首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate and automatic control strategies for a feedback-control system of volatile carbon source feeding and dissolved oxygen (DO) level were investigated. To maintain the optimal ethanol concentration for microbial growth, carbon dioxide concentration in exhaust gas was used as a stepwise control parameter of ethanol feeding. A proportional-differential (PD) control program was used to correct the errors. The coefficient of stepwise control was calculated stoichiometrically, and parameters of PD were experimentally preset and were not changed during cultivation. DO was also controlled by the PD control and the stepwise program based on carbon dioxide concentration of the exhaust gas. Agitation speed and partial pressure of oxygen of the inlet gas were changed stepwise in accordance with the oxygen consumption rate. The stepwise coefficients were estimated from stoichiometry and material balance of molecular oxygen. The PD control program was only used for the agitation speed control to correct the fluctuations of DO level. The parameters did not need to be changed during cultivation. By use of these sophisticated control programs for fed-batch culture of Candida brassicae, ethanol concentration and DO level were accurately controlled at 3.4–3.7 g/l and 2.2–2.8 ppm, respectively, while cell mass concentration reached about 80 g/l. No manual operation was needed.  相似文献   

2.
Growth of Saccharomyces cerevisiae LBG H 1022 on ethanol under transient-state conditions was studied. As a cultivation device, an aerated Chemap fermentor combined with continuously working gas analyzers for oxygen and carbon dioxide was used. Yeast cell dry matter, substrate concentration, specific oxygen uptake, specific carbon dioxide release, and respiration quotient were measured during the different transient states. Depending on which range of the dilution rate the initial steady state was found, we obtain different responses to the shift experiment. For the lower range, up to D = 0.07, we deal with damped oscillations ranging above and below the steady-state values. For the higher specific growth rates, the rate of damping is strongly enhanced and the shape of the curves becomes an asymptotic approach to the final steady states.  相似文献   

3.
Microaerobic cultivation conditions are often beneficial for the biotechnological production of reduced metabolites like 2,3‐butanediol. However, due to oxygen limitation, process monitoring based on oxygen transfer rate, or dissolved oxygen measurement provides only limited information. In this study, online monitoring of the respiratory quotient is used to investigate the metabolic activity of Bacillus licheniformis DSM 8785 during mixed acid‐2,3‐butanediol production under microaerobic conditions. Thereby, the respiratory quotient provides valuable information about different metabolic phases. Based on partial reaction stoichiometries, the metabolic activity in each phase of the cultivation was revealed, explaining the course of the respiratory quotient. This provides profound information on the formation or consumption of glucose, 2,3‐butanediol, ethanol and lactate, both, in shake flasks and stirred tank reactor cultivations. Furthermore, the average respiratory quotient correlates with the oxygen availability during the cultivation. Carbon mass balancing revealed that this reflects the increased formation of reduced metabolites with increasing oxygen limitation. The results clearly demonstrate that the respiratory quotient is a valuable online signal to reveal and understand the metabolic activity during microaerobic cultivations. The approach of combining respiratory quotient monitoring with stoichiometric considerations can be applied to other organisms and processes to define suitable cultivation conditions to produce the desired product spectrum.  相似文献   

4.
An in situ sterilizable plug-in membrane inlet mass spectrometer for monitoring dissolved gases and volatiles in fermentors was constructed and tested. The design ensured a minimal distance to be traveled by analyte molecules from the bulk of the fermentation broth to the ionization chamber of the mass spectrometer. Apart from the specific cross talk due to overlapping mass peaks from different compounds, we found that carbon dioxide interfered unspecifically with all the mass peaks of other substances, changing them by the same factor. The interference changed slowly with time and could be positive or negative depending on the history of the mass spectrometer. Also, the general sensitivity of the instrument changed slowly with time. These effects can be neglected or corrected for empirically in short-term measurements. When the fermentor was aerated with a three-component gas mixture including carbon dioxide, a rapid change in the partial pressure of carbon dioxide in the gas mixture gave rise to a transient in the signal of a gas whose partial pressure was kept constant. This effect revealed a transient change in the composition of the gas mixture in the bubbles caused by net import or export of carbon dioxide during equilibration with the new gas mixture. An experimental method to determine the effective partial pressures of gases in the bubbles during steady-state transport of carbon dioxide was designed. The plug-in membrane inlet mass spectrometer was tried as a probe for oxygen and ethanol in an oxystatic culture of the yeast Pichia stipitis. We found that it was possible to keep a steady-state concentration of as little as 0.5 muM throughout the lifetime of the culture. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 535-542, 1997.  相似文献   

5.
Different methods for oxygen uptake rate (OUR) determinations in animal cell cultivation were investigated using a high quality mass spectrometer. Dynamic measurements have considerable disadvantages because of disturbances of the growing cells by the necessary variations of dissolved oxygen concentration. Only infrequent discrete measurements are possible using this method. Stationary liquid phase balance yielded better results with much higher frequency. Gas phase balancing has the advantage of not requiring dissolved oxygen measurement and knowledge of K(L)a, both of them are easily biased. It was found that simple gas phase balancing is either very inaccurate (error larger than expected signal) or very slow, with gas phase residence times of several hours. Therefore, a new method of aeration was designed. Oxygen and CO(2) transfer are mainly achieved via sparging. The gas released to the headspace is diluted with a roughly 100-fold stream of an inert gas (helium). Through this dilution, gas ratios are not changed for O(2), CO(2), Ar, and N(2). The measurement of lower concentrations (parts per million and below) is easy using mass spectrometry with a secondary electron multiplier. With this new method an excellent accuracy and sufficient speed of analysis were obtained. All these on-line methods for OUR measurement were tested during the cultivation of animal cells. The new method allowed better study of the kinetics of animal cell cultures as was shown with a hybridoma cell line (HFN 7.1, ATCC CRL 1606) producing monoclonal antibodies against human fibronectin. With the aid of these methods it was possible to find a correlation between a rapid decrease in oxygen uptake rate (OUR) and glutamine concentration. The sudden decrease in OUR can be attributed to glutamine depletion. This provided a basis for the controlled addition of glutamine to reduce the formation of ammonia produced by hydrolysis. This control method based on OUR measurement resulted in increased cell concentration and threefold higher product concentration. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
Saccharomyces cerevisiae grows very poorly in dilute acid lignocellulosic hydrolyzate during the anaerobic fermentation for fuel ethanol production. However, yeast cells grown aerobically on the hydrolyzate have increased tolerance for the hydrolyzate. Cultivation of yeast on part of the hydrolyzate has therefore the potential of enabling increased ethanol productivity in the fermentation of the hydrolyzate. To evaluate the ability of the yeast to grow in the hydrolyzate, fed-batch cultivations were run using the ethanol concentration as input variable to control the feed-rate. The yeast then grew in an undetoxified hydrolyzate with a specific growth rate of 0.19 h−1 by controlling the ethanol concentration at a low level during the cultivation. However, the biomass yield was lower for the cultivation on hydrolyzate compared to synthetic media: with an ethanol set-point of 0.25 g/l the yield was 0.46 g/g on the hydrolyzate, compared to 0.52 g/g for synthetic media. The main reason for the difference was not the ethanol production per se, but a significant production of glycerol at a high specific growth rate. The glycerol production may be attributed to an insufficient respiratory capacity.  相似文献   

7.
A personal computer-based on-line monitoring and controlling system was developed for the fermentation of microorganism. The on-line HPLC system for the analysis of glucose and ethanol in the fermentation broth was connected to the fermenter via an auto-sampling equipment, which could perform the pipetting, filtration and dilution of the sample and final injection onto the HPLC through automation based on a programmed procedure. The A/D and D/A interfaces were equipped in order to process the signals from electrodes and from the detector of HPLC, and to direct the feed pumps, the motor of stirrer and gas flow-rate controller. The software that supervised the control of the stirring speed, gas flow-rate, pH value, feed flow-rate of medium, and the on-line measurement of glucose and ethanol concentration was programmed by using Microsoft Visual Basic under Microsoft Windows. The signal for chromatographic peaks from on-line HPLC was well captured and processed using an RC filter and a smoothing algorithm. This monitoring and control system was demonstrated to be effective in the ethanol fermentation of Zymomonas mobilis operated in both batch and fed-batch modes. In addition to substrate and product concentrations determined by on-line HPLC, the biomass concentration in Z. mobilis fermentation could also be on-line estimated by using the pH control and an implemented software sensor. The substrate concentration profile in the fed-back fermentation followed well the set point profile due to the fed-back action of feed flow-rate control.  相似文献   

8.
Summary Fed-batch cultivations of Pichia stipitis and strains of Candida shehatae with d-xylose or d-glucose were conducted at controlled low dissolved oxygen tension (DOT) levels. There were some marked differences between the strains. In general growth was inhibited at lower ethanol concentrations than fermentation, and ethanol levels of up to 47 g·l-1 were produced at 30°C. Ethanol production was mainly growth associated. The yeast strains formed small amounts of monocarboxylic acids and higher alcohols, which apparently did not enhance the ethanol toxicity. The maximum ethanol concentration obtained on d-xylose could not be increased by using a high cell density culture, nor by using d-glucose as substrate. The latter observation suggested that the low ethanol tolerance of these xylose-fermenting yeast strains was not a consequence of the metabolic pathway used during pentose fermentation. In contrast with the C. shehatae strains, it was apparent with P. stipitis CSIR-Y633 that when the ethanol concentration reached about 28 g·l-1, ethanol assimilation exceeded ethanol production, despite cultivation at a low DOT of 0.2% of air saturation. Discontinuing the aeration enabled ethanol accumulation to proceed, but with concomitant xylitol production and cessation of growth.  相似文献   

9.
The effect of ethanol, zinc, and iron (Fe2+ and Fe3+) concentration and of oxygen supply on cell growth and the production of citric acid (CA) and isocitric acid (ICA) from ethanol by mutant Yarrowia lipolytica N 1 was studied under continuous cultivation. The following peculiarities of Y. lipolytica metabolism were found: (1) intensive CA production occurred under yeast growth limitation by nitrogen; (2) inhibition of yeast growth by ethanol was accompanied by significant alterations in fatty acid composition of lipids; (3) the production of CA and ICA from ethanol required high concentrations of zinc and iron ions; (4) the intracellular iron concentration determined whether CA or ICA was predominantly formed; (5) the cell's requirement for oxygen depended on the intracellular iron concentration. The events taking place in the production of CA and ICA were evaluated through the activities of enzyme systems involved in the metabolism of ethanol and CA in this strain. Electronic Publication  相似文献   

10.
A flow injection analysis (FIA) system for on-line monitoring of ethanol in cultivation media was developed, which combines the selectivity of a gas diffusion membrane with the substrate specificity of immobilized alcohol oxidase (AOD). The optimization of membrane material and immobilized enzyme was performed using different FIA modes such as dual detection and dual injection. A simple modification of a polypropylene membrane with silicone enabled a very flexible adjustment of the linear range for alcohol detection between 0.0006 and 60% (v v-1). The ethanol content of cultivation media could be determined continuously with a frequency of 120-180 samples per hour with an excellent correlation to gas chromatographic analysis (r = 0.9996). The relative standard deviation for 10 successive injections was lower than 0.5%.  相似文献   

11.
In order to evaluate the independent effects of hydrodynamic conditions and/or oxygen tension on culture physiology and productivity, a fermentation system designed to control dissolved oxygen at constant power drawn (P/V) was developed. The system included a fully instrumented 14 l bioreactor coupled to a PC for data acquisition and control. Power drawn was measured (using a commercial torquemeter coupled to the shaft) and maintained constant by varying the agitation speed; while gas blending was used to control dissolved oxygen concentration. To validate the system, rheological-complex fermentations involving xanthan gum production and filamentous fungal cultivation (using Xanthomonas campestris and Trichoderma harzianum) were developed. In both cases, and despite the changing environmental conditions (due to increased broth viscosities and microbial respiration), both variables were controlled at the desired set points. Through such a system, a rigorous evaluation of the hydrodynamic conditions and/or oxygen tension on culture physiology and productivity is now feasible.  相似文献   

12.
On-line monitoring of hybridoma cell growth using a laser turbidity sensor   总被引:3,自引:0,他引:3  
A high-sensitivity turbidity probe was used for on-line monitoring of the cell concentration in batch hybridoma cultivation. Good correlation between off-line cell counts and the linearized sensor signal was found. The quality of the signal was sufficiently high to provide for on-line estimation of the specific growth rate using an efficient filtering procedure. These positive results suggest that such laser turbidity sensors will facilitate development of systems for on-line monitoring and control of animal cell cultivations. (c) 1992 John Wiley & Sons, Inc.  相似文献   

13.
The fermentative and respiratory metabolism of Pichia stipitis wild-type strain CBS 5774 and the derived auxotrophic transformation recipient PJH53 trp5-10 his3-1 were examined in differentially oxygenated glucose cultures in the hermetically sealed Sensomat system. There was a good agreement of the kinetics of gas metabolism, growth, ethanol formation and glucose utilisation, proving the suitability of the Sensomat system for rapid and inexpensive investigation of strains and mutants for their respiratory and fermentative metabolism. Our study revealed respiro-fermentative growth by the wild-type strain, although the cultures were not oxygen-limited. The induction of respiro-fermentative behaviour was obviously due to the decrease in oxygen tension but not falling below a threshold of oxygen tension. The responses differed depending on the velocity of the decrease in oxygen tension. At high oxygenation (slow decrease in oxygen tension), ethanol production was induced but glucose uptake was not influenced. At low oxygenation, glucose uptake and ethanol formation increased during the first hours of cultivation. The transformation recipient PJH53 most probably carries a mutation that influences the response to a slow decrease in oxygen tension, since almost no ethanol formation was found under these conditions.  相似文献   

14.
A new method for real-time monitoring of the oxygen uptake rate (OUR) in bioreactors, based on dissolved oxygen (DO) measurement at two points, has been developed and tested extensively. The method has several distinct advantages over known techniques.It enables the continuous and undisturbed monitoring of OUR, which is conventionally impossible without gas analyzers. The technique does not require knowledge of k(L)a. It provides smooth, robust, and reliable signal. The monitoring scheme is applicable to both microbial and mammalian cell bioprocesses of laboratory or industrial scale. The method was successfully used in the cultivation of NSO-derived murine myeloma cell line producing monoclonal antibody. It was found that while the OUR increased with the cell density, the specific OUR decreased to approximately one-half at cell concentrations of 16 x 10(6) cells/mL, indicating gradual reduction of cell respiration activity. Apart from the laboratory scale cultivation, the method was applied to industrial scale perfusion culture, as well as to processes using other cell lines. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Growth of Saccharomyces cerevisiae LBG H 1022 on ethanol under steady-state conditions was studied. As a cultivation device, an aerated Chemap fermentor combined with continuously working gas analyzers for oxygen and carbon dioxide was used. Dry matter, substrate concentration, yield, specific oxygen uptake, specific carbon dioxide release, and respiration quotient, as well as nitrogen, carbon, phosphorus, hydrogen, and protein content of the cells were measured in dependence on the dilution rate. Cell size distribution, as a function of the specific growth rate, was determined with the aid of a Celloscope 202. A fair agreement with the theory of continuous culture for all metabolic curves could be established. An increased turnover rate resulted from the addition of glutamic acid to the synthetic growth medium. The primary effect of this supplement could be a rise in the flow rate of the tricarboxylic acid cycle.  相似文献   

16.
Summary Oxygen-limited growth was avoided by means of oxygen-enriched aeration in aerobic fermentation processes. Studies were carried out with Candida tropicalis (Cast.) Berkhout and Rhodococcus erythropolis (DSM 43215). The effect of hyperbaric dissolved oxygen tension on growth parameters was examined by varying the dissolved oxygen concentration and the carbon source (glucose, ethanol, and n-alkanes). Up to an oxygen concentration of 40 mg/l in the culture suspension no impairment of the economic coefficients and no promotion of cell lysis was found. It was observed that raised oxygen concentrations in the aeration gas led to enhanced specific growth rates. At cell concentrations above 20 g/l dry weight an uncoupling of carbon source dissimilation and biomass production was observed even at non-limiting oxygen concentrations.  相似文献   

17.
Advanced control of glutathione fermentation process   总被引:18,自引:0,他引:18  
A study was performed to understand the fermentation process for production of glutathione fermentation (GSH) with an improved strain of baker's yeast. Simultaneous utilization of sugar and ethanol has been found to be a key factor in the industrial process to produce GSH using Saccharomyces cerevisiae KY6186. Based on this observation, the optimal sugar feed profile for the fed-batch operation has been determined. A feedforward/feedback control system was developed to regulate the sugar feed rate so as to maximize GSH production yields. Using the feedforward/feedback control system and the on-line data of oxygen and ethanol concentration in exhaust gas, the successful scaleup to the production level was accomplished. An average of 40% improvement of glutathione production compared to a conventionally programmed control of exponential fed-batch operation was found in the new process. (c) 1992 John Wiley & Sons, Inc.  相似文献   

18.
Chemical-ionization mass spectrometry (CIMS) using flow reactors is an emerging method for on-line monitoring of trace concentrations of organic compounds in the gas phase. In this study, a flow-reactor CIMS instrument, employing the H(3)O(+) cation as the ionizing reagent, was used to simultaneously monitor several volatile metabolic products as they are released into the headspace during bacterial growth in a bioreactor. Production of acetaldehyde, ethanol, acetone, butanol, acetoin, diacetyl, and isoprene by Bacillus subtilis is reported. Ion signal intensities were related to solution-phase concentrations using empirical calibrations and, in the case of isoprene, were compared with simultaneous gas chromatography measurements. Identification of volatile and semivolatile metabolites is discussed. Flow-reactor CIMS techniques should be useful for bioprocess monitoring applications because of their ability to sensitively and simultaneously monitor many volatile metabolites on-line.  相似文献   

19.
Yeast production on hydrolysate is a likely process solution in large-scale ethanol production from lignocellulose. The hydrolysate will be available on site, and the yeast has furthermore been shown to acquire an increased inhibitor tolerance when cultivated on hydrolysate. However, due to over-flow metabolism and inhibition, efficient yeast production on hydrolysate can only be achieved by well-controlled substrate addition. In the present work, a method was developed for controlled addition of hydrolysate to PDU (process development unit)-scale aerobic fed-batch cultivations of Saccharomyces cerevisiae TMB 3000. A feed rate control strategy, which maintains the ethanol concentration at a low constant level, was adapted to process-like conditions. The ethanol concentration was obtained from on-line measurements of the ethanol mole fraction in the exhaust gas. A computer model of the system was developed to optimize control performance. Productivities, biomass yields, and byproduct formation were evaluated. The feed rate control worked satisfactorily and maintained the ethanol concentration close to the setpoint during the cultivations. Biomass yields of 0.45 g/g were obtained on added hexoses during cultivation on hydrolysate and of 0.49 g/g during cultivation on a synthetic medium with glucose as the carbon source. Exponential growth was achieved with a specific growth rate of 0.18 h-1 during cultivation on hydrolysate and 0.22 h-1 during cultivation on glucose.  相似文献   

20.
Previously, Su et al. [Biotechnol Bioeng 42: 884–890 (1993)] reported improved production of rosmarinic acid by Anchusa officinalis in shake-flask cultures using a cultivation strategy that involved intermittent medium exchange. Implementation of this cultivation strategy in 2.5-1 stirred-tank bioreactor cultures is investigated in the present study. Intermittent cell/medium separation in the bioreactor was accomplished by means of automated in situ culture filtration. In the bioreactor culture, rosmarinic acid production was found very sensitive to agitation and aeration conditions as well as dissolved oxygen concentration. A maximum cell density of 35 g dry weight/l and a rosmarinic acid concentration of 3.7 g/l were obtained by maintaining the dissolved oxygen concentration above 30% air saturation, gradually raising the impeller tip speed from 34 cm/s to 72 cm/s, and keeping the aeration rate at 0.44 vvm while increasing the O2: air ratio in the gas feed stream to 4:1. This result is comparable with the data obtained from shake-flask cultures using the same culture strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号