首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite recent improvement in cellulase enzymes properties, the high cost associated with the hydrolysis step remains a major impediment to the commercialization of full-scale lignocellulose-to-ethanol bioconversion process. As part of a research effort to develop a commercial process for bioconversion of softwood residues, we have examined the potential for recycling enzymes during the hydrolysis of mixed softwood substrate pretreated by organosolv process. We have used response surface methodology to determine the optimal temperature, pH, ionic strength, and surfactant (Tween 80) concentration for maximizing the recovery of bound protein and enzyme activity from the residual substrates after hydrolysis. Data analysis showed that the temperature, pH and surfactant concentration were the major factors governing enzyme desorption from residual substrate. The optimized conditions were temperature 44.4 °C, pH 5.3 and 0.5% Tween 80. The optimal conditions significantly increased the hydrolysis yield by 25% after three rounds of hydrolysis. This bound enzyme desorption combining with free enzyme re-adsorption is a potential method to recover cellulase enzymes and reduce the cost of enzymatic hydrolysis.  相似文献   

2.
Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. (The critical relationship was the Tween loading on the biomass, not the Tween concentration in solution.) The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 degrees C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

3.
In order to investigate the mechanism of the different stimulatory effects of the biosurfactant rhamnolipid and the chemical surfactant Tween 80 on enzymatic hydrolysis of lignocellulose, the interaction between surfactants and enzymes was analyzed by the fluorescence probe method using pyrene as probe. Based on the evolution law of pyrene fluorescence spectroscopy in the “surfactants-enzymes” systems, the interaction relationship between surfactants and enzymes was analyzed and discussed in this paper. The results show that enzyme molecules bind with rhamnolipid molecules, participate in the formation of rhamnolipid micelles, and increase the inner hydrophobic polarity of micelles, but do not change the properties of rhamnolipid micelles above the CMC (Critical Micelle Concentration). Nevertheless, for Tween 80, enzyme molecules also participate in the forming of micelles, however, they exhibit a stronger interaction with enzymes above the CMC. Both rhamnolipid and Tween 80 bind more strongly with xylanase than cellulase. Considering also previous experimental results, it can be concluded that the interaction between surfactants and enzymes improve enzyme stability and activity, and, therefore, the efficiency of enzymatic hydrolysis of lignocellulose is enhanced. The findings further provide theoretical knowledge about the mechanism of the stimulative effects of surfactants on enzymatic hydrolysis of lignocellulose.  相似文献   

4.
Recycling of cellulases is one way of reducing the high cost of enzymes during the bioconversion process. The effects of surfactant addition on enzymatic hydrolysis and the potential recycling of cellulases were studied during the hydrolysis of steam exploded Lodgepole pine (SELP) and ethanol pretreated Lodgepole pine (EPLP). Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their hydrolysis efficiencies over multiple rounds of recycling. The surfactant, Tween 80, significantly increased the yield from 63% to 86% during the hydrolysis of the SELP substrate. The addition of surfactant to the hydrolysis of the EPLP substrate increased the free enzymes in the supernatant from 71% of the initial protein to 96%. Based on the Langmuir adsorption constants, cellulases (Celluclast and Spezyme CP) from Trichoderma reesei showed a higher affinity (3.48 mL/mg and 3.17 mL/mg) for the EPLP substrate than did the Penicillium enzyme (0.62 mg/mg). The Trichoderma reesei enzyme was used in four successive rounds of enzyme recycling using surfactant addition and readsorption onto fresh substrates during the hydrolysis of EPLP. In contrast, the Penicillium-derived enzyme preparation (MSUBC) could only be recycled once. When the same recycling strategy was carried out using the SELP substrate, the hydrolysis yield declined during each enzyme recycling round. These results suggested that the higher lignin content of the SELP substrate, and the low affinity of cellulases for the SELP substrate limited enzyme recycling by readsorption onto fresh substrates.  相似文献   

5.
The untanned proteinaceous tannery solid waste, the animal fleshing (ANFL), was used as substrate in the treatment process (hydrolysis and fermentation) involving Synergistes sp. The nonionic surfactant (Tween 80) was evaluated for its ability to influence on microbial growth and enzyme activity in the hydrolysis and fermentation of ANFL. The addition of Tween 80 in the process significantly increased the activities of hydrolytic and fermentative enzymes like protease (338-360 Um l(-1)) and deaminase (187-206 Um l(-1)) compared to that of control (protease 195-220 Um l(-1) and deaminase 70-83 Um l(-1)). The total viable bacterial count was increased more than twofold, compared to the control in the presence of 0.15% Tween 80. The ANFL fermentation and formation of other metabolites were evidenced by Gas Chromatography and Mass Spectroscopy (GC-MS), Proton Nuclear Magnetic Resonance spectroscopy ((1)H NMR) and Fourier transform infra red spectroscopy (FT-IR). The breakdown of fibrillar proteins in ANFL was confirmed by the scanning electron microscopy (SEM) and the transmission electron microscopy (TEM).  相似文献   

6.
Streptococcus salivarius (ATCC 25975) produced very low or nondetectable amounts of the extracellular enzyme glucosyltransferase (GTase) when grown in a chemically defined medium. The addition of Tween 80 to this medium resulted in the production of markedly enhanced levels of the enzyme. Oleic acid, the methyl ester of oleic acid, and sucrose each could not substitute for Tween 80 in this regard. The surfactant had no direct activating effect on performed enzyme activity. Tween 80 also stimulated the production of GTase by concentrated cells suspended in defined medium during a time when no measurable growth occurred. Under these conditions, the stimulatory effect of Tween 80 was blocked by chloramphenicol. It was further found that the surfactant dramatically stimulated the differential rate of GTase synthesis. These and other data strongly suggest that Tween 80 stimulates the production of extracellular GTase by acting either directly or indirectly at the level of enzyme synthesis.  相似文献   

7.
表面活性剂对出芽短梗霉多糖生产影响的研究   总被引:4,自引:0,他引:4  
研究了表面活性剂对出芽短梗霉细胞培养过程中多糖释放的影响。在摇瓶中,比较添加0.05%(w/v)的Tween 80、Tween 60、Tween 40,结果显示几种表面活性剂均能促进细胞释放多糖,其中以Tween 80的效果最佳。在5L发酵罐中,以100g/L玉米粉水解液做碳源的出芽短梗霉细胞培养液中分别添加了表面活性剂Tween 80 0.01%、0.05%、0.1%,其中以添加Tween 800.05%时的效果最好,与不添加表面活性剂相比多糖产量提高25%左右,发酵周期缩短了将近2d。  相似文献   

8.
Application of mixed surfactants coupled with statistical optimization in lipase catalyzed oil hydrolysis is presented for the first time in this study. Selective hydrolysis of brown mustard oil to erucic acid by porcine pancreas lipase was enhanced by mixed surfactants comprising of an oil-soluble nonionic surfactant (Span 80) and a watersoluble nonionic surfactant (Tween 80). The production of erucic acid was maximized using statistically designed experiments and subsequent analysis of their result by response surface methodology. The most significant variables were enzyme concentration and concentration of Tween 80. Small changes in pH and concentration of Span 80 also produced a significant change in the production of erucic acid. Temperature and speed of agitation were insignificant variables and were fixed at 35oC and 900 rpm, respectively. Under these conditions, the optimal combination of other variables were pH 9.65, 2.13 mg/g enzyme in oil, 9.8 × 10−3 M Span 80 (in oil), and 4 × 10−3 M Tween 80 (in buffer). These conditions led to formation of 99.69% of the total erucic acid in 1.25 h. Interaction of enzyme concentration with pH significantly affected erucic acid production.  相似文献   

9.
The chemical surfactant Tween 80 and biosurfactant rhamnolipid were respectively added to the composting substrate, a mixture of rice straw and bran, and their effects on the composting process were investigated. Samples were analysed for microbial communities of bacteria, actinomycetes and fungi, carboxymethylcellulose hydrolysis (CMCase) and xylanase activities, cellulose and hemicellulose fractions, water-soluble carbon (WSC) contents in the substrates, organic matter contents and pH values during the composting process. The results showed that both Tween 80 and rhamnolipid had slight stimulatory effects on the microbial populations of bacteria, actinomycetes and fungi. In addition, rhamnolipid increased the peak xylanase activity 15% higher than that of the control, while Tween 80 increased the maximum CMCase activity 35% higher than that of the control. As a result of the increased enzyme activities, treatments with Tween 80 and rhamnolipid were of higher WSC contents than the control during the whole composting process. Accordingly, the composting process was accelerated by the surfactants, since the organic matter was decomposed more quickly and the breakdown of cellulose and hemicellulose was better in the treatments with Tween 80 and rhamnolipid.  相似文献   

10.
The effects of surfactants addition on enzymatic hydrolysis and subsequent fermentation of steam exploded lodgepole pine (SELP) and ethanol pretreated lodgepole pine (EPLP) were investigated in this study. Supplementing Tween 80 during cellulase hydrolysis of SELP resulted in a 32% increase in the cellulose‐to‐glucose yield. However, little improvement was obtained from hydrolyzing EPLP in the presence of the same amount of surfactant. The positive effect of surfactants on SELP hydrolysis led to an increase in final ethanol yield after the fermentation. It was found that the addition of surfactant led to a substantial increase in the amount of free enzymes in the 48 h hydrolysates derived from both substrates. The effect of surfactant addition on final ethanol yield of simultaneous saccharification and fermentation (SSF) was also investigated by using SELP in the presence of additional furfural and hydroxymethylfurfural (HMF). The results showed that the surfactants slightly increased the conversion rates of furfural and HMF during SSF process by Saccharomyces cerevisiae. The presence of furfural and HMF at the experimental concentrations did not affect the final ethanol concentration either. The strategy of applying surfactants in cellulase recycling to reduce enzyme cost is presented. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

11.
A diverse surfactant, including the nonionic Tween 80 and Brij 30, the anionic sodium dodecyl sulphate, the cationic surfactant Tetradecyltrimethylammonium bromide, and biosurfactant Rhamnolipid were investigated under fluorine-enriched medium by Armilaria sp. F022. The cultures were performed at 25 °C in malt extract medium containing 1 % of surfactant and 5 mg/L of fluorene. The results showed among the tested surfactants, Tween-80 harvested the highest cell density and obtained the maximum specific growth rate. This due Tween-80 provide a suitable carbon source for fungi. Fluorane was also successfully eliminated (>95 %) from the cultures within 30 days in all flasks. During the experiment, laccase production was the highest among other enzymes and Armillaria sp. F022-enriched culture containing Non-ionic Tween 80 showed a significant result for laccase activity (1,945 U/L). The increased enzyme activity was resulted by the increased biodegradation activity as results of the addition of suitable surfactants. The biotransformation of fluorene was accelerated by Tween 80 at the concentration level of 10 mg/L. Fluorene was initially oxidized at C-2,3 positions resulting 9-fluorenone. Through oxidative decarboxylation, 9-fluorenone subjected to meta-cleavage to form salicylic acid. One metabolite detected in the end of experiment, was identified as catechol. Armillaria sp. F022 evidently posses efficient, high effective degrader and potential for further application on the enhanced bioremediation technologies for treating fluorene-contaminated soil.  相似文献   

12.
Veratryl alcohol (VA) at higher concentration stimulated the lignin peroxidase (LiP)-catalyzed oxidation of phenolic compounds remarkably. This novel phenomenon was due to its competition with the phenols for the active site of the enzyme and to the high reactivity of the formed cation radical of VA (VA+*) which resulted in an additional oxidation of the phenols. The influence of the nonionic surfactant Tween 80 on the VA-enhanced LiP-catalyzed oxidation of phenols depended on its concentration. At lower concentration it had a small synergetic effect but at higher concentration it decreased the initial rate. Studies of the capillary electrophoretic behavior of LiP in the presence of Tween 80 showed that this effect was caused by the surfactant aggregation on LiP which, at higher surfactant concentrations, might impede the access of VA to its binding site on LiP and, consequently, the VA+* formation.  相似文献   

13.
NAD+-dependent Cα-dehydrogenase LigD and glutathione-dependent β-etherase LigF which selectively cleave the β-O-4 aryl ether linkage present in lignin, are key-enzymes for the biocatalytic depolymerization of lignin. However, the catalytic efficiency of the two enzymes is low when they are used to break down the β-aryl ether linkage in natural lignin. When sulfonated lignin was added to LigF hydrolysis reactions, the conversion rate of MPHPV decreased significantly from 99.5% to 32.6%. On the contrary, sulfonated lignin has little affection on LigD, which the conversion rate of GGE only decreased from 41.7% to 41%. The strong nonspecific interactions of enzymes onto sulfonated lignin detected by surface plasmon resonance (SPR) and isothermal titration calorimetric (ITC) was obvious and universal, which can reduce enzyme activity of many enzymes, including ligninolytic enzyme β-etherase LigF. To elucidate the exact mechanisms by which β-etherase LigF interact with lignin, molecular modeling was applied. Finally, analysis on catalytic efficiency of LigD and LigF in different concentrations and molecular weights of sulfonated lignin, solution ionic strength, pH, temperature and concentration of Tween 80 revealed that electrostatic interactions and hydrophobic interactions play important roles in absorption between LigF and sulfonated lignin.  相似文献   

14.
The effect of nonionic surfactants on the polycyclic aromatic hydrocarbon (PAH) oxidation rates by the extracellular ligninolytic enzyme system of the white-rot fungus Bjerkandera sp. strain BOS55 was investigated. Various surfactants increased the rate of anthracene, pyrene, and benzo[a]pyrene oxidation by two to fivefold. The stimulating effect of surfactants was found to be solely due to the increased bioavailability of PAH, indicating that the oxidation of PAH by the extracellular ligninolytic enzymes is limited by low compound bioavailability. The surfactants were shown to improve PAH dissolution rates by increasing their aqueous solubility and by decreasing the PAH precipitate particle size. The surfactant Tween 80 was mineralized by Bjerkandera sp. strain BOS55; as a result both the PAH solubilizing activity of Tween 80 and its stimulatory effect on anthracene and pyrene oxidation rates were lost within 24 h after addition to 6-day-old cultures. It was observed that the surfactant dispersed anthracene precipitates recrystallized into larger particles after Tween 80 was metabolized. However, benzo[a]pyrene precipitates remained dispersed, accounting for a prolonged enhancement of the benzo[a]pyrene oxidation rates. Because the endogenous production of H2O2 is also known to be rate limiting for PAH oxidation, the combined effect of adding surfactants and glucose oxidase was studied. The combined treatment resulted in anthracene and benzo[a]pyrene oxidation rates as high as 1450 and 450 mg L-1 d-1, respectively, by the extracellular fluid of 6-day-old fungal cultures.  相似文献   

15.
Interfacial activation via surfactant (Tween 80, Triton X‐100) treatment was conducted to improve the esterification activity of Rhizopus oryzae lipase that had undergone immobilization through cross‐linked enzyme aggregates (CLEA®) technique. Surfactant pretreated immobilized enzymes exhibited better esterification activity compared to free and non‐pretreated immobilized enzyme (Control CLEAs) since higher conversion rates were obtained within shorter times. The superiority of surfactant pretreated CLEAs, especially Tween 80 pretreated CLEAs (T 80 PT CLEAs), were clearly pronounced when longer alcohols were used as substrates. Conversion values exceeded 90% for octyl octanoate, oleyl octanoate and oleyl oleate synthesis with T 80 PT CLEAs whereas Control CLEAs and free enzyme showed no activity. Maximum conversions were achieved in the case equal molars of the substrates or in the case excess of the alcohol to acid in cyclohexane. In solvent free medium containing equal molars of substrates the conversion rates were 85% and 87% with T 80 PT CLEAs respectively for octyl octanoate and oleyl oleate within 2 hours. T 80 PT CLEAs showed 59% of its original activity after 7 consecutive usage for oleyl oleate synthesis. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:899–904, 2016  相似文献   

16.
Effect of surfactants on cellulose hydrolysis   总被引:14,自引:0,他引:14  
The effect of surfactants on the heterogeneous enzymatic hydrolysis of Sigmacell 100 cellulose and of steam-exploded wood was studied. Certain biosurfactants (sophorolipid, rhamnolipid, bacitracin) and Tween 80 increased the rate of hydrolysis of Sigmacell 100, as measured by the amount of reducing sugar produced, by as much as seven times. The hydrolysis of steam-exploded wood was increased by 67% in the presence of sophorolipid. At the same time, sophorolipid was found to decrease the amount of enzyme adsorbed onto the cellulose at equilibrium. Sophorolipid had the greatest effect on cellulose hydrolysis when it was present from the beginning of the experiment and when the enzyme/cellulose ratio was low. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
Extracellular enzymes of microorganisms play an important role in the decomposition of macromolecules in the composting process. In this study, the effects of Tween 80 and rhamnolipid on the extracellular amylase, carboxymethyl cellulose enzyme (CMCase), xylanase and protease of Penicillium simplicissimum isolated from compost were investigated during solid-state fermentation. The results showed that the enzyme activities of amylase, CMCase and xylanase were increased by Tween 80 and rhamnolipid, which, however, had a negative effect on the protease production. The stimulative effects on the three enzymes were quite different during the whole fermentation process. Tween 80 and rhamnolipid also increased the fungal biomass slightly. As a result of the enhanced enzyme activities, the organic matter were also improved to different extents by both surfactants, and the decomposition rates of hemicellulose and cellulose were increased about 8.0% and 11.6% by Tween 80 at best, respectively, as well as 5% and 5.5% by rhamnolipid.  相似文献   

18.
Enhancement of enzymatic hydrolysis of cellulose by surfactant   总被引:5,自引:0,他引:5  
Effects of surfactants on enzymatic saccharification of cellulose have been studied. Nonionic, amphoteric, and cationic surfactants enhanced the saccharification, while anionic surfactant did not. Cationic and anionic surfactants denatured cellulase in their relatively low concentrations, namely, more than 0.008 and 0.001%, respectively. Using nonionic surfactant Tween 20, which is most effective to the enhancement (e.g., the fractional conversion attained by 72 h saccharification of 5 wt % Avicel in the presence of 0.05 wt % Tween 20 is increased by 35%), actions of surfactant have been examined. As the results, it was suggested that Tween 20 plays an important role in the hydrolysis of crystalline cellulose and that Tween 20 disturbs the adsorption of endoglucanase on cellulose, i.e., varies the adsorption balance of endo- and exoglucanase, resulting in enhancing the reaction. The influence of Tween 20 to the saccharification was found to remain in simultaneous saccharification and fermentation of Avicel.  相似文献   

19.
Tween 80 enhanced TNT mineralization by Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
The effect of a nonionic surfactant (Tween 80) on 2,4,6-trinitrotoluene (TNT) mineralization by the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767, was investigated in a liquid culture at 20, 50, and 100 mg TNT.L-1. The presence of 1% (w/v) Tween 80, at 20 mg.L-1 TNT, added to a 4-d-old culture, allowed the highest TNT mineralization level, that is 29.3% after 24 d, which is two times more than the control culture, without Tween 80 (13.9%). The mineralization of TNT resumed upon additional Tween 80 supplementation, consequently, 39.0% of the TNT was respired on day 68. Orbital agitation of the fungal culture was found detrimental to TNT mineralization, with or without Tween 80 in the culture medium. The surfactant also stimulated the growth of P. chrysosporium without any notable effect on either the glycerol consumption rate or the extracellular LiP and MnP activity levels. Respirometric assays highlighted some differences between the oxygen uptake rate of the fungal culture supplemented with or without Tween 80.  相似文献   

20.
Mutanases are enzymes that catalyze hydrolysis of α-1,3-glucosidic bonds in various α-glucans. One of such glucans, mutan, which is synthesized by cariogenic streptococci, is a major virulence factor for induction of dental caries. This means that mutan-degrading enzymes have potential in caries prophylaxis. In this study, we report the purification, characterization, and partial amino acid sequence of extracellular mutanase produced by the MP-1 strain of Paenibacillus curdlanolyticus, bacterium isolated from soil. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the purified enzyme showed a single protein band of molecular mass 134 kD, while native gel filtration chromatography confirmed that the enzyme was a monomer of 142 kD. Mutanase showed a pH optimum in the range from pH 5.5 to 6.5 and a temperature optimum around 40-45°C. It was thermostable up to 45°C, and retained 50% activity after 1 hr at 50°C. The enzyme was fully stable at a pH range of 4 to 10. The enzyme activity was stimulated by the addition of Tween 20, Tween 80, and Ca2?, but it was significantly inhibited by Hg2?, Ag?, and Fe2?, and also by p-chloromercuribenzoate, iodoacetamide, and ethylenediamine tetraacetic acid (EDTA). Mutanase preparation preferentially catalyzed the hydrolysis of various streptococcal mutans and fungal α-1,3-glucans. It also showed binding activity to insoluble α-1,3-glucans. The N-terminal amino acid sequence was NH?-Ala-Gly-Gly-Thr-Asn-Leu-Ala-Leu-Gly-Lys-Asn-Val-Thr-Ala-Ser-Gly-Gln. This sequence indicated an analogy of the enzyme to α-1,3-glucanases from other Paenibacillus and Bacillus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号