首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodontal ligament width is precisely maintained throughout the lifetime of adult mammals but the biological mechanisms that inhibit ingrowth of bone into this soft connective tissue are unknown. As bone morphogenic proteins strongly stimulate osteogenesis and can induce ectopic bone formation in vivo, we tested the hypothesis that topical application of this powerful osteogenic agent will overwhelm the osteogenic inhibitory mechanisms of periodontal ligament cells and induce ankylosis. Wounds through the alveolar bone and periodontal ligament were created in 45 male Wistar rats. Defects were filled with either a collagen implant or collagen plus bone morphogenic protein (BMP-7), or were left unfilled (controls). Three animals per time period were killed on days 2, 5, 10, 21 and 60 after surgery for each wound type. Cellular proliferation and clonal growth in periodontal tissues were assessed by 3H-thymidine labeling 1 h before death, followed by radioautography. Cellular differentiation of soft and mineralizing connective tissue cell populations was determined by immunohistochemical staining of α-smooth muscle actin, osteopontin and bone sialoprotein. In regenerating periodontium, BMP-7 induced abundant bone formation by 21 days (2.5-fold greater than controls or collagen implant only; P<0.001), but by day 60 the volume of the newly formed bone had returned to baseline levels and was similar for all groups. Independent of the type of treatment, periodontal ligament width was unchanged throughout the experimental period (P>0.05). Animals treated with BMP-7 implants showed greatly increased cellular proliferation in the periodontal ligament adjacent to the wound site and in the regenerating alveolar bone at days 5 and 10 after wounding compared to the other treatment groups (P<0.005). Animals in the BMP-7 group exhibited similar spatial and temporal staining patterns for α-smooth muscle actin, osteopontin and bone sialoprotein as controls. Collectively, these data show that BMP-7 promoted the proliferation of precursor cells in the periodontal ligament but did not induce osteogenic differentiation in this compartment. Consequently a powerful osteogenic stimulus like BMP-7 cannot significantly perturb the mechanisms that regulate periodontal ligament width and maintain periodontal homeostasis. Received: 2 March 1998 / Accepted: 16 June 1998  相似文献   

2.
Casual observations have revealed that the anterior dentition of impala and other antelope is loosely embedded, with the tips of the teeth movable over a distance of 1middot;5 to 2mm. The comb-like anterior dentition of impala Aepyceros melampus is utilized extensively for grooming purposes, and it was hypothesized that the looseness of the teeth might be related to the grooming function. A sample of 12 impala mandibles was obtained from Pilanesberg National Park. Boputhatswana. Six of the incisor canine (IC) complexes were examined macroscopically, radiographically and histologically, while the remaining six were used to determine the alveolar depth relative to total root length, The findings were: (1) wide periodontal ligament spaces, most prominent in the apical region; (2) a loose, highly vascular periodontal ligament; (3) well-developed trans-septal periodontal ligament fibres; and (4) relatively shallow alveoli, with only approximately two-thirds of the roots included within the alveoli. In no case could looseness be ascribed to pathological changes in the periodontal ligament, cementum or alveolar bone. These features suggest that the looseness of the teeth is associated with a see-saw action of the teeth about a fulcrum below the alveolar bone crest. with the maintenance of the closed resting position of the teeth being facilitated by the well-developed trans-septal fibres. It is suggested that the minimal interdental space maintained by this arrangement during grooming assists in the efficient removal of parasites from the pelage by impala.  相似文献   

3.
牙周膜是位于牙根与牙槽骨之间的结缔组织,具有自我更新和多向分化的能力。无论是在正畸治疗还是在牙周组织修复及再生过程中,牙周膜的成骨分化都是必不可少的。近年来,许多国内外学者致力于研究影响牙周膜成骨分化的因素,包括机械力,细胞因子,药物等,这些因素可以单独作用于牙周膜,也可以联合使用加快牙周膜成骨分化,可以为临床上加快牙齿移动和修复牙周组织缺损提供更多新的思路。现就影响牙周膜成骨分化的诸多因素及其主要机制作一综述。  相似文献   

4.

Background

FAM20C is a kinase that phosphorylates secretory proteins. Previous studies have shown that FAM20C plays an essential role in the formation and mineralization of bone, dentin and enamel. The present study analyzed the loss-of-function effects of FAM20C on the health of mouse periodontal tissues.

Methods

By crossbreeding 2.3 kb Col 1a1-Cre mice with Fam20Cfl/fl mice, we created 2.3 kb Col 1a1-Cre;Fam20Cfl/fl (cKO) mice, in which Fam20C was inactivated in the cells that express Type I collagen. We analyzed the periodontal tissues in the cKO mice using X-ray radiography, histology, scanning electron microscopy and immunohistochemistry approaches.

Results

The cKO mice underwent a remarkable loss of alveolar bone and cementum, along with inflammation of the periodontal ligament and formation of periodontal pockets. The osteocytes and lacuno-canalicular networks in the alveolar bone of the cKO mice showed dramatic abnormalities. The levels of bone sialoprotein, osteopontin, dentin matrix protein 1 and dentin sialoprotein were reduced in the Fam20C-deficient alveolar bone and/or cementum, while periostin and fibrillin-1 were decreased in the periodontal ligament of the cKO mice.

Conclusion

Loss of Fam20C function leads to periodontal disease in mice. The reduced levels of bone sialoprotein, osteopontin, dentin matrix protein 1, dentin sialoprotein, periostin and fibrillin-1 may contribute to the periodontal defects in the Fam20C-deficient mice.  相似文献   

5.
目的:研究咬合创伤大鼠牙周组织中MCP-1、ICAM-1的表达情况。方法:12周龄雄性SD大鼠24只,随机分为4组(1个正常对照组和3个实验组),每组6只。正常对照组不作任何处理,实验组通过在大鼠左上颌第一磨牙颌面粘接树脂并内置不锈钢丝形成高出颌面0.6-0.8 mm的树脂层以建立同侧下颌咬合创伤实验动物模型,分别于建模后3、5、7 d处死各组大鼠,分离大鼠下颌组织,运用HE、Masson染色观察咬合创伤牙周组织形态变化,同时用免疫组织化学染色法检测MCP-1和ICAM-1的表达变化。结果:HE染色显示,正常组牙周膜纤维排列整齐,牙骨质表面较为平整,牙槽骨结构致密。实验组牙周膜纤维排列紊乱,牙周膜血管水肿充血、间隙改变,牙槽骨和牙骨质表面不平整,出现骨吸收。Masson染色显示,正常组牙周组织未见异常表现;实验组牙周膜纤维排列紊乱,可见水解断裂,局部有血流障碍和血管破裂。免疫组织化学显示,各实验组MCP-1和ICAM-1的表达变化均较正常对照组增多,差异有显著性(P0.05)。其中7 d组表达水平最高,与其他2组相比有统计学意义(P0.05)。结论:咬合创伤可引起大鼠牙周组织形态变化,MCP-1、ICAM-1的表达随时间呈现递增的趋势。  相似文献   

6.
Enamel matrix derivative (EMD), a porcine extract harvested from developing porcine teeth, has been shown to promote formation of new cementum, periodontal ligament and alveolar bone. Despite its widespread use, an incredibly large variability among in vitro studies has been observed. The aim of the present study was to determine the influence of EMD on cells at different maturation stages of osteoblast differentiation by testing 6 cell types to determine if cell phenotype plays a role in cell behaviour following treatment with EMD. Six cell types including MC3T3-E1 pre-osteoblasts, rat calvarial osteoblasts, human periodontal ligament (PDL) cells, ROS cells, MG63 cells and human alveolar osteoblasts were cultured in the presence or absence of EMD and proliferation rates were quantified by an MTS assay. Gene expression of collagen1(COL1), alkaline phosphate(ALP) and osteocalcin(OC) were investigated by real-time PCR. While EMD significantly increased cell proliferation of all cell types, its effect on osteoblast differentiation was more variable. EMD significantly up-regulated gene expression of COL1, ALP and OC in cells early in their differentiation process when compared to osteoblasts at later stages of maturation. Furthermore, the effect of cell passaging of primary human PDL cells (passage 2 to 15) was tested in response to treatment with EMD. EMD significantly increased cell proliferation and differentiation of cells at passages 2–5 however had completely lost their ability to respond to EMD by passages 10+. The results from the present study suggest that cell stimulation with EMD has a more pronounced effect on cells earlier in their differentiation process and may partially explain why treatment with EMD primarily favors regeneration of periodontal defects (where the periodontal ligament contains a higher number of undifferentiated progenitor cells) over regeneration of pure alveolar bone defects containing no periodontal ligament and a more limited number of osteoprogenitor cells.  相似文献   

7.
It is well known that proinflammatory cytokines produced by host cells play an important role in periodontal tissue destruction. However, the localization of the cytokines in in vivo periodontal tissues during development of periodontal disease has not been determined. Immunohistochemical expression of proinflammatory cytokines including IL-1!, IL-1#, and TNF-! was examined at 1 and 3 h, and 1, 2, 3, and 7 days after topical application of lipopolysaccharide (LPS; 5 mg/ml in physiological saline) from E. coli into the rat molar gingival sulcus. In the normal periodontal tissues, a small number of cytokine-positive epithelial cells were seen in the junctional epithelium (JE), oral sulcular and oral gingival epithelium, in addition to macrophages infiltrating in the subjunctional epithelial area and osteoblasts lining the alveolar bone surface. Epithelial remnants of Malassez existing throughout periodontal ligament were intensely positive for IL-1# but negative for the other two cytokines. At 3 h after the LPS treatment, almost all cells in the JE were strongly positive for the cytokines examined. In addition, several cytokine-positive cells, including neutrophils, macrophages, and fibroblasts, were seen in the subjunctional epithelial connective tissue. At day 2, expression of the cytokines in the JE gradually decreased, while cytokine-positive cells in the connective tissue increased in number. Positive staining of the cytokines was seen in osteoclasts and preosteoclasts which appeared along the alveolar bone margin in this period. The number of cytokine-positive cells decreased by day 7. These findings indicate that, in addition to macrophages, neutrophils, and fibroblasts, the JE cells are a potent source of TNF-!, IL-1!, and IL-1# reacting to LPS application, and suggest that JE cells may play an important role in the first line of defense against LPS challenge, and the proinflammatory cytokines transiently produced by various host cells may be involved in the initiation of inflammation and subsequent periodontal tissue destruction.  相似文献   

8.
This study investigated cell survival and gene expression under various compressive stress conditions mimicking orthodontic force by using a newly developed in vitro model of human periodontal ligament-like tissue (HPdLLT). The HPdLLT was developed by three-dimensional culturing of human periodontal ligament fibroblasts in a porous poly-l-lactide matrix with threefold increased culture media permeability due to hydrophilic modification. In vitro HPdLLTs in experimental groups were subjected to 5, 15, 25 and 35 g/cm2 compressive stress for 1, 3, 7 or 14 days; controls were cultured over the same periods without compressive stress. Cell morphology and cell apoptosis in the experimental and control groups were investigated using scanning electron microscopy and caspase-3/7 detection. Real-time polymerase chain reaction was performed for seven osteogenic and osteoclastic genes. Similar extracellular matrix and spindle-shaped cells were observed inside or on the surface of in vitro HPdLLTs, with no relation to compressive stress duration or intensity. Similar caspase-3/7 activity indicating comparable apoptosis levels was observed in all samples. Receptor activator of nuclear factor kappa-B ligand and bone morphogenetic protein 2 genes showed characteristic “double-peak” expression at 15 and 35 g/cm2 on day 14, and alkaline phosphatase and periodontal ligament-associated protein 1 expression peaked at 5 g/cm2 on day 14; other genes also showed time-dependent and load-dependent expression patterns. The in vitro HPdLLT model system effectively mimicked the reaction and gene expression of the human periodontal ligament in response to orthodontic force. This work provides new information on the effects of compressive stress on human periodontal ligament tissue.  相似文献   

9.
Alveolar bone supports teeth during chewing through a ligamentous interface with tooth roots. Although tooth loads are presumed to direct the development and adaptation of these tissues, strain distribution in the alveolar bone at different stages of tooth eruption and periodontal development is unknown. This study investigates the biomechanical effects of tooth loading on developing alveolar bone as a tooth erupts into occlusion. Mandibular segments from miniature pigs, Sus scrofa, containing M1 either erupting or in functional occlusion, were loaded in compression. Simultaneous recordings were made from rosette strain gages affixed to the lingual alveolar bone and the M2 crypt. Overall, specimens with erupting M1s were more deformable than specimens with occluding M1s (mean stiffness of 246 vs. 944 MPa, respectively, p=0.004). The major difference in alveolar strain between the two stages was in orientation. The vertically applied compressive loads were more directly reflected in the alveolar bone strains of erupting M1s, than those of occluding M1s, presumably because of the mediation of a more mature periodontal ligament (PDL) in the latter. The PDL interface between occluding teeth and alveolar bone is likely to stiffen the system, allowing transmission of occlusal loads. Alveolar strains may provide a stimulus for bone growth in the alveolar process and crest.  相似文献   

10.
11.
Fibroblast growth factor-2 (FGF-2) enhances the formation of new alveolar bone, cementum, and periodontal ligament (PDL) in periodontal defect models. However, the mechanism through which FGF-2 acts in periodontal regeneration in vivo has not been fully clarified yet. To reveal the action mechanism, the formation of regenerated tissue and gene expression at the early phase were analyzed in a beagle dog 3-wall periodontal defect model. FGF-2 (0.3%) or the vehicle (hydroxypropyl cellulose) only were topically applied to the defect in FGF-2 and control groups, respectively. Then, the amount of regenerated tissues and the number of proliferating cells at 3, 7, 14, and 28 days and the number of blood vessels at 7 days were quantitated histologically. Additionally, the expression of osteogenic genes in the regenerated tissue was evaluated by real-time PCR at 7 and 14 days. Compared with the control, cell proliferation around the existing bone and PDL, connective tissue formation on the root surface, and new bone formation in the defect at 7 days were significantly promoted by FGF-2. Additionally, the number of blood vessels at 7 days was increased by FGF-2 treatment. At 28 days, new cementum and PDL were extended by FGF-2. Moreover, FGF-2 increased the expression of bone morphogenetic protein 2 (BMP-2) and osteoblast differentiation markers (osterix, alkaline phosphatase, and osteocalcin) in the regenerated tissue. We revealed the facilitatory mechanisms of FGF-2 in periodontal regeneration in vivo. First, the proliferation of fibroblastic cells derived from bone marrow and PDL was accelerated and enhanced by FGF-2. Second, angiogenesis was enhanced by FGF-2 treatment. Finally, osteoblastic differentiation and bone formation, at least in part due to BMP-2 production, were rapidly induced by FGF-2. Therefore, these multifaceted effects of FGF-2 promote new tissue formation at the early regeneration phase, leading to enhanced formation of new bone, cementum, and PDL.  相似文献   

12.
13.

Background

The options for medical use of signaling molecules as stimulators of tissue regeneration are currently limited. Preclinical evidence suggests that fibroblast growth factor (FGF)-2 can promote periodontal regeneration. This study aimed to clarify the activity of FGF-2 in stimulating regeneration of periodontal tissue lost by periodontitis and to evaluate the safety of such stimulation.

Methodology/Principal Findings

We used recombinant human FGF-2 with 3% hydroxypropylcellulose (HPC) as vehicle and conducted a randomized double-blinded controlled trial involving 13 facilities. Subjects comprised 74 patients displaying a 2- or 3-walled vertical bone defect as measured ≥3 mm apical to the bone crest. Patients were randomly assigned to 4 groups: Group P, given HPC with no FGF-2; Group L, given HPC containing 0.03% FGF-2; Group M, given HPC containing 0.1% FGF-2; and Group H, given HPC containing 0.3% FGF-2. Each patient underwent flap operation during which we administered 200 µL of the appropriate investigational drug to the bone defect. Before and for 36 weeks following administration, patients underwent periodontal tissue inspections and standardized radiography of the region under investigation. As a result, a significant difference (p = 0.021) in rate of increase in alveolar bone height was identified between Group P (23.92%) and Group H (58.62%) at 36 weeks. The linear increase in alveolar bone height at 36 weeks in Group P and H was 0.95 mm and 1.85 mm, respectively (p = 0.132). No serious adverse events attributable to the investigational drug were identified.

Conclusions

Although no statistically significant differences were noted for gains in clinical attachment level and alveolar bone gain for FGF-2 groups versus Group P, the significant difference in rate of increase in alveolar bone height (p = 0.021) between Groups P and H at 36 weeks suggests that some efficacy could be expected from FGF-2 in stimulating regeneration of periodontal tissue in patients with periodontitis.

Trial Registration

ClinicalTrials.gov NCT00514657  相似文献   

14.
Tooth attachment in the majority of the bony fish is by ankylosis or fibrous membrane. However, in one group of the osteichthys, the trigger-fish or balistids, tooth attachment is by means of a periodontium composed of a shallow alveolar socket, a periodontal ligament and acellular cementum. Histologically, the balistid periodontal ligament is composed of a dense fibro-cellular connective tissue possessing an abundance of typical fibrocytes, collagen fiber bundles, and oxytalan fibers. The collagen fiber bundles which resemble the principal fiber bundles of the mammalian periodontal ligament are inserted into the bone of the shallow alveolar sockets and are anchored to the teeth by means of a layer of amorphous acellular cementum that covers the radicular dentin. No cementoblasts were found in functional teeth, and epithelial rests are lacking. The mid-central zone of the balistid periodontal ligament is occupied by small blood vessels.  相似文献   

15.
Serially stained uncalcified sections of young dog mandibles were examined to study the structure of the periodontal ligament of the erupting first right molar. The periodontal ligament around tooth crown presents three zones. The first, near the dental follicle, is a tick layer of parallel collagen bundles with numerous flattened fibroblasts. The second, intermediate, contains a blood vessels network, particularly veins and capillaries. The third, outer, is occupied by a continuous layer of osteoclasts and osteoblasts. Also the periodontal ligament around the tooth presents three layers, the outer and the intermediate rich of cells more than the inner. Particularly, the outer layer shows numerous osteoblasts surrounding the developing trabeculae of the alveolar bone and the collagen fiber bundles of the periodontal ligament. These penetrate into the trabeculae and appear similar to the osteoid layer. These results indicate that the alveolar bone increases by ossification of the connective tissue of the periodontal ligament.  相似文献   

16.
This study aimed to observe the regenerative effect of brain-derived neurotrophic factor (BDNF) in a non-human primate furcation defect model. Class II furcation defects were created in the first and second molars of 8 non-human primates to simulate a clinical situation. The defect was filled with either, Group A: BDNF (500 µg/ml) in high-molecular weight-hyaluronic acid (HMW-HA), Group B: BDNF (50 µg/ml) in HMW-HA, Group C: HMW-HA acid only, Group D: empty defect, or Group E: BDNF (500 µg/ml) in saline. The healing status for all groups was observed at different time-points with micro computed tomography. The animals were euthanized after 11 weeks, and the tooth-bone specimens were subjected to histologic processing. The results showed that all groups seemed to successfully regenerate the alveolar buccal bone, however, only Group A regenerated the entire periodontal tissue, i.e., alveolar bone, cementum and periodontal ligament. It is suggested that the use of BDNF in combination with a scaffold such as the hyaluronic acid in periodontal furcation defects may be an effective treatment option.  相似文献   

17.
Summary A disintegrin and metalloprotease with thrombospondin type 1 motifs (ADAMTS) is a family of extracellular proteases and implicated in cleaving proteoglycans, such as aggrecan, versican and brevican. No information is available about expression or localization of these ADAMTSs in teeth. Versican is a large chondroitin sulfate proteoglycan that is present in a variety of connective tissue including dental pulp, dentin, cementum and periodontal ligaments. The present study was designed to investigate expression of ADAMTSs and versican during rat tooth eruption. Rat maxillary first molars in weeks 1, 2, 3, 4 and 6 were examined. The mRNA expression of ADAMTS1, ADAMTS4, ADAMTS5 and versican was localized using in situ hybridization. ADAMTS1, ADAMTS4, ADAMTS5 and versican were expressed in dental pulp cells, odontoblasts, cementoblasts, cementocytes, periodontal ligament cells, osteoblasts and osteocytes. The temporal and spatial expression pattern in these cellular phenotypes was comparable among ADAMTSs and versican. The present study suggests that dental pulp cells, odontoblasts, cementoblasts, cementocytes, periodontal ligament cells, osteoblasts and osteocytes may be involved in both production and degradation of versican with secreting ADAMTS1, ADAMTS4 and ADAMTS5.  相似文献   

18.
Background aimsMesenchymal stromal cells (MSC) possess multilineage differentiation potential and characteristics of self-renewal. It has been reported that MSC can acquire characteristics of cells in the periodontal ligament (PDL) in vitro. Moreover, the transplantation of MSC has been shown to be a promising strategy for treating periodontal defects. However, little is known about the fate of MSC in periodontal tissue in vivo. The aim of this study was to trace the paths of MSC after transplantation into periodontal tissues in vivo.MethodsMSC labeled with bromodeoxyuridine (BrdU) were transplanted into periodontal defects of beagle dogs. Six weeks after surgery, the animals were killed and decalcified specimens were prepared. Migration and differentiation of MSC were detected by single/double immunohistochemistry and a combination of immunohistochemistry and in situ hybridization.ResultsBrdU-labeled MSC were observed distributing into periodontal tissue that included alveolar bone, PDL, cementum and blood vessels and expressing surface markers typical of osteoblasts and fibroblasts.ConclusionsCumulatively, our data suggest that MSC migrate throughout periodontal tissue and differentiate into osteoblasts and fibroblasts after transplantation into periodontal defects at 6 weeks in vivo, and have the potential to regenerate periodontal tissue.  相似文献   

19.
20.
Production of 6-ethyl-5-hydroxy-2,7-dimethoxy-1,4-naphthoquinone was obtained by growth of Hendersonula toruloidea on Czapek-Dox broth supplemented with malt extract. Stationary cultures were grown at 28°C for 21–22 days yielding about 6 mg of metabolite per 700 ml of culture fluid. The best incorporations of isotopic tracers were obtained by addition at the 20th day of growth, followed by harvest 24–48 hr later. With [2-14C]acetate, incorporation values were in the range of 0.1–0.3% with dilution values from 2000 to 5900. With [1-14C]propionate, incorporations were much lower (0.04%) and dilutions much higher (120,000). Activity from [14CH3]methionine was incorporated only into the OCH3 groups (incorporation values, 0.5–0.7%). Nuclear magnetic resonance studies confirmed that propionate was not a precursor. Using [1,2-13C]acetate, substantial enrichments were obtained at all carbon atoms except those of the OCH3 groups. The following pairs of carbon atoms were shown to be derived from acetate units: C-1 + 2, C-3 + 4, C-5 + 10, C-6 + 7, C-8 + 9, C-11 + 12. The biosynthetic pathway is clearly that of acetate plus polymalonate. Experiments with [2-13C2H3]acetate suggested that the “starter” acetate unit was located at positions C-12 + 11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号