首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The freeze-fracture technique was used to analyse the organization of the plasma membrane, as well as membranes of cytoplasmic organelles, of the pathogenic protozoan Trichomonas vaginalis. Rosettes formed by 4 to 14 intramembranous particles were seen on the fracture faces of the membrane lining the anterior flagella as well as in fracture faces of the plasma membrane enclosing the anterior region of the protozoan and in cytoplasmic organelles. Special organization of the membrane particles were also seen in the region of association of the recurrent flagellum to the cell body.  相似文献   

2.
The quick-freezing and freeze-etching techniques were used to analyze surface domains of Tritrichomonas foetus. The surface of the protozoan body was not smooth, presenting surface projections, except on the flagellar surface. Images of the actual surface of the anterior flagella revealed the presence of intramembranous particles that form rosettes, as observed on the protoplasmic fracture face. They may represent integral transmembrane proteins exposed at the cell surface. Surface specializations were also observed at the flagella base and where the recurrent flagellum attaches to the cell body.  相似文献   

3.
ABSTRACT The quick-freezing and freeze-etching techniques were used to analyze surface domains of Tritrichomonas foetus . The surface of the protozoan body was not smooth, presenting surface projections, except on the flagellar surface. Images of the actual surface of the anterior flagella revealed the presence of intramembranous particles that form rosettes, as observed on the protoplasmic fracture face. They may represent integral transmembrane proteins exposed at the cell surface. Surface specializations were also observed at the flagella base and where the recurrent flagellum attaches to the cell body.  相似文献   

4.
The polyene antibiotic, filipin, was used as a probe for the detection of sterols in the freeze-fractured plasma membrane and the flagellar membranes of the pathogenic protozoa, Tritrichomonas foetus. A homogeneous distribution of filipin-sterol complexes was seen throughout the plasma membrane, and the membrane of the three anterior and the one recurrent flagella. No or very few filipin-sterol complexes were observed in some specialized regions such as the base of the flagella (necklace), the portion of the recurrent flagellum, and that part of the cell body to which the flagellum was attached. The density of filipin-sterol complexes varied from one cell to the other. In some cells, about 205 complexes/μm2 were seen. A larger number of filipin-sterol complexes were observed on both faces of the membrane of cytoplasmic structures, probably corresponding to vacuoles. No complexes were seen in the nuclear membrane and in the membrane of the endoplasmic reticulum. Very few or no complexes were observed in the membrane of the hydrogenosomes. Treatment of living cells with filipin induced aggregation of filipin-sterol complexes at some points of the plasma membrane.  相似文献   

5.
Monocercomonas sp. from the wood-snake Tropidophis melanurus was studied using fast freezing of alive and fixed cells followed by freeze-fracture and deep-etching. Cytochemistry for enzymes (acid phosphatase, neutral phosphatase, and thiaminopyrophosphatase) and for carbohydrates and endocytosis of gold-labeled albumin were also performed. The Golgi complex is formed by 12-14 cisternae with typical cis and trans faces connected to a network of tubular and cisternal structures, and is positive for thiaminopyrophosphatase at the trans face. Intraluminal filamentous structures are seen connecting the two faces of the cisternae of the Golgi complex. Lysosomes appeared to contain acid and neutral phosphatases. Cytochemistry showed that lysosomes predominate among the unidentified vacuoles in the cytoplasm. Some vesicles are involved in the endocytic pathway, while others are derived from the Golgi complex. Hydrogenosomes have a rod-like or dumb-bell shape. Two of the anterior flagella present rosettes, when observed in replicas of freeze-fractured material, formed by circular arrangement of intramembranous particles on both P and E faces. The other anterior and the recurrent flagella do not show such rosettes but showed ribbon-like arrays of particles at the point where they emerge from the cell body.  相似文献   

6.
Two strains of Trichomonas vaginalis, JH162A, with low pathogenicity, and Balt 44, with high pathogenicity, as well as one highly pathogenic strain, KV-1, of Tritrichomonas foetus were studied by freeze-fracture electron microscopy. The protoplasmic faces (PFs) of the cell membranes of all three strains of both species had similar numbers of intramembranous particles (IMPs); however, the particles in the external faces (EFs) of these membranes were least abundant in Trichomonas vaginalis strain Balt 44 and most numerous in those of strain JH162A of this species. In Tritrichomonas foetus strain KV-1 the number of IMPs in the EF was close to but somewhat lower than that in the mild strain of the human urogenital trichomonad. In both species, the anterior, but not the recurrent, flagella had rosette-like formations, consisting of ~9 to 12 IMPs on both the PFs and EFs. The numbers and distribution of the rosettes appeared to vary among different flagella and in different areas of individual flagella of a single organism belonging to either species. The freeze-fracture electron micrographs provided a more complete understanding of the fine structure of undulating membranes of Trichomonadinae, as represented by Trichomonas vaginalis, and of Tritrichomonadinae (the Tritrichomonas augusta-type), as exemplified by Tritrichomonas foetus, than was gained from previous transmission and scanning electron microscope studies. Typically three longitudinal rows of IMPs on the PF of the recurrent flagellum of Trichomonas vaginalis were noted in the area of attachment of this flagellum to the undulating membrane. The functional aspects of the various structures and differences between certain organelles revealed in the two trichomonad species by the freeze-fracture method are discussed.  相似文献   

7.
Two strains of Trichomonas vaginalis, JH162A , with low pathogenicity, and Balt 44, with high pathogenicity, as well as one highly pathogenic strain, KV-1, of Tritrichomonas foetus were studied by freeze-fracture electron microscopy. The protoplasmic faces ( PFs ) of the cell membranes of all three strains of both species had similar numbers of intramembranous particles (IMPs); however, the particles in the external faces (EFs) of these membranes were least abundant in Trichomonas vaginalis strain Balt 44 and most numerous in those of strain JH162A of this species. In Tritrichomonas foetus strain KV-1 the number of IMPs in the EF was close to but somewhat lower than that in the mild strain of the human urogenital trichomonad . In both species, the anterior, but not the recurrent, flagella had rosette-like formations, consisting of approximately 9 to 12 IMPs on both the PFs and EFs. The numbers and distribution of the rosettes appeared to vary among different flagella and in different areas of individual flagella of a single organism belonging to either species. The freeze-fracture electron micrographs provided a more complete understanding of the fine structure of undulating membranes of Trichomonadinae , as represented by Trichomonas vaginalis, and of Tritrichomonadinae (the Tritrichomonas augusta -type), as exemplified by Tritrichomonas foetus, than was gained from previous transmission and scanning electron microscope studies. Typically three longitudinal rows of IMPs on the PF of the recurrent flagellum of Trichomonas vaginalis were noted in the area of attachment of this flagellum to the undulating membrane. The functional aspects of the various structures and differences between certain organelles revealed in the two trichomonad species by the freeze-fracture method are discussed.  相似文献   

8.
Summary Membranes were isolated from the main electric organ of Electrophorus electricus and studied by means of cytochemistry and freezefracture. The membrane fractions consisted of vesicles inside-in as determined by localization of anionic sites using colloidal iron and cationized ferritin particles. The anionic sites were not homogeneously distributed on the surface of the vesicle. Freeze-fracture showed the presence of intramembranous particles associated with either protoplasmic (P) or extracellular (E) faces of the membrane. Regions of the membrane without particles were observed. The results are discussed in relation to the existence of association between intramembranous particles and membrane receptors.For all correspondence  相似文献   

9.
The ultrastructure of Trypanosoma brucei gambiense was investigated by the freeze-fracture method. Three different regions of the continuous plasma membrane; cell body proper, flagellar pocket, and flagellum were compared in density and distribution of the intramembranous particles (IMP's). The IMP-density was highest in the flagellar pocket membrane and lowest in flagellum. Intra membranous particles of the cell body membrane were distributed uniformly on both the protoplasmic (P) and exoplasmic (E) faces. On the P face of the flagellar membrane, a single row of IMP-clusters was seen along the juncture of the flagllum to the cell body. Since the spacing of the IMP-clusters was almost equal to the spacing of the paired rivet structures observed in thin section, these clusters likely are related to the junction of flagellum and cell body. At the neck of the flagellar pocket, several linear arrays of IMP's were found on the P face of the flagellar membrane, while on the E face rows of depressions were seen. At the flagellar base, the clusters of IMP's were only seen on the P face. On the flagellar pocket membrane, particle-rich depressions and linear particle arrays were also found on the P face, while on the E face such special particle arrangements were not recognized. These particle-rich depressions may correspond to the sites of pinocytosis of the bloodstream forms which have been demonstrated in thin sections.  相似文献   

10.
Regional differences in the structure of the plasma membrane and acrosome membrane of squid spermatozoa were studied by freeze-fracture and thin section electron microscopy. In regions of close apposition the plasma membrane and acrosome membrane are adjoined to one another by regularly spaced linkages. These linkage sites, overlie a set of fibers located at the inner face of the acrosomal membrane. The acrosomal fibers terminate in a layer of granular material located at the base of the acrosome. Detergent treatment of sperm releases the fibers and granular material as an interconnected complex. Freeze-fracture replicas reveal a random arrangement of intramembranous particles in the plasma membrane over the sperm head and linear aggregates of intramembranous particles in the acrosomal membrane. Several regional differences in the structure of the flagellar plasma membrane are present. The thickness of the glycocalyx is progressively reduced distally along the flagellum. Freeze-fracture replicas show evenly spaced linear arrays of intramembranous particles which extend parallel t o the flagellar long axis. Examination of spermatozoa extracted to disrupt flagellar geometry suggest that the dense fiber-doublet microtubule complexes are attached to the plasma membrane. The possible functional role of these membrane differentiations and their relationship t o membrane structures in mammalian spermatozoa are discussed.  相似文献   

11.
The fine structure of epimastigotes of Blastocrithidia culicis was studied by transmission electron microscopy of thin sections and freeze-fracture replicas. This parasite presents a well developed endoplasmic reticulum and Golgi complex systems. Differences in the density and organization of the intramembranous particles were observed between the membranes which enclose the cell body and the flagellum. Ridge-like elevations, visualized in freeze-fracture replicas, were observed in sites where the mitochondrial branches touched the plasma membrane. A special array of membrane particles was observed on both faces of the flagellar and the cell body membranes at the region where the flagellum adheres to the cell body. It appeared as strands made of two rows of membrane particles. Filipin-treated cells were used for the localization of membrane sterols in freeze-fracture replicas. The number of filipin-sterol complexes varied from cell to cell. In some cells, rows of filipin-sterol complexes were seen. No complexes were observed in the region of the attachment of the flagellum to the cell body.  相似文献   

12.
Freeze-fracture electron microscopy was used to investigate intramembranous particle (IMP) densities and particle distributions in the plasma membrane and tonoplast of the cells of secreting and nonsecreting leaves of Avicennia germinans (L.) Steam. Intramembranous particle densities of the protoplasmic (P) and exoplasmic (E) face of the plasma membrane and tonoplast were significantly higher in hypodermal cells of secreting leaves than of nonsecreting leaves. In contrast, no significant differences in the frequency of intramembranous particles were found in any membrane faces of secreting or nonsecreting mesophyll cells. However, particle densities were higher in the plasma membrane and tonoplast of the mesophyll cells, compared to the hypodermal cells, with the exception of the P-face of hypodermal plasma membranes of secreting tissue, which had the highest particle density measured. Particle distributions were dispersed and no discernible patterns such as paracrystalline arrays or other multi-IMP structures were observed. Results support the hypothesis that secretion is coupled to changes in membrane ultrastructure, and the possibility that salt secretion is an active process driven by integral membrane proteins such as the H+/ATPase. Additionally, the hypodermal cells of the leaf may function as storage reservoirs for salt as well as water, suggesting a regulatory role in salt secretion.  相似文献   

13.
ABSTRACT. Tritrichomonas foetus is a flagellated protozoon found in urogenital tract of cattle. Its free movement in liquid medium is powered by the coordinated movement of three flagella projecting towards the anterior region of the cell, and one recurrent flagellum that forms a junction with the cell body and ends as a free projection in the posterior region of the cell. We have used video microscopy and digital image processing to analyze the relationships between the movements of these flagella. The anterior flagella beat in a ciliary type pattern displaying effective and recovery strokes, while the recurrent flagellum beats in a typical flagellar wave form. One of the three anterior flagella has a distinctive pattern of beating. It beats straight in its forward direction as opposed to the ample beats performed by the others. Frequency measurements obtained from cells swimming in a viscous medium shows that the beating frequency of the recurrent flagelium is approximate twice the frequency for the three anterior flagella. We also observed that the costa and the axostyle do not show any active motion. On the contrary, they form a cytoskeletal base for the anchoring and orientation of the flagella.  相似文献   

14.
Lacy ER  Luciano L  Reale E 《Tissue & cell》1991,23(2):223-234
Specialized epithelial cells lining the elasmobranch nephron bear numerous flagella which are organized into closely-packed, parallel rows forming ribbons (Lacy et al., 1989a). The compact arrangement of the adjacent flagella comprising each ribbon suggests they are structurally bound together, forming a single unit which functions to force urine along the nephric tubule. In the present study, the structural basis of the interflagellar connections was investigated by scanning electron microscopy (SEM) and by transmission electron microscopy (TEM) of thin sections and freeze fracture replicas. Various fixatives and histochemical stains were used to elucidate the structure and composition of the interflagellar adhesive material. SEM of the luminal cell surface showed the organization of the flagella in ribbons. In TEM, fixation in a solution containing glutaraldehyde and tannic acid, Ruthenium red or Alcian blue, or postfixation in reduced OsO(4) revealed that the plasma membrane of each flagellum of a ribbon was surrounded by a thin layer of surface coat composed of very short filaments more prominent at sites where adjacent flagella were in close apposition. In comparable locations, freeze-fracture replicas disclosed small aggregates or plaques of particles arranged in an irregular, discontinuous line on both faces P and E of the flagellar membrane. In areas where the flagella were not arranged into ribbons (most frequently after immersion fixation), the surface coat was thick and expanded and, in replicas, the intramembranous particles were randomly scattered. All of these plasma membrane specializations appear to function in binding adjacent flagella and thus facilitate a coordinated flagellar ribbon beat.  相似文献   

15.
The density and distribution of intramembranous particles was analyzed in freeze fracture replicas of the plasma membrane of amastigotes, and infective as well as noninfective promastigotes of Leishmania mexicana amazonensis. The density of intramembranous particles on both protoplasmic and extracellular faces was higher in infective than in noninfective promastigotes and it was lower in amastigotes than in promastigotes. Amastigotes purified immediately after tissue homogenization were surrounded by a membrane which corresponded to the membrane which lined the endocytic vacuoles where the parasites were located within the tissue macrophages. Aggregation of the particles was seen in the flagellar membrane at the point of emergence of the flagellum from the flagellar pocket. Differences in the organization of the particles were seen in the membrane which lined the flagellar pocket of amastigotes and promastigotes. The polyene antibiotic, filipin, was used as a probe for the detection of sterols in the plasma membrane of L. m. amazonensis. The effect of filipin in the parasite's structure was analyzed by scanning electron microscopy and by transmission electron microscopy of thin sections and freeze fracture replicas. Filipin sterol complexes were distributed throughout the membrane which lined the cell body, the flagellar pocket, and the flagellum. No filipin sterol complexes were seen in the cell body-flagellar adhesion zone. The density of filipin sterol complexes was lower in the membrane lining the flagellum than in that lining the cell body of promastigotes.  相似文献   

16.
Summary The yolk platelets ofXenopus laevis have been studied by thin-section and freeze-fracture electron microscopy to characterize the boundary membrane during yolk formation. Throughout vitellogenesis, large yolk platelets are in close contact with smaller nascent yolk organelles. Two types of primordial yolk platelets (I and II) have been discriminated. After membrane fusion these precursors can be completely incorporated into the main body of existing platelets, numerous yolk crystals then merge and form one uniformly stratified core. Lipid droplets are tightly attached to the membrane at all developmental stages of yolk platelets. A direct connection of endoplasmic reticulum to the membranes of yolk platelets was not observed. On freezeetching replicas, yolk-platelet membranes present fracture faces with intramembranous particles (IMP) of various sizes and a heterogeneous distribution of approximately 200–600 IMP/μm2 at the E face, and 1200–2100 IMP/μm2 at the P face. Again, this presentation of the membrane exhibits neither anastomoses to the endoplasmic reticulum, nor caveolae that exclude the uptake of yolk-containing vesicles into these yolk organelles. Proteinaceous yolk platelets tend to fracture along their periphery through the superficial layers.  相似文献   

17.
Freeze-fracture replicas reveal that five distinct types of intramembranous particle arrays coexist within a small sector of the C. reinhardtii cell flagellar membrane. Of these, three are newly described in this report. (a) Flagellar bracelets, which encircle the flagellar bases, appear to be intrinsically ordered strands of particles of unknown function. (b) Strut arrays, representing nine sites where the basal body attaches to the membrane, appear to serve a mechanical function. (c) Contractile vacuole arrays, which develop into circular plaques of particles, appear to serve as "membrane gates" through which water is discharged from the cell.  相似文献   

18.
SYNOPSIS. Additional information on host interactions with trypanosomatid membranes was obtained from studies of a monomorphic strain of Trypanosoma brucei harvested at peak parasitemia from intact and lethally irradiated rats. Pellets of trypanosomes were fixed briefly in glutaraldehyde and processed for thin section electron microscopy or freeze-cleave replicas. Observations of sectioned material facilitated orientation and comparison of details seen in replicas. Fracture faces of cell body and flagellar membranes as well as 3-dimensional views of the nuclear membrane were studied. Cell body membranes of 80% of the organisms from intact rats contained random arrays of intramembranous particles (IMP). Aggregated clusters of particles appeared on the fracture faces of 20% of the trypanosomes. Some of these membranes had nonrandomly distributed particles aligned in distinct rows on the outer fracture face of both cell body and flagellum. Many inner face fractures of the cell body membranes had a particle arrangement similar to the longitudinal alignment of cytoskeletal microtubules. No aggregated particle distribution was seen in membranes of trypanosomes harvested from lethally irradiated rats. Replicas of trypanosome pellets also had plasmanemes as a series of attached, empty, coated membrane vesicles. These structures were found in close association with, as well as widely separated from the parasites. The shedding of these vesicles and the variation of particles in cell body membranes are discussed in light of antibody-induced architectural and antigenic changes in surface properties of trypanosomatids. The convex face of the inner membrane of the nucleus also is covered with randomly arrayed particles. More IMP were observed on the inner than on the outer nuclear membranes. Images of nuclear pores were also seen. The importance of these structures in drug and developmental studies of trypanosomes is discussed. On fracture faces of the flagellar membrane there were miniature maculae adherentes, unique to the inner fracture face and occurring only at regions of membrane apposition between cell body and flagellum. Each cluster of particles exposed by the freeze-cleave method corresponds to an electron-dense plaque seen in thin section images. However, because of a unique fracture pattern, these plaques were not revealed on the apposing body membranes, as illustrated in thin sectioned organisms.  相似文献   

19.
ABSTRACT. A trichomonad flagellate, Tritrichomonas mobilensis n. sp., is described from the large intestine of the squirrel monkey, Saimiri boliviensis boliviensis. The organism has a lanceolate body 7–10.5 μm in length; a well developed undulating membrane; a stout, tubular axostyle with periaxostylar rings that terminate in a cone-shaped segment projecting from the posterior end of the cell; and a moderately wide costa. The anterior flagella are about as long as the body, and the recurrent flagellum is of the acroneme type. All its characteristics suggest that the new species belongs in the Tritrichomonas augusta type of the subfamily Tritrichomonadinae.  相似文献   

20.
Observations on freeze-fractured membranes of a Trypanosome   总被引:1,自引:0,他引:1  
Pure preparations of Trypanosoma brucei, free from plasma and cellular components were isolated from rat blood, and concentrated into loose pellets by low-speed centrifugation. Pellets were either processed for thin sectioning as a control for general morphology, or glycerol-treated after glutaraldehyde fixation for preparation of freeze-fracture replicas. Concentration of cells of 50,000–100,000/mm2 of sectioned or fractured surface facilitated identification of fracture faces of the cell body, invaginated flagellar pocket and flagellum. Particle distribution and A and B faces of these regions of the cell are described. A collar of B face particles occurs around the neck of the flagellar pocket, possibly associated with a junction controlling ingress of ingested materials to coated vesicles formed along the membrane defining the pocket. A and B faces of the flagellum and adjoining surface of the cell body have shown that the only intra-membrane specialization corresponding to the miniature ‘maculae adherentes’ described previously in thin sections is probably an uninterrupted series of small clusters (3–6) of 80 Å particles on the A face of the flagellar membrane. It is proposed that these arrays represent attachment points for strands linking the axoneme and paraxial rod to the flagellar surface, and are not directly concerned with the physical adhesion of the flagellum to the cell body surface—a linkage that appears to be established within the extracellular gap between these apposed surfaces of the cell. The potential use of freeze-etching in further study of the external antigens of the infective cell is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号