首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In survival analysis, the event time T is often subject to dependent censorship. Without assuming a parametric model between the failure and censoring times, the parameter Theta of interest, for example, the survival function of T, is generally not identifiable. On the other hand, the collection Omega of all attainable values for Theta may be well defined. In this article, we present nonparametric inference procedures for Omega in the presence of a mixture of dependent and independent censoring variables. By varying the criteria of classifying censoring to the dependent or independent category, our proposals can be quite useful for the so-called sensitivity analysis of censored failure times. The case that the failure time is subject to possibly dependent interval censorship is also discussed in this article. The new proposals are illustrated with data from two clinical studies on HIV-related diseases.  相似文献   

2.
Methods in the literature for missing covariate data in survival models have relied on the missing at random (MAR) assumption to render regression parameters identifiable. MAR means that missingness can depend on the observed exit time, and whether or not that exit is a failure or a censoring event. By considering ways in which missingness of covariate X could depend on the true but possibly censored failure time T and the true censoring time C, we attempt to identify missingness mechanisms which would yield MAR data. We find that, under various reasonable assumptions about how missingness might depend on T and/or C, additional strong assumptions are needed to obtain MAR. We conclude that MAR is difficult to justify in practical applications. One exception arises when missingness is independent of T, and C is independent of the value of the missing X. As alternatives to MAR, we propose two new missingness assumptions. In one, the missingness depends on T but not on C; in the other, the situation is reversed. For each, we show that the failure time model is identifiable. When missingness is independent of T, we show that the naive complete record analysis will yield a consistent estimator of the failure time distribution. When missingness is independent of C, we develop a complete record likelihood function and a corresponding estimator for parametric failure time models. We propose analyses to evaluate the plausibility of either assumption in a particular data set, and illustrate the ideas using data from the literature on this problem.  相似文献   

3.
Kim YJ 《Biometrics》2006,62(2):458-464
In doubly censored failure time data, the survival time of interest is defined as the elapsed time between an initial event and a subsequent event, and the occurrences of both events cannot be observed exactly. Instead, only right- or interval-censored observations on the occurrence times are available. For the analysis of such data, a number of methods have been proposed under the assumption that the survival time of interest is independent of the occurrence time of the initial event. This article investigates a different situation where the independence may not be true with the focus on regression analysis of doubly censored data. Cox frailty models are applied to describe the effects of covariates and an EM algorithm is developed for estimation. Simulation studies are performed to investigate finite sample properties of the proposed method and an illustrative example from an acquired immune deficiency syndrome (AIDS) cohort study is provided.  相似文献   

4.
In biomedical studies involving survival data, the observation of failure times is sometimes accompanied by a variable which describes the type of failure event (Kalbeisch and Prentice, 2002). This paper considers two specific challenges which are encountered in the joint analysis of failure time and failure type. First, because the observation of failure times is subject to left truncation, the sampling bias extends to the failure type which is associated with the failure time. An analytical challenge is to deal with such sampling bias. Second, in case that the joint distribution of failure time and failure type is allowed to have a temporal trend, it is of interest to estimate the joint distribution of failure time and failure type nonparametrically. This paper develops statistical approaches to address these two analytical challenges on the basis of prevalent survival data. The proposed approaches are examined through simulation studies and illustrated by using a real data set.  相似文献   

5.
Multivariate recurrent event data are usually encountered in many clinical and longitudinal studies in which each study subject may experience multiple recurrent events. For the analysis of such data, most existing approaches have been proposed under the assumption that the censoring times are noninformative, which may not be true especially when the observation of recurrent events is terminated by a failure event. In this article, we consider regression analysis of multivariate recurrent event data with both time‐dependent and time‐independent covariates where the censoring times and the recurrent event process are allowed to be correlated via a frailty. The proposed joint model is flexible where both the distributions of censoring and frailty variables are left unspecified. We propose a pairwise pseudolikelihood approach and an estimating equation‐based approach for estimating coefficients of time‐dependent and time‐independent covariates, respectively. The large sample properties of the proposed estimates are established, while the finite‐sample properties are demonstrated by simulation studies. The proposed methods are applied to the analysis of a set of bivariate recurrent event data from a study of platelet transfusion reactions.  相似文献   

6.
Summary .  Recurrent event data analyses are usually conducted under the assumption that the censoring time is independent of the recurrent event process. In many applications the censoring time can be informative about the underlying recurrent event process, especially in situations where a correlated failure event could potentially terminate the observation of recurrent events. In this article, we consider a semiparametric model of recurrent event data that allows correlations between censoring times and recurrent event process via frailty. This flexible framework incorporates both time-dependent and time-independent covariates in the formulation, while leaving the distributions of frailty and censoring times unspecified. We propose a novel semiparametric inference procedure that depends on neither the frailty nor the censoring time distribution. Large sample properties of the regression parameter estimates and the estimated baseline cumulative intensity functions are studied. Numerical studies demonstrate that the proposed methodology performs well for realistic sample sizes. An analysis of hospitalization data for patients in an AIDS cohort study is presented to illustrate the proposed method.  相似文献   

7.
Yin G 《Biometrics》2005,61(2):552-558
Due to natural or artificial clustering, multivariate survival data often arise in biomedical studies, for example, a dental study involving multiple teeth from each subject. A certain proportion of subjects in the population who are not expected to experience the event of interest are considered to be "cured" or insusceptible. To model correlated or clustered failure time data incorporating a surviving fraction, we propose two forms of cure rate frailty models. One model naturally introduces frailty based on biological considerations while the other is motivated from the Cox proportional hazards frailty model. We formulate the likelihood functions based on piecewise constant hazards and derive the full conditional distributions for Gibbs sampling in the Bayesian paradigm. As opposed to the Cox frailty model, the proposed methods demonstrate great potential in modeling multivariate survival data with a cure fraction. We illustrate the cure rate frailty models with a root canal therapy data set.  相似文献   

8.
Semi-competing risks data include the time to a nonterminating event and the time to a terminating event, while competing risks data include the time to more than one terminating event. Our work is motivated by a prostate cancer study, which has one nonterminating event and two terminating events with both semi-competing risks and competing risks present as well as two censoring times. In this paper, we propose a new multi-risks survival (MRS) model for this type of data. In addition, the proposed MRS model can accommodate noninformative right-censoring times for nonterminating and terminating events. Properties of the proposed MRS model are examined in detail. Theoretical and empirical results show that the estimates of the cumulative incidence function for a nonterminating event may be biased if the information on a terminating event is ignored. A Markov chain Monte Carlo sampling algorithm is also developed. Our methodology is further assessed using simulations and also an analysis of the real data from a prostate cancer study. As a result, a prostate-specific antigen velocity greater than 2.0 ng/mL per year and higher biopsy Gleason scores are positively associated with a shorter time to death due to prostate cancer.  相似文献   

9.
This paper proposes and evaluates a multi-objective evolutionary algorithm for survival analysis. One aim of survival analysis is the extraction of models from data that approximate lifetime/failure time distributions. These models can be used to estimate the time that an event takes to happen to an object. To use of multi-objective evolutionary algorithms for survival analysis has several advantages. They can cope with feature interactions, noisy data, and are capable of optimising several objectives. This is important, as model extraction is a multi-objective problem. It has at least two objectives, which are the extraction of accurate and simple models. Accurate models are required to achieve good predictions. Simple models are important to prevent overfitting, improve the transparency of the models, and to save computational resources. Although there is a plethora of evolutionary approaches to extract models for classification and regression, the presented approach is one of the first applied to survival analysis. The approach is evaluated on several artificial datasets and one medical dataset. It is shown that the approach is capable of producing accurate models, even for problems that violate some of the assumptions made by classical approaches.  相似文献   

10.
Chi YY  Ibrahim JG 《Biometrics》2006,62(2):432-445
Joint modeling of longitudinal and survival data is becoming increasingly essential in most cancer and AIDS clinical trials. We propose a likelihood approach to extend both longitudinal and survival components to be multidimensional. A multivariate mixed effects model is presented to explicitly capture two different sources of dependence among longitudinal measures over time as well as dependence between different variables. For the survival component of the joint model, we introduce a shared frailty, which is assumed to have a positive stable distribution, to induce correlation between failure times. The proposed marginal univariate survival model, which accommodates both zero and nonzero cure fractions for the time to event, is then applied to each marginal survival function. The proposed multivariate survival model has a proportional hazards structure for the population hazard, conditionally as well as marginally, when the baseline covariates are specified through a specific mechanism. In addition, the model is capable of dealing with survival functions with different cure rate structures. The methodology is specifically applied to the International Breast Cancer Study Group (IBCSG) trial to investigate the relationship between quality of life, disease-free survival, and overall survival.  相似文献   

11.
Summary In genetic family studies, ages at onset of diseases are routinely collected. Often one is interested in assessing the familial association of ages at the onset of a certain disease type. However, when a competing risk is present and is related to the disease of interest, the usual measure of association by treating the competing event as an independent censoring event is biased. We propose a bivariate model that incorporates two types of association: one is between the first event time of paired members, and the other is between the failure types given the first event time. We consider flexible measures for both types of association, and estimate the corresponding association parameters by adopting the two‐stage estimation of Shih and Louis (1995, Biometrics 51, 1384–1399) and Nan et al. (2006, Journal of the American Statistical Association 101, 65–77). The proposed method is illustrated using the kinship data from the Washington Ashkenazi Study.  相似文献   

12.
In the study of multiple failure time data with recurrent clinical endpoints, the classical independent censoring assumption in survival analysis can be violated when the evolution of the recurrent events is correlated with a censoring mechanism such as death. Moreover, in some situations, a cure fraction appears in the data because a tangible proportion of the study population benefits from treatment and becomes recurrence free and insusceptible to death related to the disease. A bivariate joint frailty mixture cure model is proposed to allow for dependent censoring and cure fraction in recurrent event data. The latency part of the model consists of two intensity functions for the hazard rates of recurrent events and death, wherein a bivariate frailty is introduced by means of the generalized linear mixed model methodology to adjust for dependent censoring. The model allows covariates and frailties in both the incidence and the latency parts, and it further accounts for the possibility of cure after each recurrence. It includes the joint frailty model and other related models as special cases. An expectation-maximization (EM)-type algorithm is developed to provide residual maximum likelihood estimation of model parameters. Through simulation studies, the performance of the model is investigated under different magnitudes of dependent censoring and cure rate. The model is applied to data sets from two colorectal cancer studies to illustrate its practical value.  相似文献   

13.
A new failure model is introduced in the form of a four-parameter nonlinear differential equation, with failure probability as the dependent variable and failure time as the independent variable. The first parameter characterizes the location, the second the scale, and the other two the shape of the model. The type of the accompanying hazard function is immediately read off the shape parameters. The new model approximates the classical failure models with rather high precision, but also models cases where the failure density is skewed to the left. It can be used to analyze survival data objectively, based on the shape of the failure distribution. The computation of quantiles and moments is easy and fast. Nonlinear regression methods are used to estimate parameter values.  相似文献   

14.
Regression models in survival analysis are most commonly applied for right‐censored survival data. In some situations, the time to the event is not exactly observed, although it is known that the event occurred between two observed times. In practice, the moment of observation is frequently taken as the event occurrence time, and the interval‐censored mechanism is ignored. We present a cure rate defective model for interval‐censored event‐time data. The defective distribution is characterized by a density function whose integration assumes a value less than one when the parameter domain differs from the usual domain. We use the Gompertz and inverse Gaussian defective distributions to model data containing cured elements and estimate parameters using the maximum likelihood estimation procedure. We evaluate the performance of the proposed models using Monte Carlo simulation studies. Practical relevance of the models is illustrated by applying datasets on ovarian cancer recurrence and oral lesions in children after liver transplantation, both of which were derived from studies performed at A.C. Camargo Cancer Center in São Paulo, Brazil.  相似文献   

15.
Yin G  Cai J 《Biometrics》2005,61(1):151-161
As an alternative to the mean regression model, the quantile regression model has been studied extensively with independent failure time data. However, due to natural or artificial clustering, it is common to encounter multivariate failure time data in biomedical research where the intracluster correlation needs to be accounted for appropriately. For right-censored correlated survival data, we investigate the quantile regression model and adapt an estimating equation approach for parameter estimation under the working independence assumption, as well as a weighted version for enhancing the efficiency. We show that the parameter estimates are consistent and asymptotically follow normal distributions. The variance estimation using asymptotic approximation involves nonparametric functional density estimation. We employ the bootstrap and perturbation resampling methods for the estimation of the variance-covariance matrix. We examine the proposed method for finite sample sizes through simulation studies, and illustrate it with data from a clinical trial on otitis media.  相似文献   

16.
Sun J  Liao Q  Pagano M 《Biometrics》1999,55(3):909-914
In many epidemiological studies, the survival time of interest is the elapsed time between two related events, the originating event and the failure event, and the times of the occurrences of both events are right or interval censored. We discuss the regression analysis of such studies and a simple estimating equation approach is proposed under the proportional hazards model. The method can easily be implemented and does not involve any iteration among unknown parameters, as full likelihood approaches proposed in the literature do. The asymptotic properties of the proposed regression coefficient estimates are derived and an AIDS cohort study is analyzed to illustrate the proposed approach.  相似文献   

17.
Accelerated failure time model (AFT) and Cox’s proportional hazards model (PHM) are considered the two most significant models in survival analysis, which has become a de facto standard for biomedical data analysis and modeling. AFT not only plays an extremely significant role in survival analysis but also finds extensive applications in engineering reliability. Survival analysis studies a special type of random variables: time-to-event (also known as failure time, lifetime or survival time) random variables. Examples of time-to-event random variables include survival times of patients in a clinical trial and failure times of machine components. Since molting and death times of insect individuals are also perfect examples of time-to-event random variables, we argue that survival analysis including AFT modeling is ideal for analyzing insect development and survival data, and further for building dynamic models of insect development and survival. Here we demonstrate such an application with data collected by observing stage-to-stage development and survival of 1,800 Russian wheat aphids (RWA), Diuraphis noxia, reared in laboratory growth chambers arranged in 25 treatments (each with 72 individuals). The main advantages of survival analysis, including the unified modeling of survival and development as well as handling of information censoring, are also discussed.  相似文献   

18.
Estimation in a Cox proportional hazards cure model   总被引:7,自引:0,他引:7  
Sy JP  Taylor JM 《Biometrics》2000,56(1):227-236
Some failure time data come from a population that consists of some subjects who are susceptible to and others who are nonsusceptible to the event of interest. The data typically have heavy censoring at the end of the follow-up period, and a standard survival analysis would not always be appropriate. In such situations where there is good scientific or empirical evidence of a nonsusceptible population, the mixture or cure model can be used (Farewell, 1982, Biometrics 38, 1041-1046). It assumes a binary distribution to model the incidence probability and a parametric failure time distribution to model the latency. Kuk and Chen (1992, Biometrika 79, 531-541) extended the model by using Cox's proportional hazards regression for the latency. We develop maximum likelihood techniques for the joint estimation of the incidence and latency regression parameters in this model using the nonparametric form of the likelihood and an EM algorithm. A zero-tail constraint is used to reduce the near nonidentifiability of the problem. The inverse of the observed information matrix is used to compute the standard errors. A simulation study shows that the methods are competitive to the parametric methods under ideal conditions and are generally better when censoring from loss to follow-up is heavy. The methods are applied to a data set of tonsil cancer patients treated with radiation therapy.  相似文献   

19.
20.
A nonproportional hazards Weibull accelerated failure time regression model   总被引:1,自引:0,他引:1  
K M Anderson 《Biometrics》1991,47(1):281-288
We present a study of risk factors measured in mean before age 50 and subsequent incidence of heart disease over 32 years of follow-up. The data are from the Framingham Heart Study. The standard accelerated failure time model assumes the logarithm of time until an event has a constant dispersion parameter and a location parameter that is a linear function of covariates. Parameters are estimated by maximum likelihood. We reject a standard Weibull model for these data in favor of a model with the dispersion parameter depending on the location parameter. This model suggests that the cumulative hazard ratio for two individuals shrinks towards unity over the follow-up period. Thus, not only the standard Weibull, but also the semiparametric proportional hazards (Cox) model is inadequate for this data. The model improvement appears particularly valuable when estimating the difference in predicted outcome probabilities for two individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号