首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of high concentrations of inert macromolecules, the self-association of proteins is strongly enhanced through an entropic, excluded-volume effect variously called macromolecular crowding or depletion attraction. Despite the predicted large magnitude of this universal effect and its far-reaching biological implications, few experimental studies of macromolecular crowding have been reported. Here, we introduce a powerful new technique, fast field-cycling magnetic relaxation dispersion, for investigating crowding effects on protein self-association equilibria. By recording the solvent proton spin relaxation rate over a wide range of magnetic field strengths, we determine the populations of coexisting monomers and decamers of bovine pancreatic trypsin inhibitor in the presence of dextran up to a macromolecular volume fraction of 27%. Already at a dextran volume fraction of 14%, we find a 30-fold increase of the decamer population and 510(5)-fold increase of the association constant. The analysis of these results, in terms of a statistical-mechanical model that incorporates polymer flexibility as well as the excluded volume of the protein, shows that the dramatic enhancement of bovine pancreatic trypsin inhibitor self-association can be quantitatively rationalized in terms of hard repulsive interactions.  相似文献   

2.
In the crowded intranuclear environment, entropic depletion forces between macromolecules are expected to be strong. A review of simulations of linear polymers leads to several predictions about probable conformations of a polynucleosome chain in these conditions. These include a globular conformation, variable compaction due to different local rigidity or curvature of the mosaic of isochores, satellite sequences, and nucleosomes containing different histone variants, and the possibility that chromosomes represent separate phases like those seen in heterogeneous particle mixtures by experiment and simulation. Experimental results which show that macromolecular crowding alone, in the absence of exogenous cations, can stabilise interphase chromosomes and cause self-association of polynucleosome chains are presented. Together, these considerations suggest that macromolecular crowding and entropic forces are major factors in packing polynucleosome chains in vivo.  相似文献   

3.
A sequential model for nucleated protein fiber formation is proposed that is similar in broad outline to models proposed previously (Thermodynamics of the Polymerization of Protein, Academic Press, New York, (1975); Biophys. J. 50 (1986) 583) but generalized to allow for thermodynamic nonideality resulting from a high degree of volume occupancy by inert macromolecular cosolutes (macromolecular crowding). The effect of volume occupancy on the rate of fiber formation is studied in the transition-state rate-limited regime through systematic variation of rate-limiting step (prenuclear oligomer formation, nucleus formation or fiber growth), shape of prenuclear oligomer, size of nucleus, extent of reversibility, nature of inert cosolute (hard globular particle or random coil polymer) and size of inert cosolute relative to that of fiber-forming protein. It is found that crowding can accelerate the rate of fiber formation by as much as several orders of magnitude. The extent of acceleration for a given degree of volume occupancy depends upon several factors, the most conspicuous of which is the stoichiometry of the nucleus. In contrast, the rate of redistribution of fiber length, which occurs on a much slower time scale than polymer formation, is found to be insensitive to the extent of crowding.  相似文献   

4.
The intracellular environment contains high concentrations of macromolecules occupying up to 30% of the total cellular volume. Presence of these macromolecules decreases the effective volume available for the proteins in the cell and thus increases the effective protein concentrations and stabilizes the compact protein conformations. Macromolecular crowding created by various macromolecules such as proteins, nucleic acids, and carbohydrates has been shown to have a significant effect on a variety of cellular processes including protein aggregation. Most studies of macromolecular crowding have used neutral, flexible polysaccharides that function primarily via excluded volume effect as model crowding agents. Here we have examined the effects of more rigid polysaccharides on protein structure and aggregation. Our results indicate that rigid and flexible polysaccharides influence protein aggregation via different mechanisms and suggest that, in addition to excluded volume effect, changes in solution viscosity and non-specific protein–polymer interactions influence the structure and dynamics of proteins in crowded environments.  相似文献   

5.
Elastic incoherent neutron scattering was used to explore solvent isotope effects on average macromolecular dynamics in vivo. Measurements were performed on living E. coli bacteria containing H(2)O and D(2)O, respectively, close to physiological conditions of temperature. Global macromolecular flexibility, expressed as mean square fluctuation (MSF) values, and structural resilience in a free energy potential, expressed as a mean effective force constant, [Symbol: see text]k'[Symbol: see text], were extracted in the two solvent conditions. They referred to the average contribution of all macromolecules inside the cell, mostly dominated by the internal motions of the protein fraction. Flexibility and resilience were both found to be smaller in D(2)O than in H(2)O. A difference was expected because the driving forces behind macromolecular stabilization and dynamics are different in H(2)O and D(2)O. In D(2)O, the hydrophobic effect is known to be stronger than in H(2)O: it favours the burial of non-polar surfaces as well as their van der Waals' packing in the macromolecule cores. This may lead to the observed smaller MSF values. In contrast, in H(2)O, macromolecules would present more water-exposed surfaces, which would give rise to larger MSF values, in particular at the macromolecular surface. The smaller [Symbol: see text]k'[Symbol: see text] value suggested a larger entropy content in the D(2)O case due to increased sampling of macromolecular conformational substates.  相似文献   

6.
Unfolded states of ribonuclease A were used to investigate the effects of macromolecular crowding on macromolecular compactness and protein folding. The extent of protein folding and compactness were measured by circular dichroism spectroscopy, fluorescence correlation spectroscopy, and NMR spectroscopy in the presence of polyethylene glycol (PEG) or Ficoll as the crowding agent. The unfolded state of RNase A in a 2.4 M urea solution at pH 3.0 became native in conformation and compactness by the addition of 35% PEG 20000 or Ficoll 70. In addition, the effects of macromolecular crowding on inert macromolecule compactness were investigated by fluorescence correlation spectroscopy using Fluorescence-labeled PEG as a test macromolecule. The size of Fluorescence-labeled PEG decreased remarkably with an increase in the concentration of PEG 20000 or Ficoll 70. These results show that macromolecules are favored compact conformations in the presence of a high concentration of macromolecules and indicate the importance of a crowded environment for the folding and stabilization of globular proteins. Furthermore, the magnitude of the effects on macromolecular crowding by the different sizes of background molecules was investigated. RNase A and Fluorescence-labeled PEG did not become compact, and had folded conformation by the addition of PEG 200. The effect of the chemical potential on the compaction of a test molecule in relation to the relative sizes of the test and background molecules is also discussed.  相似文献   

7.
Inside cells, the concentration of macromolecules can reach up to 400 g/L. In such crowded environments, proteins are expected to behave differently than in vitro. It has been shown that the stability and the folding rate of a globular protein can be altered by the excluded volume effect produced by a high density of macromolecules. However, macromolecular crowding effects on intrinsically disordered proteins (IDPs) are less explored. These proteins can be extremely dynamic and potentially sample a wide ensemble of conformations under non-denaturing conditions. The dynamic properties of IDPs are intimately related to the timescale of conformational exchange within the ensemble, which govern target recognition and how these proteins function. In this work, we investigated the macromolecular crowding effects on the dynamics of several IDPs by measuring the NMR spin relaxation parameters of three disordered proteins (ProTα, TC1, and α-synuclein) with different extents of residual structures. To aid the interpretation of experimental results, we also performed an MD simulation of ProTα. Based on the MD analysis, a simple model to correlate the observed changes in relaxation rates to the alteration in protein motions under crowding conditions was proposed. Our results show that 1) IDPs remain at least partially disordered despite the presence of high concentration of other macromolecules, 2) the crowded environment has differential effects on the conformational propensity of distinct regions of an IDP, which may lead to selective stabilization of certain target-binding motifs, and 3) the segmental motions of IDPs on the nanosecond timescale are retained under crowded conditions. These findings strongly suggest that IDPs function as dynamic structural ensembles in cellular environments.  相似文献   

8.
The biological cell is known to exhibit a highly crowded milieu, which significantly influences protein aggregation and association processes. As several cell degenerative diseases are related to the self-association and fibrillation of amyloidogenic peptides, understanding of the impact of macromolecular crowding on these processes is of high biomedical importance. It is further of particular relevance as most in vitro studies on amyloid aggregation have been performed in diluted solution which does not reflect the complexity of their cellular surrounding. The study presented here focuses on the self-association of the type-2 diabetes mellitus related human islet amyloid polypeptide (hIAPP) in various crowded environments including network-forming macromolecular crowding reagents and protein crowders. It was possible to identify two competing processes: a crowder concentration and type dependent stabilization of globular off-pathway species and a – consequently - retarded or even inhibited hIAPP fibrillation reaction. The cause of these crowding effects was revealed to be mainly excluded volume in the polymeric crowders, whereas non-specific interactions seem to be most dominant in protein crowded environments. Specific hIAPP cytotoxicity assays on pancreatic β-cells reveal non-toxicity for the stabilized globular species, in contrast to the high cytotoxicity imposed by the normal fibrillation pathway. From these findings it can be concluded that cellular crowding is able to effectively stabilize the monomeric conformation of hIAPP, hence enabling the conduction of its normal physiological function and prevent this highly amyloidogenic peptide from cytotoxic aggregation and fibrillation.  相似文献   

9.
We have studied the effect of a crowded (macromolecular) solution on reaction rates of the decarboxylating enzymes urease, pyruvate decarboxylase and glutamate decarboxylase. A variety of crowding agents were used including haemoglobin, lysozyme, various dextrans and polyethylene glycol. Enzyme reaction rates of all three enzymes show two different types of effect that separate the globular proteins from the polysaccharides/polymers. Increasing concentration of globular proteins caused a dramatic rise in enzyme activity up to 30% crowding concentration then the activity decreased, whereas the polymers caused a concentration dependent decrease in activity. The viscosities of the globular proteins were low compared to the polymers. The increased activity with proteins may be due to the decreased amount of free water, which leads to higher effective concentration of substrates, or to an increased oligomeric state by self-association. The lower activities of all enzymes with all agents at high concentrations may be explained by a decrease in rates of diffusion. An increase in protein crowding (decrease in cell water content) may contribute to pathological conditions including cataract and Alzheimer's disease.  相似文献   

10.
Theoretical models predict that macromolecular crowding can increase protein folding stability, but depending on details of the models (e.g., how the denatured state is represented), the level of stabilization predicted can be very different. In this study, we represented the native and denatured states atomistically, with conformations sampled from explicit-solvent molecular dynamics simulations at room temperature and high temperature, respectively. We then designed an efficient algorithm to calculate the allowed fraction, f, when the protein molecule is placed inside a box of crowders. That a fraction of placements of the protein molecule is disallowed because of volume exclusion by the crowders leads to an increase in chemical potential, given by Δμ = −kBT lnf. The difference in Δμ between the native and denatured states predicts the effect of crowding on the folding free energy. Even when the crowders occupied 35% of the solution volume, the stabilization reached only 1.5 kcal/mol for cytochrome b562. The modest stabilization predicted is consistent with experimental studies. Interestingly, a mixture of different sized crowders was found to exert a greater effect than the sum of the individual species of crowders. The stabilization of crowding on the binding stability of barnase and barstar, based on atomistic modeling of the proteins, was similarly modest. These findings have profound implications for macromolecular crowding inside cells.  相似文献   

11.
We have studied the effect of macromolecular crowding reagents, such as polysaccharides and bovine serum albumin, on the refolding of tetradecameric GroEL from urea-denatured protein monomers. The results show that productive refolding and assembly strongly depends on the presence of nucleotides (ATP or ADP) and background macromolecules. Nucleotides are required to generate an assembly-competent monomeric conformation, suggesting that proper folding of the equatorial domain of the protein subunits into a native-like structure is essential for productive assembly. Crowding modulates GroEL oligomerization in two different ways. First, it increases the tendency of refolded, monomeric GroEL to undergo self-association at equilibrium. Second, crowding can modify the relative rates of the two competing self-association reactions, namely, productive assembly into a native tetradecameric structure and unproductive aggregation. This kinetic effect is most likely exerted by modifications of the diffusion coefficient of the refolded monomers, which in turn determine the conformational properties of the interacting subunits. If they are allowed to become assembly-competent before self-association, productive oligomerization occurs; otherwise, unproductive aggregation takes place. Our data demonstrate that the spontaneous refolding and assembly of homo-oligomeric proteins, such as GroEL, can occur efficiently (70%) under crowding conditions similar to those expected in vivo.  相似文献   

12.
The self-association equilibrium of a tracer protein, apomyoglobin (apoMb), in highly concentrated crowded solutions of ribonuclease A (RNase A) and human serum albumin (HSA), has been studied as a model system of protein interactions that occur in crowded macromolecular environments. The rotational diffusion of the tracer protein labeled with two different fluorescent dyes, 8-anilinonaphthalene-1-sulfonate and fluorescein isothiocyanate, was successfully recorded as a function of the two crowder concentrations in the 50-200 mg/mL range, using picosecond-resolved fluorescence anisotropy methods. It was found that apoMb molecules self-associate at high RNase A concentration to yield a flexible dimer. The apparent dimerization constant, which increases with RNase A concentration, could also be estimated from the fractional contribution of monomeric and dimeric species to the total fluorescence anisotropy of the samples. In contrast, an equivalent mass concentration of HSA does not result in tracer dimerization. This different effect of RNase A and HSA is much larger than that predicted from simple models based only on the free volume available to apoMb, indicating that additional, nonspecific interactions between tracer and crowder should come into play. The time-resolved fluorescence polarization methods described here are expected to be of general applicability to the detection and quantification of crowding effects in a variety of macromolecules of biological relevance.  相似文献   

13.
Extinction, colonization, and species occupancy in tidepool fishes   总被引:1,自引:0,他引:1  
Despite the increasing sophistication of ecological models with respect to the size and spatial arrangement of habitat, there is relatively little empirical documentation of how species dynamics change as a function of habitat size and the fraction of habitat occupied. In an assemblage of tidepool fishes, I used maximum-likelihood estimation to test whether models which included habitat size provided a better fit to empirical data on extinction and colonization probabilities than models that assumed constant probabilities over all habitats. I found species differences in how extinction and colonization probabilities scaled with habitat size (and hence local population size). However, there was little evidence for a relationship between extinction and colonization probabilities and the fraction of occupied tidepools, as assumed in simple metapopulation models. Instead, colonization and extinction were independent of the fraction of occupied tidepools, favoring a MacArthur-Wilson island-mainland model. When I incorporated declines in extinction probability with tidepool volume in a simple simulation model, I found that predicted occupancy could change greatly, especially when colonization was low. However, the predicted fraction of occupied patches in the simulation model changed little when I incorporated the range of values reported here for extinction and colonization and the rate at which they scale with habitat size. Quantifying extinction and colonization patterns of natural populations is fundamental to understanding how species are distributed spatially and whether metapopulation models of species occupancy provide explanatory power for field populations. Received: 14 March 1997 / Accepted: 21 September 1997  相似文献   

14.
The presence of collagen and charged macromolecules like glycosaminoglycans (GAGs) in the interstitial space limits the space available for plasma proteins and other macromolecules. This phenomenon, known as interstitial exclusion, is of importance for interstitial fluid volume regulation. Physical/mathematical models are presented for calculating the exclusion of electrically charged and neutral macromolecules that equilibrate in the interstitium under various degrees of hydration. Here, a central hypothesis is that the swelling of highly electrically charged GAGs with increased hydration shields parts of the neutral collagen of the interstitial matrix from interacting with electrically charged macromolecules, such that exclusion of charged macromolecules exhibits change due to steric and charge effects. GAGs are also thought to allow relatively small neutral, but also charged macromolecules neutralized by a very high ionic strength, diffuse into the interior of GAGs, whereas larger macromolecules may not. Thus, in the model, relatively small electrically charged macromolecules, such as human serum albumin, and larger neutral macromolecules such as IgG, will have quite similar total volume exclusion properties in the interstitium. Our results are in agreement with ex vivo and in vivo experiments, and suggest that the charge of GAGs or macromolecular drugs may be targeted to increase the tissue uptake of macromolecular therapeutic agents.  相似文献   

15.
Amyloid formation and accumulation is a hallmark of protein misfolding diseases and is associated with diverse pathologies including type II diabetes and Alzheimer''s disease (AD). In vitro, amyloidogenesis is widely studied in conditions that do not simulate the crowded and viscous in vivo environment. A high volume fraction of most biological fluids is occupied by various macromolecules, a phenomenon known as macromolecular crowding. For some amyloid systems (e.g. α-synuclein) and under shaking condition, the excluded volume effect of macromolecular crowding favors aggregation, whereas increased viscosity reduces the kinetics of these reactions. Amyloidogenesis can also be catalyzed by hydrophobic-hydrophilic interfaces, represented by the air-water interface in vitro and diverse heterogeneous interfaces in vivo (e.g. membranes). In this study, we investigated the effects of two different crowding polymers (dextran and Ficoll) and two different experimental conditions (with and without shaking) on the fibrilization of amyloid-β peptide, a major player in AD pathogenesis. Specifically, we demonstrate that, during macromolecular crowding, viscosity dominates over the excluded volume effect only when the system is spatially non homogeneous (i.e. an air-water interface is present). We also show that the surfactant activity of the crowding agents can critically influence the outcome of macromolecular crowding and that the structure of the amyloid species formed may depend on the polymer used. This suggests that, in vivo, the outcome of amyloidogenesis may be affected by both macromolecular crowding and spatial heterogeneity (e.g. membrane turn-over). More generally, our work suggests that any factors causing changes in crowding may be susceptibility factors in AD.  相似文献   

16.
17.
The scaled particle theory for mixtures of hard spheres is used to calculate the effect of added proteins of varying size upon the solubility of sickle cell hemoglobin. For a given added weight, smaller macromolecules are more effective in lowering the solubility of sickle cell hemoglobin. Calculations based upon this model agree with many recently reported observations. The observed effect of the addition of myoglobin or hemoglobin α-chains on the minimum gelling concentration of sickle cell hemoglobin (Benesch et al.), however, is smaller than predicted. We suggest that this difference may arise from self-association of the added species.  相似文献   

18.
大分子拥挤(macromolecular crowding effect)代表了细胞内高度拥挤状态,其源于非特异性容积排斥效应,是细胞内与pH、离子强度等同等重要的生理因素。生物大分子介导的拥挤环境对于DNA-DNA、DNA-蛋白质的相互作用以及DNA高级结构、细胞核或核区结构的稳定具有重要作用。在拥挤环境中,大分子总浓度的增加将增强溶质的浓缩倾向,从而降低溶液的自由能。拥挤效应是胞内大分子环境的总体反映,具有高度的缓冲性,保证了胞内反应的稳定进行及细胞功能的正常行使。  相似文献   

19.
The confinement of macromolecules within enclosures or "pores" of comparable dimensions results in significant size- and shape-dependent alterations of macromolecular chemical potential and reactivity. Calculations of the magnitude of this effect for model particles of different shapes in model enclosures of different shapes were carried out using hard particle partition theory developed by Giddings et al. (J. Phys. Chem. 1968. 72:4397-4408). Results obtained indicate that the equilibrium constants of reactions, such as isomerization, self-association, and site binding, that result in significant change in macromolecular size, shape, and/or mobility may be altered within pores by as much as several orders of magnitude relative to the value in the unbounded or bulk phase. Confinement also produces a substantial size-dependent outward force on the walls of an enclosure. These results are likely to be important within the fluid phase of biological media, such as the cytoplasm of eukaryotic cells, containing significant volume fractions of large fibrous structures (e.g., the cytomatrix).  相似文献   

20.
An equilibrium statistical-thermodynamic model for the effect of volume exclusion arising from high concentrations of stable macromolecules upon the stability of a trace globular protein with respect to denaturation by heat and by chaotropes is presented. The stable cosolute and the native form of the trace protein are modeled by effective hard spherical particles. The denatured state of the trace protein is represented as an ensemble of substates modeled by random coils having the same contour length but different rms end-to-end distances (i.e., different degrees of compaction). The excess or nonideal chemical potential of the native state and of each denatured substate is calculated as a function of the concentration of stable cosolute, leading to an estimate of the relative abundance of each state and substate, and the ensemble average free energy of the transition between native and denatured protein. The effect of the addition of stable cosolute upon the temperature of half-denaturation and upon the concentration of chaotrope required to half-denature the tracer at constant temperature is then estimated. At high cosolute concentration (>100 g/l) these effects are predicted to be large and readily measurable experimentally, provided that an experimental system exhibiting a fully reversible unfolding equilibrium at high total macromolecular concentration can be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号