首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biological effects of 1.25(OH)2D3 on epidermal growth factor receptor (EGF-R) and on EGF internalization were examined in human mammary carcinoma BT-20 cells. In this cell line, with known amplification of the epidermal growth factor receptor gene, EGF was not stimulatory for growth. Biological assay and quantitative EM autoradiography combined with iodinated ligand binding to specific receptors demonstrated that the number of binding sites per unit of length of plasma membrane was 2.48-fold higher in treated than in control cells. 125I-EGF was progressively internalized in a time- and temperature-dependent manner after selective association with the membrane-coated pits. No modification of the time course of 125I-EGF internalization was noted in the control and in the treated cells, but a different distribution of the labeling in the subcellular compartment was observed in treated cells. In 1.25(OH)2D3-treated batches, the grain density remained low in the receptosomes throughout the experiment, whereas it was high and occurred early in the lysosomes. On the other hand, in control cells, the grain density of the receptosomes was high, whereas it occurred late and was relatively low in the lysosomes. These data suggest that 1.25(OH)2D3 is a regulator of EGF-R level in BT-20 cell line, but it cannot be affirmed whether this effect is direct or mediated by other parameters.  相似文献   

2.
The addition of EGF to cultured murine 3T3 cells produces a decrease in EGF binding activity with concomitant internalization and degradation of the initially bound EGF. When the EGF receptor on cultured 3T3 cells is affinity labeled with high specific activity 125I-EGF, and the fate of the affinity labeled EGF-receptor complex determined, the loss in binding activity was accounted for by receptor internalization and subsequent proteolytic processing of the EGF receptor molecules in the lysosomes. Studies of the effects of EGF concentration on EGF binding by cells, EGF-induced receptor internalization and EGF-induced stimulation of 3H-thymidine uptake into cellular DNA show that there is a direct correlation between EGF-induced receptor internalization and EGF-induced stimulation of DNA synthesis, but not between EGF binding and EGF-induced stimulation of DNA synthesis. This correlation is lost at high EGF concentrations, where stimulation of DNA synthesis is suboptimal. Optimal stimulation of DNA synthesis requires a minimum of 6 h of incubation of EGF with cells, and the suboptimal stimulation of DNA synthesis at high EGF concentration is intensified when the period of incubation of EGF with cells is less than 6 h. These data are consistent with a model of hormone signal transmission by Endocytic Activation, wherein the activation of EGF-induced processes requires constant EGF-induced internalization of receptor for a requisite 6–8 h period as an obligatory step in production of “second messenger” in the action of this hormone.  相似文献   

3.
Abstract

We have studied binding of 125I-EGF to the human malignant glioma cell line U-343 MG aCl2:6, which is planned to be used as a model system in studies of toxic effects of EGF conjugates. Special care has been taken to fulfil the requirements for a correct Scatchard analysis of binding parameters. Binding as a function of time, temperature and pH was investigated as well as dissociation and internalization of bound EGF. The stability of EGF during incubation was also determined. After binding to the receptor, EGF is rapidly internalized and degraded at physiological temperature. We found that binding experiments should be performed at 4°C, since at this temperature practically no internalization took place, whereas dissociation occurred. From displacement experiments using increasing concentrations of unlabelled EGF competing with 125I-EGF for binding, binding parameters were calculated using a computerized, nonlinear, least-squares regression analysis of binding data. We found that EGF bound to a class of high affinity receptors with an apparent dissociation constant KD of about 4 × 10-10 M. The mean number of receptors was 25,000 per cell. In experiments where receptors were saturated with 125I-EGF an addititonal class of low affinity receptors was detected. This had an apparent KD of 1 × 10-8 M with a mean receptor number per cell of 780,000. We also noticed enhanced dilution-induced dissociation of bound 125I-EGF in the presence of excess unlabelled EGF, suggesting negative cooperativity.  相似文献   

4.
Endocytosis of the epidermal growth factor (EGF) was investigated in three cell lines--A431, 3T6 and Swiss 3T3--after their incubation with cytochalasin B (CB). CB was introduced into culture medium (10 mkg/ml) 1.5-2 hours before addition of 125I-EGF (20-40 ng/ml). The label uptake rate was measured after a 35-40 minutes incubation of cells with 125I-EGF. It appeared that disorganization of microfilamentous network caused by CB exerted no influence on the binding of EGF to the surface membrane receptors and its internalization. Nevertheless, the experiments performed on A431 cells using a fluorescent label--rhodamine--bound to EGF (EGF-R) indicate that CB, though not influencing the initial steps of endocytosis, inhibits the next step--the intracellular transport of EGF-receptor complexes from the trans-Golgi region to lysosomes. As was shown elsewhere (Barkan, Nikol'sky, 1986), CB inhibits the mitogenic effect of EGF on resting Swiss 3T3 cells. So, the process of EGF-receptor uptake and delivery to the trans-Golgi region is evidently not enough to stimulate the cell proliferation; next steps of transport and degradation of ligand-receptor complexes are presumably needed.  相似文献   

5.
Summary The mitogenic and differentiation-inducing activities of epidermal growth factor (EGF) in epithelial tissues have been well described. Since non-mitogenic effects of EGF, especially in mesenchymal tissues such as smooth muscle are not well-known (Nanney et al. 1984), we have examined EGF-binding and receptors in smooth muscle from many sites. Specific EGF binding sites were detected by incubating small pieces of tissue with 125I-EGF; immunoreactive EGF receptors were detected by immunohistochemistry. In-situ localization of 125I-EGF binding sites and immunoreactive EGF receptors of smooth muscle cells in intact mammalian tissues were identical using either 125I-EGF autoradiography or anti-EGF receptor antibody in an immunoperoxidase method. Cultured rat aortic smooth muscle also contained specific EGF receptors as detected by their biological response to EGF-binding and internalization of 125I-EGF, as well as EGF-stimulated phosphorylation of a 170K protein. The presence of EGF receptors in a well-differentiated smooth muscle cell indicates that EGF may play a physiological, but non-mitogenic role in mammalian tissues in vivo.  相似文献   

6.
Abstract

A photoaffinity derivative of highly purified 125I-labelled epidermal growth factor (125I-EGF) has been synthesized. The heterobifunctional crosslinking reagent p-azidophenylglyoxal (PAPG) was bound to arginine residues in 125I-EGF. PAPG-125I-EGF bound to EGF receptors on rat fibroblasts and human A431 epidermoid carcinoma cells in culture. An apparent decreased affinity of PAPG-125I-EGF for the EGF receptor is in accord with at least one arginine being at or near the EGF receptor binding site. The PAPG-125I-EGF:EGF receptor complexes on rat cells were internalized to the same extent as control EGF:receptor complexes. A431 cells treated with PAPG-125I-EGF were irradiated with ultraviolet light and the labelled proteins were analyzed by SDS-polyacrylamide gel electrophoresis. The 3 major labelled proteins had apparent molecular weights ranging from 75,000 to 200,000. Only the labelling of the 200,000-Mr protein was prevented by the addition of excess unlabelled EGF with the PAPG-125I-EGF. This molecular weight is in agreement with the reported size of the EGF receptor plus EGF. A protein with apparent molecular weight of 100,000 was labelled by 125I-EGF by an unknown mechanism which was dependent on the dose of UV light and blocked by the addition of excess unlabelled EGF.  相似文献   

7.
Monensin, like the lysosomotropic amines Chloroquine and methylamine, caused a large accumulation of 125I-EGF in BALB/c-3T3 cells that was due to specific increases in the amount of intracellular intact hormone. However using a pulse-chase paradigm of 125I-EGF accumulation, marked differences were observed between monensin and the amines. When EGF was accumulated in the presence of monensin, there was a gradual loss of cell-bound radioactivity during a chase in the absence of the drug, and the labeled material recovered in. the medium primarily consisted of degraded hormone. The continued presence of monensin in the chase medium substantively prevented the loss of cell bound material, and what little was recovered in the medium consisted of intact 125I-EGF. In contrast, when 125I-EGF was accumulated in the presence of methylamine, predominately intact peptide was lost from the cells at a relatively high rate during the chase whether or not methylamine remained in the medium. When monensin was present in the chase medium following accumulation in the presence of either Chloroquine or methylamine, the loss of intracellular 125I-EGF was essentially blocked.  相似文献   

8.
125I-EGF与人多形成胶质细胞瘤BT325细胞系膜上EGF受体的饱和结合实验, 竞争抑制实验研究GM3,BBG(bovine brain gangliosides)对EGF受体最大结合量, 亲和常数及受体数目的影响; 放射受体法观察EGF-EGFR复合物内吞过程, 测定胞质和培养基中EGF含量.结果表明: BT325细胞质膜上存在高亲和力EGF结合位点,GM3对EGF与其受体的亲和力无明显抑制作用(P>0.05),但能明显减少其受体的数目(P<0.05); GM3能明显延长EGF-EGFR复合物内吞过程; GM3处理的胞质中EGF浓度比对照组显著升高(P<0.05), 培养液中无明显差异,这可能是由于GM3抑制EGF分泌所致.  相似文献   

9.
Solubilization of membrane receptor for epidermal growth factor.   总被引:7,自引:0,他引:7  
G Carpenter 《Life sciences》1979,24(18):1691-1697
The membrane receptor for epidermal growth factor (EGF) has been solubilized from A-431 tumor cells using Triton X-100. Operational criteria used to define solubilization include failure of the binding activity to be pelleted after centrifugation at 90,000 x g for 1.5 hrs and the requirement for polyethylene glycol precipitation to detect 125I-EGF: receptor complexes on membrane filters. Properties of the solubilized EGF are characterized and compared to the properties of the particulate receptor. The specific binding capacity of the solubilized EGF receptor was 8.0 picomoles 125I-EGF bound per mg protein--approximately 60% of the binding capacity of particulate receptor preparations. Also, solubilization of the EGF receptor resulted in a 10-fold decrease in the affinity of the receptor for 125I-EGF.  相似文献   

10.
The internalization of 125I-epidermal growth factor (EGF) by A431 cells was investigated. Control cells were able to internalize over 80% of receptor-bound 125I-EGF. By contrast, cells treated with EGF before incubation with 125I-EGF internalized only 50% of the surface-bound radioligand. The ligand-induced decrease in 125I-EGF internalization showed a dose response to EGF with half-maximal effect occurring at 3 nM. The alteration in the extent of 125I-EGF internalization did not require extended treatment with high concentrations of the hormone. When the internalization of picomolar versus nanomolar concentrations of EGF were compared, the lower concentrations of 125I-EGF were more completely internalized than the higher concentrations of radioligand. These data are consistent with the hypothesis that occupation of the EGF receptor by hormone rapidly leads to the activation of cellular processes which effectively desensitize the system to further ligand-induced internalization. The decrease in the extent of ligand internalization occurred in cells in which the protein kinase C (Ca2+/phospholipid-dependent enzyme) activity had been down-regulated by prolonged treatment with 12-O-tetradecanoyl-phorbol-13-acetate implying that the desensitization process is independent of protein kinase C. However, the effects of EGF on the extent of hormone internalization could be mimicked by the addition of A23187 and could be prevented by pretreatment of the cells with calmodulin antagonists suggesting the possibility that Ca2+-calmodulin is involved in the regulation of EGF receptor internalization in A431 cells.  相似文献   

11.
EGF induces receptor down-regulation with no receptor recycling in KB cells   总被引:3,自引:0,他引:3  
Several ligands, including epidermal growth factor (EGF), have been found to negatively modulate or down-regulate their specific plasma membrane receptors. Using both 125I-EGF and a monoclonal antibody against the EGF-receptor (EGF-R1), we studied the down-regulation of the EGF-receptor in the human adenocarcinoma cell line KB. The results presented here demonstrate that incubating KB cells at 37 degrees C with EGF rapidly decreases the number of plasma membrane EGF-receptors. In addition, there is a concomitant rise of equal magnitude in the number of EGF molecules taken up. The latter result argues strongly that there is negligible recycling of the EGF-receptor in KB cells and that the major portion of internalized EGF-receptor complexes are transported to lysosomes and subsequently degraded. The fate of the EGF-receptor is markedly different from that of receptors not subject to down-regulation. The biochemical signals that operate to regulate such diverse receptor traffic in cells remains to be elucidated.  相似文献   

12.
A small portion of the 125I-EGF that binds specifically to intact cells or isolated membranes from a variety of sources becomes directly and irreversibly linked to EGF receptors. This provides a simple technique for affinity labeling the EGF receptor. Membranes isolated from the human epidermoid carcinoma cell line A431, which posesses extraordinarily high numbers of EGF receptors, gave rise to three major direct linkage complexes of MW = 160,000, 145,000, and 115,000. The time course for formation of each is similar, showing that 125I-EGF can form direct linkage complexes with several preexisting forms of the EGF receptor. The direct linkage of EGF to receptor is slow in comparison to 125I-EGF binding, but both processes have similar susceptibilities to competition by unlabeled EGF. EGF was modified chemically with the amino site-specific reagent, N-hydroxysuccinimidyl biotin. The biotinyl-EGF had a reduced capacity to engage in direct linkage complex formation with no concomitant reduction in its ability to bind to EGF receptors. Since native and biotinyl EGF have identical abilities to stimulate the uptake of 3H-thymidine into DNA when incubated with cultured murine 3T3 cells, the direct linkage of EGF to its receptor does not appear to play an important role in EGF-stimulated mitogenesis.  相似文献   

13.
When normal human fibroblasts are brought to a steady state with 125I-labeled epidermal growth factor (125I-EGF), greater than 90% of the radioactivity is intracellular. We investigated this material to determine whether the 125I-EGF is intact or degraded. Our results show that 125I-EGF is rapidly processed after internalization and can be resolved into four peaks by native gel electrophoresis. These different forms were isolated and tested for their ability to bind to cell-surface EGF receptors. The first processed form was fully capable of binding to EGF receptors, but the second processed form could not. The third form was a collection of small degradation products. We calculated that at steady state about 60% of internalized "125I-EGF" was in a form still able to bind to EGF receptors. We then investigated the ability of different reported inhibitors of EGF "degradation" to block the processing of EGF. Although inhibitors of cathepsin B (leupeptin, antipain, N alpha-p-tosyl-L-lysine chloromethyl ketone, and chymostatin) were able to inhibit the release of monoiodotyrosine from treated cells in a time- and concentration-dependent manner, they had little effect on the processing step that apparently inactivates 125I-EGF. In contrast, agents that raised intravesicular pH, such as methylamine and monensin, inhibited the initial steps in EGF processing as well as the later steps. Low temperatures inhibited the transfer of 125I-EGF to the lysosomes and inhibited the conversion of EGF to a nonbindable form, but had little effect on the initial processing. We conclude that the intracellular processing of EGF is a multistep process that is initiated prior to lysosomal fusion, involves cathepsin B activity, and requires an acidic pH. In addition, many of the protease inhibitors that have been utilized to investigate the role of EGF degradation in mitogenesis do not block the conversion of EGF to a form that is apparently unable to interact with its receptor.  相似文献   

14.
The E5 protein of the bovine papillomavirus induces cellular transformation when transfected into NIH 3T3 cells, and the extent of focal transformation is enhanced by cotransfection with the epidermal growth factor (EGF) receptor (Martin et al., Cell 59:21-32, 1989). To determine whether E5 affects EGF:receptor interactions we analyzed the kinetics of 125I-EGF processing using a mathematical model that enabled us to evaluate rate constants for ligand association (ka), dissociation (kd), internalization (ke), recycling (kr), and degradation (kh). These rate constants were measured in NIH 3T3 cells transfected with the human EGF receptor (ER cells) and in cells transfected with both the EGF receptor and E5 (E5/ER cells). We found that the rate constant for 125I-EGF association ka was significantly decreased in E5/ER cells, but was apparently occupancy-independent in both cell lines. The 125I-EGF dissociation rate constant kd was significantly lower in E5 transformed cells, and increased with occupancy in both cell lines. This suggests that E5 alters the receptor before or during EGF binding so that ligand association is slower; however, once complexes are formed, EGF is bound more tightly to the receptor. Rate constants for internalization ke were also found to be occupancy-dependent, although at a given level of occupancy ke was similar for both cell lines. Also, there was no apparent effect of E5 on the recycling rate constant kr. The 125I-EGF degradation rate constant kh was 30% lower in E5 transformed cells, and was occupancy-independent. The overall effect of E5 is to stabilize intact EGF:receptor complexes which may alter mitogenic signaling of the receptor.  相似文献   

15.
Between 60% and 100% of epidermal growth factor (EGF) binding activity was recovered from membranes of the A431 human epidermoid carcinoma cell line treated with solutions containing the nonionic detergent Triton X-100. Approximately half of the recovered binding activity was sedimented at low centrifugal forece and hence was operationally insoluble in nonionic detergent solution. Receptors in both the detergent-soluble and -insoluble fractions displayed similar affinities for 125I-EGF, and the values were in good agreement with those obtained for receptors in untreated membranes. The receptors in both fractions also formed identical direct linkage complexes with 125I-EGF in similar yield, providing no evidence for partitioning of different molecular species of EGF receptors in the detergent-soluble and -insoluble fractions. Gel chromatography of the detergent-soluble membrane fraction on Sepharose 6-B revealed heterogeneity of 125I-EGF binding activity; the smallest and most monodisperse peak of activity resolved by this technique was eluted at a Stokes radius of 95 Å. Operationally soluble 125I-EGF binding activity also behaved heterogeneously during velocity sedimentation; more than half the activity sedimented more rapidly than the apparently monidisperse, 7S form. An average of less than half the nonionic detergent-solubilized activity recovered from 10 independent membrane preparations behaved as an apparently monodisperse entity. Since a maximum of 60% of 125I-EGF binding activity was operationally soluble, less than 25% of the total EGF binding activity was recovered in an apparently monodisperse form. The remaining 75% of the EGF receptors displayed a marked tendency to exist as aggregates in nonionic detergent solutions.  相似文献   

16.
In this study the effects of retinoic acid on the binding and mitogenic activity of epidermal growth factor (EGF) in mouse fibroblast Balb/c 3T6 cells are further examined. Retinoic acid treatment of 3T6 cells results in a sixfold enhancement of 125I-labeled mouse EGF binding when assayed at 37 degrees C. In both retinoic acid-treated and control cells, cell-associated 125I-EGF is rapidly internalized, degraded, and secreted. Retinoic acid treatment does not seem to have a significant effect on the rate of internalization and degradation of EGF. At 0 degrees C, internalization of EGF is strongly inhibited in both retinoic acid-treated and control cells. Under these conditions retinoic acid-treated cells still exhibit a tenfold higher level of EGF binding compared to control cells. When exposed to high concentrations of EGF both retinoic acid-treated and control cells "down-regulate" their EGF receptors. And although the growth rate of retinoic acid-treated cells is about half that of control cells, the rate at which EGF binding capacity is restored after down-regulation is about three times as fast as in control cells. No direct antagonism on EGF binding was observed between the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and retinoic acid. EGF is a potent mitogen for 3T6 cells in serum-free medium; retinoic acid inhibits the mitogenic activity of EGF even though it increases EGF binding. Retinoic acid also inhibits cell proliferation induced by sarcoma growth factor (SGF) and insulin.  相似文献   

17.
We have investigated the stimulation of fluid phase endocytosis by epidermal growth factor (EGF) in normal human fibroblasts using 125I-labeled polyvinylpyrrolidone (125I-PVP) as a fluid phase marker. We found that EGF initially induced a thereefold increase in the rate of 125I-PVP uptake. This initial burst of fluid uptake terminated within 10 min. Thereafter, the rate of fluie uptake in EGF-treated cells was approximately 40% higher than in control cells. To identify the cellular site of EGF action in stimulating fluid phase endocytosis, we examined the kinetics of the induction of this response as well as the kinetics of cell surface binding and internalization of 125I-EGF. Although there was no detectable lag between binding of EGF to the cell surface and its internalization, the kinetics of the two processes were quite different. Significantly, the kinetics of induction of 125I-PVP uptake matched the kinetics of binding of 125I-EGF to its cell surface receptors, indicating that the signal for the increase in fluid phase endocytosis is generated at the cell surface. To determine if EGF-stimulated fluid phase endocytosis was related to EGF-stimulated endocytosis of its own receptor, we compared the EGF dose dependency and time course of the two processes. Although the stimulated endocytosis of the EGF receptor was not saturable with respect to the concentration of EGF used, the stimulation of fluid phase endocytosis was half maximal at an EGF concentration of 1 ng/ml and saturated at a concentration of 5 ng/ml. Also, the stimulation of fluid phase endocytosis was sevenfold greater initially after adding EGF than after a 30-min continuous incubation with the hormone, whereas the enhanced clearance of the EGF receptor did not change during this time period. We conclude that the EGF-stimulated increase in fluid phase endocytosis is not directly coupled to EGF-stimulated endocytosis of its own receptor but instead to a separate signal generated at the cell surface.  相似文献   

18.
The effects of epidermal growth factor (EGF) were studied in rat pituitary tumor cells, GH3, grown in serum-supplemented and serum-free chemically defined media. EGF (1 nM) increased the cell number to 132% of the control cultured in the defined medium during a 6-day incubation period, while it decreased the cell number to 60% of the control in the serum-supplemented medium. EGF altered the morphology of the cells grown in the defined medium more markedly to an elongated conformation than that of cells grown in the serum-supplemented medium. EGF also stimulated prolactin (PRL) production by culture in the presence or absence of serum. The effects of the cell density of GH3 on the action of EGF were shown to appear in two ways. The mitogenic influence of EGF was more effective on, and more responsive to, high-density cells, whereas the stimulatory action on PRL production was less effective on high-density cells. However, the inhibitory effects on cellular growth appeared independently of cell densities. The results obtained with 125I-EGF binding experiments indicated that the number of binding sites, affinity, and internalization of EGF receptors were similar in either serum-supplemented or serum-free culture. At low cell density, the number of available 125I-EGF binding sites per cell was larger than at high cell density. These results suggested that there was no apparent correlation between EGF binding and its differing effects on the growth of GH3 cultured in the serum-supplemented and the defined medium.  相似文献   

19.
Using a quantitative EM autoradiographic technique, we have visualized the membrane binding and receptor-mediated uptake of low density lipoprotein (LDL) in human fibroblasts. The initial binding was restricted to the plasma membrane (2 h of incubation at 4 °C) and approx. 62% of the grains could be localized to coated pits in the plasma membrane. When the incubations were carried out at 37 °C, 125I radioactivity was found both on the membrane and within the cell and predominantly localized on or within lysosomes. In cells from the patient J. D., a familial hypercholesterolemic homozygote with an internalization defect, initial binding of 125I-LDL was restricted to the plasma membrane but not preferentially localized to coated segments of the plasma membrane. After incubation for 30 min at 37 °C, the membrane bound 125I-LDL in J. D. cells was not internalized. These data confirm results obtained with ferritin-labeled LDL and illustrate the complementary application of two different morphologic probes, each of which offers special advantages for special problems.  相似文献   

20.
T3M4 human pancreatic carcinoma cells avidly bound and internalized 125I-labeled epidermal growth factor (EGF) but did not readily degrade the ligand. Pulse-chase experiments in which the cell-bound radioactivity was allowed to dissociate into the incubation medium in the presence of unlabeled EGF indicated that the majority of the released 125I-EGF consisted of intact EGF and a slightly processed species that readily bound to the cell. Omission of unlabeled EGF during the chase period markedly decreased the amount of radioactivity in the incubation medium, mainly as a result of the rebinding of EGF to the cells. In contrast, T3M4 cells readily degraded 125I-labeled transforming growth factor-alpha (TGF-alpha), and the released radiolabeled products did not rebind to the cells. Both ligands were released from T3M4 cells under acidic conditions, complete dissociation occurring at a pH of 4.5 for EGF, and a pH of 6.5 for TGF-alpha. A 431 human epidermoid carcinoma cells and ASPC-1 human pancreatic carcinoma cells also failed to extensively degrade 125I-EGF, whereas Rat-1 fibroblasts markedly degraded the growth factor. As in the case of T3M4 cells, ASPC-1 cells extensively degraded 125I-TGF-alpha. Degradation of either ligand was blocked by the lysosomotropic compound methylamine in all the tested cell lines. Immunoprecipitation of the EGF receptor with specific polyclonal antibodies and Western blot analysis revealed the anticipated 170-kDa protein in T3M4 cells. Both EGF and TGF-alpha enhanced EGF receptor degradation, but TGF-alpha was less effective than EGF. These findings indicate that in certain cell types EGF and TGF-alpha may be differentially processed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号