and without collagen V. Anti-integrin alpha v beta3 or RGD peptides partially blocked contraction of gels containing collagen V, but had no effect on gels consisting of collagen I alone. The beta1-containing integrins are involved in the basal contraction by fibroblasts that bind to collagens I and III. The enhanced contraction, stimulated by collagen V, appears to be mediated by integrin alpha v beta3. We conclude that collagen V may play an important modulating role in connective tissue contraction. Such a modulation may occur during the initial stages of wound healing and/or tissue regeneration.  相似文献   

3.
Multicellular organoids of mouse mammary epithelium were established in culture either upon or within collagen matrices of various concentrations. Growth and tubule morphogenesis within the matrices were dependent upon the concentration of collagen, both being maximal in gels composed of 2 mg collagen/ml gel. Growth was more extensive in cultures established in gel than on gel especially at intermediate concentrations of collagen, with cell growth on gel seemingly independent of collagen concentration. Our results demonstrate that local collagen concentration can significantly affect epithelial cell growth and morphology.  相似文献   

4.
5.
6.
Rabbit chondrocytes were cultivated in vitro using the collagen/hyaluronan membrane. The membrane did not show any adverse effects on chondrocyte viability during in vitro cultivation. The inoculated cells grew without any negative changes. According to the histochemical analyses: (i) hematoxylin and eosin; (ii) safranin O; and (iii) rabbit anti-human collagen type II staining, the rabbit chondrocytes maintained their morphology and phenotype during in vitro cultivation. The collagen/hyaluronan membrane became more stable and stiffer after long time cultivation. The proliferation of the chondrocytes stabilised the structure of the membrane. The collagen/hyaluronan membrane is suitable material for the chondrocyte growth and could provide functional tissue-engineered scaffold for cartilage repair.  相似文献   

7.
Collagen: the organic matrix of bone   总被引:4,自引:0,他引:4  
Collagen is the principal organic matrix in bone. The triple helical region of the molecule is 1014 amino acids long. In fibrils these molecules are staggered axially by integers of 234 residues or 68 nm (D). This axial shift occurs by self-assembly and can be understood in terms of a periodicity in the occurrence of apolar and polar residues in the amino acid sequence. Because the molecular length L = 4.47 D, there are gaps 1.5 X 36.5 nm regularly arrayed throughout the fibrils. The three-dimensional molecular arrangement is a quasi-hexagonal lattice with three distinct values for the principal interplanar spacings. Analysis of the intensity distribution in the medium-angle X-ray diffraction patterns from tendons has produced the following picture of the molecular arrangement in fibrils (Fraser et al. 1983). The molecular helices have a coherent length of 32 nm and are tilted parallel to a specific place within the lattice. A regular azimuthal interaction exists between these helices. This crystalline region could be the overlap region with a non-crystalline gap region. However, the gap is still regular axially and the molecular helices retain their structure; their lateral packing is perturbed although they retain a 'gap'. Neutron and X-ray scattering experiments have shown that calcium hydroxyapatite crystals occur in the gap and are nucleated at a specific though unknown location within the gap. The c-axis of the apatite crystals is parallel to the fibril axis and its length c = 0.688 nm is close to the axial periodicity in a protein with an extended beta-conformation. If the telopeptides at the end of a collagen molecule do have this conformation they would either have a highly heterogeneous conformation or exist in a folded manner because the overall length of the telopeptides is shorter than a regular collagen repeat of 0.029 nm would allow.  相似文献   

8.
Elastin coacervate as a matrix for calcification   总被引:1,自引:0,他引:1  
A calcifying system has been developed which, for the first time, demonstrates the capacity of α-elastin, as the coacervate, to initiate calcification in an invitro system. This is achieved with blocking the amino and carboxyl charged groups by N-formylation and O-methylation. The calcification system is of particular interest as it demonstrates the initiation of calcification after blockage of the charged amino and carboxyl groups. This leaves either neutral sites or the charged pyridinium moieties as the sites of initiation.  相似文献   

9.
The technique described by Katan (Anal. Biochem. 74, 1976, 132–137) for detecting c-type cytochromes on dodecyl sulfate/polyacrylamide gels by their red fluorescence has been adapted for use with bacterial extracts. No purification is required, except for organic solvent treatment to remove lipids. A wide range of c-type cytochromes has been found to give very similar red fluorescence. Molecular weights can be estimated by means of dansylated marker proteins fluorescing green.  相似文献   

10.
11.
Mouse mammary epithelial cultivated on collagen gels demonstrate active spreading as the cells form monolayers. In this novel system, initiation of cell spreading is preceded by de novo synthesis of type IV collagen. The newly synthesized collagen is partitioned such that after 48 hr, approximately 24% is found in the culture medium, 35% is intracellular, and 41% is deposited in the extracellular matrix of the developing epithelium. Cultures deprived of serum failed to spread and to synthesize collagen. Proline analogues were shown to inhibit cell spreading and to suppress collagen synthesis in a dose-dependent manner. Cytochalasin D inhibition of F-actin elongation was shown to prevent cell spreading but not to suppress total collagen synthesis. During cytochalasin D treatment, inhibition of cell spreading was shown to result from failure to deposit or to maintain deposited collagen in the epithelium extracellular matrix. The data indicate that synthesis and extracellular deposition of a major basal lamina component (viz. type IV collagen) must precede and then accompany epithelial cell spreading in collagen gel culture. It is suggested that the microfilament apparatus, through some hypothetical integral membrane protein, can anchor extracellular type IV collagen, which then provides a necessary condition for cell spreading.  相似文献   

12.
Collagen fabrics as biomaterials   总被引:3,自引:0,他引:3  
Tissue-engineered implants require appropriate biomaterials to serve the required physical function of the tissue being repaired or replaced while facilitating remodeling of the implant. We report on the development of implantable fabrics manufactured from continuous collagen threads. The collagen threads are formed by extrusion of native, acid-extracted bovine colagen into a buffered solution of polyethylene glycol, followed by rinsing and air drying. The high manufacturing rate of such threads permits the production of colagen fabrics of various configurations. The fiber diameter can be controlled, and threads with dry diameters as low as 25 mum have been produced. Braids and bundles of collagen threads implanted as a replacement of the anterior cruciate ligament in a dog model were completely remodeled into host tissue by 12 weeks. Knitted collagen fabrics implanted in a rat abdominal repair model prevented herniation, and connective tissue ingrowth was observed within the fabric by 12 weeks.  相似文献   

13.
14.
15.
Determinations of the viscoelastic properties of extracellular matrices (ECMs) are becoming increasingly important for accurate predictive modeling of biological systems. Since the interactions of the cells with the ECM and surrounding fluid (e.g., blood, media) each affect cell behavior; it is advantageous to evaluate the ECM's material properties in the presence of the hydrating fluid. Conventional rheometry methods evaluate the bulk material properties of gel materials while displacing the hydrating liquid film. Such systems are therefore nonideal for testing materials such as ECMs, whose properties change with dehydration. The new patent pending, piezoelectrically actuated linear rheometer is designed to eliminate this problem. It uses a single cantilever to apply an oscillating load to the gel and to sense the gel's deflection. Composed of two thin film piezopolymer layers, the cantilever uses one layer as the actuator, and the second piezopolymer layer to measure the lateral movement of its attached probe. The viscoelastic nature of the ECM adds stiffness and damping to the system, resulting in the attenuation and phase shift of the sensor's output voltage. From these parameters, the ECM's shear storage and loss moduli are then determined. Initial tests on the BioMatrix I and type I collagen ECMs reveal that the first prototype of the piezoelectrically actuated linear rheometer is capable of accurately determining the trend and order of magnitude of an ECM's viscoelastic properties. In this paper, details of the rheometer's design and operating principles are described.  相似文献   

16.
Pathogen-induced vascular gels: Ethylene as a host intermediate   总被引:8,自引:0,他引:8  
A cell free culture filtrate from 6-day cultures of Fusarium oxysporum f. sp. cubense was processed to give: (1) a heterogeneous enzyme mixture, (2) purified polygalacturonase (PG), (3) partially-purified polygalacturonate lyase and (4) β-1,4-xylanase. When introduced into explanted castor bean leaves each of these preparations was able to promote the formation of vascular system-obstructing gels. Exposure of castor bean leaves to ethylene (3 ppm) also triggered gel formation. Explanted leaves produced ethylene in response to the enzyme mixture and PG. Vascular gel formation did not occur when ethylene production in response to enzymes was prevented.  相似文献   

17.
Mammary epithelial cells were prepared by collagenase digestion of tissue from mid-pregnant rabbits and cultured for up to 6 days on either collagen gels or an extracellular matrix prepared from the same tissue. The behaviour of the cells in serum-supplemented medium containing combinations of insulin, prolactin, hydrocortisone, estradiol and progesterone were monitored by measuring rates of casein synthesis, lactose synthesis, DNA synthesis and protein degradation. After 6 days, epithelial cells on floating collagen gels showed substantial increases in casein synthesis and DNA synthesis over freshly-prepared cells, following a decline during the first 3 days when the collagen gels are contracting. The optimum hormone combination for casein synthesis was insulin + prolactin + hydrocortisone, whereas for optimum DNA synthesis the additional presence of estradiol and progesterone was required. Cells on extracellular matrix showed increased rates of both casein synthesis and DNA synthesis by day 6 in the presence of insulin + prolactin + hydrocortisone, with additional estradiol + progesterone having an inhibitory effect. Whereas on day 2 rates of intracellular protein degradation were generally lower in cells on extracellular matrix, by day 6 rates of protein degradation were lowest in cells cultured on collagen gels with insulin + prolactin + hydrocortisone. In all cases, rates of lactose synthesis fell to low levels as the culture proceeded. Pulse-chase labelling of freshly-prepared cells with [32P]orthophosphate in medium containing serum and insulin + prolactin + hydrocortisone demonstrated that newly-synthesized casein was degraded during its passage through the epithelial cell. The influences of the collagen gels and extracellular matrix and of the hormone combinations on epithelial cell differentiation and secretory activity are discussed.  相似文献   

18.
Many load-bearing soft tissues exhibit mechanical anisotropy. In order to understand the behavior of natural tissues and to create tissue engineered replacements, quantitative relationships must be developed between the tissue structures and their mechanical behavior. We used a novel collagen gel system to test the hypothesis that collagen fiber alignment is the primary mechanism for the mechanical anisotropy we have reported in structurally anisotropic gels. Loading constraints applied during culture were used to control the structural organization of the collagen fibers of fibroblast populated collagen gels. Gels constrained uniaxially during culture developed fiber alignment and a high degree of mechanical anisotropy, while gels constrained biaxially remained isotropic with randomly distributed collagen fibers. We hypothesized that the mechanical anisotropy that developed in these gels was due primarily to collagen fiber orientation. We tested this hypothesis using two mathematical models that incorporated measured collagen fiber orientations: a structural continuum model that assumes affine fiber kinematics and a network model that allows for nonaffine fiber kinematics. Collagen fiber mechanical properties were determined by fitting biaxial mechanical test data from isotropic collagen gels. The fiber properties of each isotropic gel were then used to predict the biaxial mechanical behavior of paired anisotropic gels. Both models accurately described the isotropic collagen gel behavior. However, the structural continuum model dramatically underestimated the level of mechanical anisotropy in aligned collagen gels despite incorporation of measured fiber orientations; when estimated remodeling-induced changes in collagen fiber length were included, the continuum model slightly overestimated mechanical anisotropy. The network model provided the closest match to experimental data from aligned collagen gels, but still did not fully explain the observed mechanics. Two different modeling approaches showed that the level of collagen fiber alignment in our uniaxially constrained gels cannot explain the high degree of mechanical anisotropy observed in these gels. Our modeling results suggest that remodeling-induced redistribution of collagen fiber lengths, nonaffine fiber kinematics, or some combination of these effects must also be considered in order to explain the dramatic mechanical anisotropy observed in this collagen gel model system.  相似文献   

19.
The extracellular matrix as a scaffold for tissue reconstruction   总被引:33,自引:0,他引:33  
The extracellular matrix (ECM) consists of a complex mixture of structural and functional proteins and serves an important role in tissue and organ morphogenesis, maintenance of cell and tissue structure and function, and in the host response to injury. Xenogeneic and allogeneic ECM has been used as a bioscaffold for the reconstruction of many different tissue types in both pre-clinical and human clinical studies. Common features of ECM-associated tissue remodeling include extensive angiogenesis, recruitment of circulating progenitor cells, rapid scaffold degradation and constructive remodeling of damaged or missing tissues. The ECM-induced remodeling response is a distinctly different phenomenon from that of scar tissue formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号