首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell division in the marine red algae Polysiphonia harveyi Bailey and P. denudata (Dillwyn) Kutzing was studied with the electron microscope. Cells comprising the compact spermatangial branches of male plants were used exclusively because of their small size, large numbers and the ease with which the division planes can be predetermined. Some features characterizing mitosis in Polysiphonia confirm earlier electron microscope observations in Membranoptera, the only other florideophycean algae in which mitosis has been studied in detail. Common to both genera are a closed, fenestrated spindle, perinuclear endoplasmic reticulum, a typical metaphase plate arrangement of chromosomes, conspicuous, layered kinetochores, chromosomal and non-chromosomal microtubules, and nucleus associated organelles (NAOs) known as polar rings (PRs) located singly in large ribosome-free zones of exclusion at division poles in late prophase. However, other features, unreported in Membranoptera, were observed consistently in Polysiphonia. These include the presence of PR pairs in interphase-early prophase cells, the attachment of PRs to the nuclear envelope during all mitotic stages, the migration of a single PR to establish the division axis, a prominent, nuclear envelope protrusion (NEP) at both division poles at late prophase, the prometaphase splitting of PRs into proximal and distal portions, and the reformation of post-mitotic nuclei by the separation of an elongated interzonal nuclear midpiece at telophase. During cytokinesis, cleavage furrows impinge upon a central vacuolar region located between the two nuclei and eventually pit connections are formed in a manner basically similar to that reported for other red algae. Diagrammatic sequences of proposed PR behavior during mitosis are presented which can account for events known to occur during cell division in Polysiphonia. Mitosis is compared with that reported in several other lower plants and it is suggested that features of cell division are useful criteria to aid in the assessment of phylogenetic relationships of red algae.  相似文献   

2.
Twenty-five freshwater populations of Ceramiales were collected in North America, 24 of which were from the tropical rainforest region of Central America and the Caribbean. The streams tended to be moderate in mean current velocity (X?= 23.3 cm·S?1) and maximum width (X?= 6.3 m) but high in temperature (X?= 23.1°C), pH (X?= 7.9), and specific conductance (X?= 320 μS·cm?1). Three Bostrychia species were restricted to the Caribbean islands: B. moritziana (Sonder ex Kütz.) J. Ag. (syn. B. cornigera Mont. and B. radicans f. moliforme Post), with ecorticate indeterminate axes, monosiphonous ultimate branches, and cladohaptera; B. radicans (Mont.) Mont. (syn. B. leprieurii Mont and B. rivularis Harv.), with ecorticate and polysiphonous axes throughout and cladophaptera; and B. tenella (Lamour.) J. Ag., with corticate indeterminate axes, monosiphonous ultimate branches, and peripherohaptera. Ballia prieurii Kütz. was found in Belize and Costa Rica and was characterized by rebranched determinate laterals, opposite branching, and long apical cells (X?= 61 μm) and axial cells (X?= 43 μm). Caloglossa leprieurii (Mont.) J. Ag. was localized in Puerto Rico while. C. ogasawaerensis Okam. was collected only in Costa Rica. The two species were separated by site of branching (midrib vs. margin) and blade width (X?= 384 vs. 861 μm). Polysiphonia subtilissima Mont. from Florida and Jamaica had four pericentral cells, no cortication, rhizoids arising from pericentral cells, and branches initiated at trichoblast scars.  相似文献   

3.
The fine structure of pit plugs in 90 species of red algae was examined, bringing the total number of species in the continuing survey to 153. The organization of plug caps was confirmed to be a stable, predictable trait within thalli, between generations in heteromorphic life histories, and within the presently recognized orders, with one exception—the Acrochaetiales. Two forms of the outer cap were found in this group, a thin plate, as in the Nemaliales and Palmariales, and a dome, as in Batrachospermales and Corallinales. Variation of pit plug structure indicates that the Acrochaetiales are a heterogeneous assemblage and that pit plugs will be useful in reappraising their systematics. The systematic affinities of several species of uncertain affinities are clarified. Schmitziella endophloea Bornet et Batters is excluded from both orders, Corallinales and Acrochaetiales, with which it previously was allied. Although other ordinal attributions are not precluded by pit plug structure alone, pit plug structure is consistent with placement of Apophlaea sinclairii Harvey and Hildenbrandia rivularis (Liebman) J. Agardh in the Hildenbrandiales, Plagiospora gracilis Kuckuck, Schmitziella endophloea, and Wurdemannia miniata (Duby) J. Feldmann et Hamel in the Gigartinales, and Pseudorhododiscus nipponicus Masuda in the Palmariales.  相似文献   

4.
Ceramium tenuicorne (Kützing) Wærn is a red alga that is widely distributed in the brackish Baltic Sea. We studied the growth response of Ceramium to low salinity and nutrient enrichment, using isolades from two regions of the Baltic Sea where the alga approaches its inner distribution limit. Ecotypic differentiation was observed in that differences in growth response among isolates corresponded to salinity conditions in their regions of origin. Isolates from the Gulf of Bothnia (4 psu) had inherently lower growth rates that were not increased when transferred to higher salinity, but were better adapted to very low salinity levels than isolates from the Baltic Proper (7 psu). Further, the results indicate that Ceramium from different regions of the Baltic Sea vary in their responses to nutrient enrichment. The observed differences may be best described as a quantitative difference in the proportion of isolates with hyposaline adaptation. The results indicate that the wide distribution of Ceramium in the Baltic Sea is better explained by the occurrence of locally adapted genotypes than by a generalist life strategy, and provide example of adaptive differentiation in a marine edge environment.  相似文献   

5.
Spermatial development and differentiation of wall components were investigated by electron microscopy and cytochemical methods in Antithamnion nipponicum Yamada et Inagaki. The spermatium is composed of two parts, a globular head and two appendages projecting from near the basal portion. The appendages originate form spermatangial vesicles (SVs) and follow a developmental sequence beginning as amorphous material and ending as fully formed fibrous structures compressed with in the SVs. SV formation is due to contributions initially from endoplasmic reticulum and later form dictyosome-derived vesicles. Chemical differentiation of the spermatial wall occurs early in its development. Calcofluor white ST does not label spermatial walls, indicating an absence of cellulose polysaccharides, which are abundant in vegetative cell walls. Labeled lectins show that α-d -methyl manose and / or α-d -glucose as well as N-acetyl-glucosamine, β-d -galactose, and α-l -fucose moieties are present on the spermatial wall but not in the vegetative cell wall. The glyconjugate with α-d -methyl mannose and / or glucose residues, previously reported as a gamete recognition molecule in this species, is distributed along the surface of spermatia as well as in the SV during spermatangial development.  相似文献   

6.
The genus Lenormandia Sonder is currently composed of nine species from Australia and New Zealand. Some of these are well known, but others are rare and ill defined. Material of all nine species has been examined and found to fall into three discrete morphological groups forming highly supported clades on analysis of 18S rDNA sequences. The first group contains four Australian‐endemic species and includes the type species L. spectabilis Sonder. Plants have a cleft apex that is not inrolled, a distinctive rhombic surface areolation pattern caused by a one‐ to two‐layered medulla of interlocking cells, lack pseudopericentral cells, and produce their reproductive structures on the blade surfaces. The type species of the genus Lenormandiopsis, L. latifolia (Harvey et Greville) Papenfuss, was found to belong to this group and is thus returned to Lenormandia where it was originally placed. Species falling into the other two groups are removed to new genera that are being described separately. One extremely rare species of Lenormandia from southwestern Australia is transferred to the delesseriacean genus Phitymophora.  相似文献   

7.
Tetrasporogenesis begins with the formation of the tetra-sporocyte, an elongate, apparently wall-less, cell containing few organelles. The tetrasporocyte rapidly elongates and a distinctive cell wall forms before the onset of meiosis. During this elongation phase there is also an increase in the number of plastids and mitochondria. The meiotic tetrasporocyte is characterized by extensive development of perinuclear endoplasmic reticulum (PNER) and peripheral endoplasmic reticulum (PER) and during the latter stages of sporogenesis by internuclear endoplasmic reticulum. Immediately next to the nuclear envelope the inter-cisternal spaces of the PNER are filled with very electron dense material and the PNER cisternae are quite narrow, while further away from the nucleus the PNER cisternae dilate. Throughout meiosis there is continued replication of plastids and mitochondria as well as synthesis of starch and the formation of Golgi-derived vesicles with very osmiophilic contents. Cytokinesis begins with the formation of striated thickenings on the inside of the tetrasporocyte wall, at the sites where the cleavage furrow, produced by infurrowing of the plasmalemma, will be formed. Early in cytokinesis the PER disappears and is replaced by osmiophilic vesicles and mitochondria. Tubular plasmalemma invaginations of 27–30 nm width also appear during the early stages of tetraspore wall formation. The ultra-structure of the early stages of tetraspore germination is also described.  相似文献   

8.
Janczewskia morimotoi Tokida was successfully cultured from spore to reproductive maturity on its host Laurencia nipponica Yamada. The spore penetrates the host without requirement for wound or abrasion sites, growing between host cortical cells and developing a superficial and an endophytic system simultaneously. During the juvenile period, when the parasite is nonpigmented, it differentiates a cortex and the proliferating endophytic filaments enlarge causing a displacement of layers of host cells into the parasitic tissue. Host cells contacted by cells of the parasite exhibit increased wall thickness, cytoplasmic density and vesicle formation. Pit connections between host and parasite cells were rarely observed whereas penetration of host cell walls was seen commonly. As the parasite increases in size, its cells become pigmented evenly throughout the cortex and host cells show less obvious reactions to the parasite. At this same time, the parasite develops branches and reproductive structures. Host plant segments less than 3 cm long failed to grow when infected with spores of the parasite whereas longer segments were not significantly affected by the parasite. In the absence of the host, the parasite cannot complete its development. Although J. morimotoi is well pigmented at maturity, the absence of pigmentation in the juvenile stage, penetration of host cells, and effect on host growth in culture strongly suggest that it is parasitic during at least its early development.  相似文献   

9.
The ultra structure of post-fertilization development in Faucheocolax attenuata Setch. is described. Following fertilization and transfer of the diploid nucleus to the auxiliary cell, four gonimoblast initials usually are produced of the multinucleate auxiliary cell. Gonimoblast initials originally are uninucleate but undergo karyokinesis to form multinudeate gonimoblast cells. Terminal or generative gonimoblast cells cleave successively to form lobes of incipient carpospores, with each group of spores differentiating synchronously. Portions of the initial generative gonimoblast cells, however, remain to resume karyokinesis and repeat the process of cleavage into carpospores. Axial gonimoblast cells are transformed into secretory cells, which produce mucilage. Generative gonimoblast cells and auxiliary cells are similar in cellular structure. Both contain typical red algal proplastids, some dictyosomes, cytoplasmic concentric membranes, and numerous small vesicles. In addition, dark staining spherical masses, occurring in the cytoplasm of all cell types, may represent dehydrated haploid chromatin. Large septal plugs interconnect gonimoblast cells and the auxiliary cell. These plugs are small when first formed but increase dramatically in size during carposporophyte development.  相似文献   

10.
A molecular phylogenetic study of red algal parasites commonly found in the Northwestern Pacific and the Hawaiian Islands was undertaken. Four species, Benzaitenia yenoshimensis Yendo, Janczewskia hawaiiana Apt, J. morimotoi Tokida, and Ululania stellata Apt et Schlech (Ceramiales), are parasitic on rhodomelacean species belonging to the tribes Chondrieae and Laurencieae. Although Janczewskia and Ululania are classified in the same tribes as their host species, the taxonomic placement of Benzaitenia has been controversial. To infer the phylogenetic positions of these parasites and to clarify the relationships between the parasites and their hosts, phylogenetic analyses of partial nuclear SSU and LSU rRNA genes and the cox1 gene were performed. The SSU rRNA gene analyses clearly show that both Janczewskia species are positioned within the Laurencia s. str. clade with their host species, while Benzaitenia and Ululania are placed in the Chondrieae clade. According to these analyses, J. hawaiiana and U. stellata are not sister to their current hosts; in contrast, B. yenoshimensis and J. morimotoi are closely related to their current hosts. These data suggest that J. hawaiiana and U. stellata have likely evolved from species other than their current hosts and have switched hosts at some point in their evolutionary history. Likelihood ratio tests do not support the monophyly of J. hawaiiana and J. morimotoi, suggesting multiple origins of parasitism within Laurencia s. str.  相似文献   

11.
12.
13.
The settlement patterns of spores of Polysiphonia lanosa (L.) Tandy on Ascophyllum nodosum (L.) Le Jolis and Fucus vesiculosus L. were studied using a flow tank. Settlement sites were defined as ‘sheltered’ or ‘exposed.’ Surface area calculations revealed non-random settlement on A. nodosum, with higher than expected spore frequencies on the thallus and lateral pits and lower than expected frequencies on the vesicles. Settlement of F. vesiculosus was random and significantly lower than on A. nodosum. On the shore, survival of sporelings from September (post-sporulation) to May (pre-sporulation) was highly non-random on both basiphytes. On A. nodosum, lateral pits ('sheltered') showed the highest survival frequency. Here the proportion of surviving sporelings increased over the study period, whereas the proportion on open thallus area ('exposed') decreased. On F. vesiculosus also preferential survival occurred on ‘sheltered’ sites such as vesicle/thallus interfaces and wounds. Between September and May, all P. lanosa sporelings were lost from ‘exposed’ areas (thallus surface and vesicles). Overall, frequencies of surviving sporelings were much greater on A. nodosum than on F. vesiculosus. These results are discussed with reference to basiphyte morphology, epiphyte removal mechanisms and the survival stratagy of P. lanosa.  相似文献   

14.
Carposporogenesis in Caloglossa leprieurii is divided into three cytological stages. At stage I, the young spores have few plastids and little starch. Abundant dictyosomes secrete a gelatinous wall layer in scale-like units. At stage II, dictyosomes produce a second fibrillar wall component in addition to the gelatinous constituent. Large fibrillar vesicles accumulate in the cytoplasm. Production of gelatinous material decreases in this stage. By stage III, starch grains and fully developed plastids are abundant. Rough endoplasmic reticulum occupies much of the peripheral cytoplasm. A dense, granular proteinaceous component appears in the wall in association with the fibrillar layer. Arrays of randomly oriented tubules are scattered in the cytoplasm. The mature carpospore is surrounded by an outer gelatinous wall layer and an inner fibrillar layer. Few dictyosomes persist in the mature spore. Carposporogenesis in Caloglossa is compared with that in other red algae.  相似文献   

15.
Phylogenetic relationships among 69 species of the Ceramiales (51 Ceramiaceae, six Dasyaceae, seven Delesseriaceae, and five Rhodomelaceae) were determined based on nuclear SSU rDNA sequence data. We resolved five strongly supported but divergent lineages among the included Ceramiaceae: (i) the genus Inkyuleea, which weakly joins other orders of the Rhodymeniophycidae rather than the Ceramiales in our analyses; (ii) the tribe Spyridieae, which is sister to the remainder of the included ceramialean taxa; (iii) the subfamily Ceramioideae, weakly including the tribe Warrenieae; (iv) the subfamily Callithamnioideae; and (v) the subfamily Compsothamnioideae, which emerges as sister to the Dasyaceae/Delesseriaceae/Rhodomelaceae complex, thus rendering the Ceramiaceae sensu lato unequivocally paraphyletic, as has been argued separately on anatomical grounds by Kylin and Hommersand. Our data support a restricted concept of the Ceramiaceae that includes only one of the five lineages (Ceramioideae) that we have resolved. In addition to failing to ally with the Ceramiales in our molecular analyses, species of Inkyuleea differ substantially from other Ceramiaceae sensu lato in details of pre‐ and postfertilization development. The genus Inkyuleea is here assigned to the Inkyuleeaceae fam. nov., which we provisionally retain in the Ceramiales. Species of Spyridia also differ from the remaining Ceramiaceae in their postfertilization development, and, in light of our molecular data, the genus Spyridia is assigned to the Spyridiaceae. The Callithamnioideae is strongly monophyletic (100% in all analyses), which, in combination with key anatomical differences, supports elevation to family status for this lineage as the Callithamniaceae. Similarly, the Compsothamnioideae is solidly monophyletic in our molecular trees and has a unique suite of defining anatomical characters that supports family status for a complex that we consider to include the tribes Compsothamnieae, Dasyphileae, Griffithsieae, Monosporeae, Ptiloteae, Spermothamnieae, Sphondylothamnieae, Spongoclonieae, and Wrangelieae, for which the reinstated family name Wrangeliaceae is available.  相似文献   

16.
Our previous study revealed that apomixis, recycling of tetrasporophytes, can be generated through outcrossing between genetically divergent entities of Caloglossa monosticha M. Kamiya, though such apomicts have never been found in nature. In the case of C. leprieurii (Mont.) G. Martens, the most widespread species in this genus, many apomictic strains have been isolated worldwide, but it is unknown whether these apomicts evolved through an outcrossing process similar to that in C. monosticha. In this study, heterogeneity of the apomicts and their sexual relatives as well as their evolutionary relationships was examined using the nuclear‐encoded actin gene and plastid‐encoded RUBISCO spacer region. Thirteen out of 18 apomictic strains were heterogeneous and contained divergent actin alleles, whereas only two out of 23 sexual strains were heterogeneous. The five homogeneous apomicts were genetically identical, or quite similar, to the sexual strains isolated from adjacent sites. Furthermore, three of the five homogeneous apomicts frequently produced tetraspores that grew into gametophytes, while all the heterogeneous apomicts never generated gametophytes. Apomictic strains from Florida were allotriploid, and each of the three actin sequences was closely related to those of sexual strains from Florida, Peru, and Mexico/Guatemala. In crossing tests, obligate apomixis was generated through the outcrossing between the male from Madagascar and the female from the northwestern Atlantic. These results suggest that outcrossing between genetically divergent sexual entities is one factor that induces apomixis in C. leprieurii.  相似文献   

17.
Laurencia marilzae Gil‐Rodríguez, Sentíes et M.T. Fujii sp. nov. is described based on specimens that have been collected from the Canary Islands. This new species is characterized by distinctive yellow–orange as its natural habitat color, a terete thallus, four pericentral cells per vegetative axial segment, presence of secondary pit‐connections between adjacent cortical cells, markedly projecting cortical cells, and also by the presence of corps en cerise (one per cell) present in all cells of the thallus (cortical, medullary, including pericentral and axial cells, and trichoblasts). It also has a procarp‐bearing segment with five pericentral cells and tetrasporangia that are produced from the third and fourth pericentral cells, which are arranged in a parallel manner in relation to fertile branchlets. The phylogenetic position of this taxon was inferred based on chloroplast‐encoded rbcL gene sequence analyses. Within the Laurencia assemblage, L. marilzae formed a distinctive lineage sister to all other Laurencia species analyzed. Previously, a large number of unique diterpenes dactylomelane derivatives were isolated and identified from this taxon. L. marilzae is morphologically, genetically, and chemically distinct from all other related species of the Laurencia complex described.  相似文献   

18.
Four species of the Batrachospermales were examined by transmission electron microscopy to determine whether or not cap membranes, a typical structural component of pit plugs in several orders of red algae, were present. Routine specimen preservation methods used in past studies led to contradictory reports, so Batrachospermum keratophytum Bory, B. sirodotii Skuja ex Reis, Sirodotia suecica Kylin, and S. tenuissima (Collins) Skuja ex Flint were prepared by secondary fixation in potassium permanganate or a combination of potassium ferrocyanide-osmium tetroxide to enhance membrane contrast. These fixation procedures produced clear, well-contrasted images in which cap membranes were absent. The absence of cap membranes in S. suecica and S. tenuissima and the presence of cap membranes in two members of the Nemaliales was confirmed by freeze-substitution methods. Absence of cap membranes in representatives of the Batrachospermales further distinguishes the Batrachospermales from the Nemaliales, the order in which they long resided, and demonstrates the value of this character in elucidating ordinal alliances among the Rhodophyta.  相似文献   

19.
The fine structure of released, attached, and germinating carpospores of Porphyra variegata (Kjellm.) Hus is described. Adhesive vesicles, formed during sporogenesis and discharged upon settling of the spore, produced a layer of adhesive mucilage around the spore and filled a deep imagination on the spore's ventral side. The mucilage layer was punctured by the emergence of a germ tube. Both spore and germ tube were lined by newly deposited cell wall. Germination was accompanied by vacuolation and starch mobilization. The morphological development of the sporeling was not noticeably influenced by the great variability of the timing, location, and orientation of septum formation. The attached carpospore possessed a plastid like that of gametophyte cells: stellate with one large central pyrenoid and no peripheral encircling thylakoids. Cells of mature vegetative cells of the conchocelis had plastids that were elongate and parietal and had multiple pyrenoids and encircling thylakoids. Most stages in the transition between the two forms of plastids occurred during carpospore germination.  相似文献   

20.
The tetrasporangial initial in Palmaria palmata (L.) O. Kuntze (formerly Rhodymenia palmata (L.) Greville) arises from a cortex cell which enlarges and deposits a protein-rich wall layer. This cell undergoes mitosis to form a tetrasporocyte and a stalk cell. Synaptonemal complexes are formed in the sporocyte nucleus while in the cytoplasm floridean starch is deposited in association with ER or with particles presumed to be ribosomes. Microbody-like structures become numerous between the nuclear envelope and perinuclear ER, and clusters of non-membranous, spherical structures also are associated with the nucleus. Chromatin condensation is reversed following pachytene and a prolonged diffuse stage ensues, when dictyosomes and ER produce vesicles which deposit mucilage rich in sulfated and acidic polysaccharides around the tetrasporocyte. A conspicuous lenticular thickening of the mucilage sheath develops at the apical end of the sporangium. Dictyosomes are frequently associated with mitochondria which may be associated with chloroplasts. Following nuclear divisions the tetrasporocyte is cleaved into four spores by sequentially initiated, but simultaneously completed periclinal and anticlinal furrows. When mucilage deposition ceases, the dictyosomes begin to produce vesicles with glycoprotein-rich contents. These vesicles are abundant in released tetraspores, and they probably contain adhesive material aiding in the attachment of the liberated spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号