首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamine-mischargeable tRNA produced by sodium bisulfite-treated Escherichia coli tRNA-Trp was isolated by dihydroxyboryl-cellulose affinity column chromatography. This tRNA was shown to have dual specificity tryptophan and glutamine, and, when charged with either amino acid, bound to ribosomes in response to the non-sense codon UAG but not in response to the tryptophan codon UGG. The results were consistent with the reported properties of Su+7 tRNA. The bisulfite-treated tRNA-Trp migrated as two bands during polyacrylamide gel electrophoresis. The faster moving band (band I) coincided with that of untreated tRNA-Trp. The slower moving band (band II) coincided with the glutamine-chargeable tRNA-Trp. Su+7 tRNA behaved like band II tRNA upon gel electrophoresis. Nucleotide sequence analysis showed that a cytidine-uridine transition occurred at the 1st or the 2n position of the anitcodon of band II tRNA. Band I and band II tRNAs differed from each other in their thermal melting profiles. It is suggested that the single base change in the anticodon is responsible for the altered conformation of band II tRNA.  相似文献   

2.
The nucleotide sequence at the junction between the nonstructural and the structural genes of the Semliki Forest virus 42S RNA genome has been determined from cloned cDNA. With the aid of S1-mapping, we have located the 5' end of the viral 26S RNA on this sequence. The 26S RNA is homologous to the 3' end of the 42S RNA and is used as a messenger for the structural proteins of the virus. The nucleotide sequence in the noncoding 5' region of the 26S RNA (51 bases) was thus established, completing the primary structure of the 26S RNA molecule (for earlier sequence work, see Garoff et al., Proc. Natl. Acad. Sci. U.S.A. 77:6376-6380, 1980, and Garoff et al., Nature (London) 288:236-241, 1980). An examination of the nucleotide sequences upstream from the initiator codon for the structural proteins on the 42S RNA genome shows that all reading frames are effectively blocked by stop codons, which means that the nonstructural genes in the 5' end of the 42S RNA molecule do not overlap with the structural ones at the 3' end of the molecule.  相似文献   

3.
The sequence of the 5' noncoding region of tobacco mosaic virus RNA has been determined. The noncoding region is 68 nucleotides long and is unusual in that it contains no internal guanosine residues. The long T1 oligonucleotide containing the guanosine-free tract was isolated from a T1 ribonuclease digest of tobacco mosaic virus RNA and sequenced by labelling techniques in vitro using polynucleotide kinase. The guanosine-free tract is terminated by the first potential initiation codon in the RNA molecule and several lines of evidence suggest that this AUG triplet is operational in initiating viral protein synthesis (see following paper). The 5'-noncoding region cannot base-pair extensively with the 3'-terminal sequence of 18-S ribosomal RNA from rabbit reticulocytes.  相似文献   

4.
Foot and mouth disease virus RNA has been treated with RNase H in the presence of oligo (dG) specifically to digest the poly(C) tract which lies near the 5' end of the molecule (10). The short (S) fragment containing the 5' end of the RNA was separated from the remainder of the RNA (L fragment) by gel electrophoresis. RNA ligase mediated labelling of the 3' end of S fragment showed that the RNase H digestion gave rise to molecules that differed only in the number of cytidylic acid residues remaining at their 3' ends and did not leave the unique 3' end necessary for fast sequence analysis. As the 5' end of S fragment prepared form virus RNA is blocked by VPg, S fragment was prepared from virus specific messenger RNA which does not contain this protein. This RNA was labelled at the 5' end using polynucleotide kinase and the sequence of 70 nucleotides at the 5' end determined by partial enzyme digestion sequencing on polyacrylamide gels. Some of this sequence was confirmed from an analysis of the oligonucleotides derived by RNase T1 digestion of S fragment. The sequence obtained indicates that there is a stable hairpin loop at the 5' terminus of the RNA before an initiation codon 33 nucleotides from the 5' end. In addition, the RNase T1 analysis suggests that there are short repeated sequences in S fragment and that an eleven nucleotide inverted complementary repeat of a sequence near the 3' end of the RNA is present at the junction of S fragment and the poly(C) tract.  相似文献   

5.
6.
Impatiens necrotic spot virus (INSV) shares a number of properties with tomato spotted wilt virus (TSWV), the type species of the genus tospovirus within the family Bunyaviridae. INSV, however, differs from TSWV in plant host range and serology. In order to define the genomic structure and the taxonomic status of this TSWV-like virus, the nucleotide sequence of its genomic S RNA segment has been determined. The molecular data obtained demonstrate that, like TSWV, INSV has an ambisense S RNA molecule, encoding a non-structural protein in viral sense and the nucleocapsid protein in viral complementary sense. The level of nucleotide sequence homology between their S RNAs, as well as the divergence in amino acid sequence homology of their gene products, confirm previous conclusions from serological studies that INSV and TSWV represent distinct virus species within the newly created genus, tospovirus.  相似文献   

7.
The (+) single-stranded RNA (ssRNA) of the L-A virus is the species packaged to form new viral particles. Empty L-A viral particles specifically bind viral (+) ssRNA, and a sequence 400 bases from the 3' end is necessary for this activity. We show that its stem-loop structure, the A residue protruding from the stem, and the loop sequence are all important for the binding, and that this 34 base region is sufficient for the binding. M1, a satellite virus of L-A, has a similar structure on its (+) strand that is likewise sufficient for the binding. Heterologous RNA with the binding sequence from L-A or M1, when expressed in vivo, was packaged in L-A viral particles. Thus, the sites necessary to bind to empty particles are encapsidation signals for the L-A virus. Since the pol domain of the 180 kd minor coat protein appears to be responsible for the binding, this result suggests that the RNA polymerase molecule recognizes the viral genome for packaging.  相似文献   

8.
RNA 3 of alfalfa mosaic virus (AlMV) contains information for two genes: near the 5' end an active gene coding for a 35 Kd protein and, near the 3' end, a silent gene coding for viral coat protein. We have determined a sequence of 318 nucleotides which contains the potential initiation codon for the 35 Kd protein at 258 nucleotides from the 5' end. This long leader sequence can form initiation complexes containing three 80 S ribosomes. A shorter species of RNA, corresponding to a molecule of RNA 3 lacking the cap and the first 154 nucleotides (RNA 3') has been isolated. The remaining leader sequence of 104 nucleotides in RNA 3' forms a single 80 S initiation complex with wheat germ ribosomes. The location of the regions of the leader sequence of RNA 3 involved in initiation complex formation with 80 S ribosomes is reported.  相似文献   

9.
R J Colonno  A K Banerjee 《Cell》1976,8(2):197-204
Purified virions of vesicular stomatitis virus (VSV) are capable of synthesizing two distinct types of virus-specific RNA in vitro. The first consists of several viral mRNAs which have been previously shown to contain the blocked 5' terminal sequence GpppApApCpApGp and 3' terminal poly(A). The second type of RNA has an unblocked 5' terminus and does not contain poly(A) stretches long enough to bind to oligo (dT)-cellulose columns. It migrates in 20% polyacrylamide gels as a single homogeneous peak with an estimated chain length of 68 nucleotides. Base analysis demonstrated that this small RNA molecule is composed of 48% AMP, 20% CMP, 11% GMP, and 21% UMP. The 5' terminal sequence of the small RNA is ppApCpGp, which appears to be complementary to the 3' terminal sequence of the VSV genome RNA (...PypGpU). These results indicate that this small RNA molecule probably represents the intitiated lead-in RNA segment which is removed during formation of VSV mRNAs by a possible processing mechanism.  相似文献   

10.
11.
12.
Simon AE  Howell SH 《The EMBO journal》1986,5(13):3423-3428
RNA C (355 bases), RNA D (194 bases) and RNA F (230 bases) are small, linear satellite RNAs of turnip crinkle virus (TCV) which have been cloned as cDNAs and sequenced in this study. These RNAs produce dramatically different disease symptoms in infected plants. RNA C is a virulent satellite that intensifies virus symptoms when co-inoculated with its helper virus in turnip plants, while RNA D and RNA F are avirulent. RNA D and RNA F, the avirulent satellites, are closely related to each other except that RNA F has a 36-base insert near its 3' end, not found in RNA D. The 189 bases at the 5' end of RNA C, the virulent satellite, are homologous to the entire sequence of RNA D. However, the 3' half of RNA C, is composed of 166 bases which are nearly identical to two regions at the 3' end of the TCV helper virus genome. Hence, the virulent satellite is a composite molecule with one domain at its 5' end homologous to the other avirulent satellites and another domain at its 3' end homologous to the helper virus genome. All four TCV RNAs, RNAs C, D and F and the helper virus genome have identical 7 bases at their 3' ends. The secondary structure of RNA C deduced from the sequence can be folded into two separate domains — the domain of helper virus genome homology and the domain homologous to other TCV satellite RNAs. Comparative sequences of several different RNA C clones reveal that this satellite is a population of molecules with sequence and length heterogeneity.  相似文献   

13.
The complete nucleotide sequence was determined for the putative RNA polymerase (183K protein) gene of tobacco mosaic virus (TMV) OM strain, which differed from the related strain, vulgare, by 51 positions in its nucleotide sequence and 6 residues in its amino acid sequence. Three segments of this 183K protein, each containing the sequence motif of methyltransferase (M), helicase (H), or RNA-dependent RNA polymerase (P), were expressed in Escherichia coli as fusion proteins with hexahistidine tags, and domain-specific antibodies were raised against purified His-tagged M and P polypeptides. By immunoaffinity purification, a template-specific RNA-dependent RNA polymerase containing a heterodimer of the full-length 183K and 126K (an amino-terminal-proximal portion of the 183K protein) viral proteins was isolated. We propose that the TMV RNA polymerase for minus-strand RNA synthesis is composed of one molecule each of the 183- and 126-kDa proteins, possibly together with two or more host proteins.  相似文献   

14.
15.
The distance between the poly(A) and poly(C) tracts in the molecules of encephalomyocarditis virus RNA has been estimated by two methods. The results indicate that these tracts are situated on the opposite ends of the viral RNA molecule. Evidence is presented that the poly(A) sequence in this molecule is located at the 3′-end. It is concluded that the poly(C) tract is situated at, or near, the 5′-end of the molecule.  相似文献   

16.
17.
A part of eukaryotic tRNA genes harbor an intron at one nucleotide 3' to the anticodon, so that removal of the intron is an essential processing step for tRNA maturation. While some tRNA introns have important roles in modification of certain nucleotides, essentiality of the tRNA intron in eukaryotes has not been tested extensively. This is partly because most of the eukaryotic genomes have multiple genes encoding an isoacceptor tRNA. Here, we examined whether the intron of tRNA-Trp(CCA) genes, six copies of which are scattered on the genome of yeast, Saccharomyces cerevisiae, is essential for growth or translation of the yeast in vivo. We devised a procedure to remove all of the tRNA introns from the yeast genome iteratively with marker cassettes containing both positive and negative markers. Using this procedure, we removed all the introns from the six tRNA-Trp(CCA) genes, and found that the intronless strain grew normally and expressed tRNA-Trp(CCA) in an amount similar to that of the wild-type genes. Neither incorporation of (35)S-labeled amino acids into a TCA-insoluble fraction nor the major protein pattern on SDS-PAGE/2D gel were affected by complete removal of the intron, while expression levels of some proteins were marginally affected. Therefore, the tRNA-Trp(CCA) intron is dispensable for growth and bulk translation of the yeast. This raises the possibility that some mechanism other than selective pressure from translational efficiency maintains the tRNA intron on the yeast genome.  相似文献   

18.
The primary structure of the coat protein subunit in satellite tobacco necrosis virus has been investigated. The results obtained are consistent with and support the proposal for the amino acid sequence made from the nucleotide sequence of RNA (Ysebaert et al., 1980). This would imply that no intervening sequences of RNA occur in the cistron for the satellite tobacco necrosis virus coat protein. The polypeptide chain of the protein consists of 195 amino acid residues. It contains one sulfhydryl group but no disulfide bridges. The distribution of various kinds of amino acid residues along the chain is markedly uneven.  相似文献   

19.
A newly discovered group of spherical plant viruses contains a bipartite genome consisting of a single-strand linear RNA molecule (RNA 1, Mr 1.5 x 10(6) ), and a single-strand, covalently closed circular viroid-like RNA molecule (RNA 2, Mr approximately 125,000). The nucleotide sequences of the RNA 2 of two of these, velvet tobacco mottle virus and solanum nodiflorum mottle virus, have been determined. RNA 2 of solanum nodiflorum mottle virus consists of 377 residues whereas that of velvet tobacco mottle virus consists of two approximately equimolar species, one of 366 residues and the other, with a single nucleotide deletion, of 365 residues. There is 92-95% sequence homology between the RNA 2 species of the two viruses. The predicted secondary structures possess extensive intramolecular base pairing to give rod-like structures similar to those of viroids. The structural similarities between the RNAs 2 of velvet tobacco mottle virus and solanum nodiflorum mottle virus and viroids may reflect functional similarities.  相似文献   

20.
We have analyzed Semliki Forest virus defective interfering RNA molecules, generated by serial undiluted passaging of the virus in baby hamster kidney cells. The 42 S RNA genome (about 13 kb 2) has been greatly deleted to generate the DI RNAs, which are heterogeneous both in size (about 2 kb) and sequence content. The DI RNAs offer a system for exploring binding sites for RNA polymerase and encapsidation signals, which must have been conserved in them since they are replicated and packaged. In order to study the structural organization of DI RNAs, and to analyze which regions from the genome have been conserved, we have determined the nucleotide sequences of (1) a 2.3 kb long DI RNA molecule, DI309, (2) 3′-terminal sequences (each about 0.3 kb) of two other DI RNAs, and (3) the nucleotide sequence of 0.4 kb at the extreme 5′ end of the 42 S RNA genome.The DI309 molecule consists of a duplicated region with flanking unique terminal sequences. A 273-nucleotide sequence is present in four copies per molecule. The extreme 5′-terminal nucleotide sequence of the 42 S RNA genome is shown to contain domains that are conserved in the two DI RNAs of known structure: DI309, and the previously sequenced DI301 (Lehtovaara et al., 1981). Here we report which terminal genome sequences are conserved in the DI RNAs, and how they have been modified, rearranged or amplified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号