首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase Cdelta (PKCdelta) activation is generally attributed to lipid cofactor-dependent allosteric activation mechanisms at membranes. However, recent studies indicate that PKCdelta also is dynamically regulated through tyrosine phosphorylation in H(2)O(2)- and phorbol 12-myristate 13-acetate (PMA)-treated cardiomyocytes. H(2)O(2) activates Src and related Src-family kinases (SFKs), which function as dual PKCdelta-Tyr(311) and -Tyr(332) kinases in vitro and contribute to H(2)O(2)-dependent PKCdelta-Tyr(311)/Tyr(332) phosphorylation in cardiomyocytes and in mouse embryo fibroblasts. H(2)O(2)-dependent PKCdelta-Tyr(311)/Tyr(332) phosphorylation is defective in SYF cells (deficient in SFKs) and restored by Src re-expression. PMA also promotes PKCdelta-Tyr(311) phosphorylation, but this is not associated with SFK activation or PKCdelta-Tyr(332) phosphorylation. Rather, PMA increases PKCdelta-Tyr(311) phosphorylation by delivering PKCdelta to SFK-enriched caveolae. Cyclodextrin treatment disrupts caveolae and blocks PMA-dependent PKCdelta-Tyr(311) phosphorylation, without blocking H(2)O(2)-dependent PKCdelta-Tyr(311) phosphorylation. The enzyme that acts as a PKCdelta-Tyr(311) kinase without increasing PKCdelta phosphorylation at Tyr(332) in PMA-treated cardiomyocytes is uncertain. Although in vitro kinase assays implicate c-Abl as a selective PKCdelta-Tyr(311) kinase, PMA-dependent PKCdelta-Tyr(311) phosphorylation persists in cardiomyocytes treated with the c-Abl inhibitor ST1571 and c-Abl is not detected in caveolae; these results effectively exclude a c-Abl-dependent process. Finally, we show that 1,2-dioleoyl-sn-glycerol mimics the effect of PMA to drive PKCdelta to caveolae and increase PKCdelta-Tyr(311) phosphorylation, whereas G protein-coupled receptor agonists such as norepinephrine and endothelin-1 do not. These results suggest that norepinephrine and endothelin-1 increase 1,2-dioleoyl-sn-glycerol accumulation and activate PKCdelta exclusively in non-caveolae membranes. Collectively, these results identify stimulus-specific PKCdelta localization and tyrosine phosphorylation mechanisms that could be targeted for therapeutic advantage.  相似文献   

2.
Reactive oxygen species initiate multiple signal transduction pathways including tyrosine kinase signaling. Here, we demonstrate tyrosine phosphorylation of EGF receptor, STAT3, and, to a lesser extent, STAT1 upon H2O2 treatment of HER14 cells (NIH3T3 fibroblasts transfected with full-length EGF receptor). Maximum phosphorylation levels were observed in 5 min of stimulation at 1-2 mM H2O2. It has been shown that the intrinsic EGF-receptor tyrosine kinase is responsible for the receptor phosphorylation upon H2O2 stimulation. STAT3 and STAT1 activation in HER14 cells was demonstrated to depend on EGF receptor kinase activity, rather than JAK2 activity, while in both K721A and CD126 cells (NIH3T3 transfected with kinase-dead EGF receptor, and EGF receptor lacking major autophosphorylation sites, respectively) STAT1 and STAT3 tyrosine phosphorylation requires JAK2 kinase activity. Furthermore, STAT3 is constitutively phosphorylated in K721A and CD126 cells, and STAT1 H2O2-stimulated activation in these cells is much more prominent than in HER14. In all the cell lines used, Src-kinase activity was demonstrated to be unnecessary for ROS-initiated phosphorylation of STATs. Herein, we postulate that EGF receptor plays a role in H2O2-induced STAT activation in HER14 cells. Our data also prompted a hypothesis of constitutive inhibition of JAK2-dependent STAT activation in this cell line.  相似文献   

3.
Protein kinase C (PKC), a Ca(2+)/phospholipid-dependent protein kinase, is known as a key enzyme in various cellular responses, including apoptosis. However, the functional role of PKC in apoptosis has not been clarified. In this study, we focused on the involvement of PKCdelta in ceramide-induced apoptosis in HeLa cells and examined the importance of spatiotemporal activation of the specific PKC subtype in apoptotic events. Ceramide-induced apoptosis was inhibited by the PKCdelta-specific inhibitor rottlerin and also was blocked by knockdown of endogenous PKCdelta expression using small interfering RNA. Ceramide induced the translocation of PKCdelta to the Golgi complex and the concomitant activation of PKCdelta via phosphorylation of Tyr(311) and Tyr(332) in the hinge region of the enzyme. Unphosphorylatable PKCdelta (mutants Y311F and Y332F) could translocate to the Golgi complex in response to ceramide, suggesting that tyrosine phosphorylation is not necessary for translocation. However, ceramide failed to activate PKCdelta lacking the C1B domain, which did not translocate to the Golgi complex, but could be activated by tyrosine phosphorylation. These findings suggest that ceramide translocates PKCdelta to the Golgi complex and that PKCdelta is activated by tyrosine phosphorylation in the compartment. Furthermore, we utilized species-specific knockdown of PKCdelta by small interfering RNA to study the significance of phosphorylation of Tyr(311) and Tyr(332) in PKCdelta for ceramide-induced apoptosis and found that phosphorylation of Tyr(311) and Tyr(332) is indispensable for ceramide-induced apoptosis. We demonstrate here that the targeting mechanism of PKCdelta, dual regulation of both its activation and translocation to the Golgi complex, is critical for the ceramide-induced apoptotic event.  相似文献   

4.
In this study we characterized the phosphorylation of tyrosine 311 and its role in the apoptotic function of PKCdelta in glioma cells. We found that c-Abl phosphorylated PKCdelta on tyrosine 311 in response to H2O2 and that this phosphorylation contributed to the apoptotic effect of H2O2. In contrast, Src, Lyn, and Yes were not involved in the phosphorylation of tyrosine 311 by H2O2. A phosphomimetic PKCdelta mutant, in which tyrosine 311 was mutated to glutamic acid (PKCdeltaY311E), induced a large degree of cell apoptosis. Overexpression of the PKCdeltaY311E mutant induced the phosphorylation of p38 and inhibition of p38 abolished the apoptotic effect of the PKCdelta mutant. These results suggest an important role of tyrosine 311 in the apoptotic function of PKCdelta and implicate c-Abl as the kinase that phosphorylates this tyrosine.  相似文献   

5.
H(2)O(2)-induced apoptosis was enhanced in the CHO cell line overproducing protein kinase C delta (PKCdelta) as judged by DNA fragmentation. In response to the H(2)O(2) treatment, PKCdelta was tyrosine phosphorylated and recovered as a constitutively active form, but its proteolytic fragment was not generated. In contrast, H(2)O(2)-induced apoptosis was suppressed in the CHO cell line overexpressing protein kinase B alpha (PKBalpha). Consistently, phosphorylation of BAD, a pro-apoptotic protein negatively regulated by PKBalpha, was sustained in the cells overproducing PKBalpha, but was not changed in the cells overexpressing PKCdelta. In the CHO cell line overproducing both PKCdelta and PKBalpha, H(2)O(2)-induced tyrosine phosphorylation of PKCdelta was suppressed, and DNA fragmentation was diminished concomitantly. These results suggest that PKCdelta contributes to H(2)O(2)-induced apoptosis by a mechanism independent of BAD and that PKCdelta is a target of PKB for the regulation of cell survival.  相似文献   

6.
The cellular redox state has been shown to play an essential role in cellular signaling systems. Here we investigate the effects of reductants and H2O2 on the signaling of epidermal growth factor (EGF) in cells. H2O2 induced the phosphorylation of the EGF receptor and the formation of a receptor complex comprising Shc, Grb2, Sos, and the EGF receptor. Dimerization or oligomerization of the EGF receptor was not induced by H2O2. Protein tyrosine phosphatase (PTP) assay showed that H2O2 suppressed dephosphorylation of the EGF receptor in cell lysates, suggesting that inactivation of PTP was involved in H2O2-induced activation of the EGF receptor. In contrast, the reductants N-acetyl-L-cysteine [Cys(Ac)] and dithiothreitol markedly suppressed EGF-induced dimerization and activation of the EGF receptor in cells. In accordance with suppression of the EGF receptor, Cys(Ac) suppressed EGF-induced activation of Ras, phosphatidylinositol 3-kinase and mitogen-activated protein kinase. Dithiothreitol completely inhibited EGF binding and kinase activation of the EGF receptor both in vitro and in vivo. In contrast, Cys(Ac) suppressed high-affinity EGF-binding sites on the cells, but had no effect on low-affinity binding sites. Furthermore, Cys(Ac) did not suppress EGF-induced kinase activation or dimerization of the EGF receptor in vitro, indicating that it suppressed the EGF receptor through a redox-sensitive cellular process or processes. Thus, the EGF receptor is regulated by redox through multiple steps including dephosphorylation by PTP, ligand binding, and a Cys(Ac)-sensitive cellular process or processes.  相似文献   

7.
It has been proposed that H(2)O(2) increases tyrosine phosphorylation of cellular proteins by inhibiting protein-tyrosine phosphatase through oxidation of the cysteine residue of the enzyme essential for its catalytic activity. Tyrosine phosphorylation of the delta isoform of protein kinase C (PKC) was induced by H(2)O(2) in CHO and COS-7 cells. H(2)O(2) also induced activation of mitogen-activated protein kinase. Vanadate and molybdate, which inhibit protein-tyrosine phosphatase by binding to its active site, did not induce tyrosine phosphorylation of PKCdelta, but enhanced H(2)O(2)-induced tyrosine phosphorylation of PKCdelta in the cell. The oxoanions, however, generated the active form of mitogen-activated protein kinase. Another protein-tyrosine phosphatase inhibitor, phenylarsine oxide, which bridges the thiol residues of the enzyme, induced tyrosine phosphorylation of PKCdelta, and the reaction was enhanced by vanadate. These results suggest that inhibition of protein-tyrosine phosphatase is insufficient for induction of tyrosine phosphorylation of PKCdelta in the cells, and that presumably activation of protein-tyrosine kinase may be essential for tyrosine phosphorylation of the PKC isoform.  相似文献   

8.
Shc proteins are phosphorylated on tyrosine residues and associate with growth factor receptor-bound protein 2 (Grb2) upon treatment of cells with epidermal growth factor (EGF) or insulin. We have studied the role of Shc in insulin- and EGF-induced activation of p21ras in NIH 3T3 cells overexpressing human insulin receptors (A14 cells). A14 cells are equally responsive to insulin and EGF with respect to activation of p21ras. Analysis of Shc immunoprecipitates revealed that (i) both insulin and EGF treatment resulted in Shc tyrosine phosphorylation and (ii) Shc antibodies coimmunoprecipitated both Grb2 and mSOS after insulin and EGF treatment. The induction of tyrosine phosphorylation of Shc and the presence of Grb2 and mSOS in Shc immunoprecipitates followed similar time courses, with somewhat higher levels after EGF treatment. In mSOS immunoprecipitates, Shc could be detected as well. Furthermore, Shc immune complexes contained guanine nucleotide exchange activity toward p21ras in vitro. From these results, we conclude that after insulin and EGF treatment, Shc associates with both Grb2 and mSOS and therefore may mediate, at least in part, insulin- and EGF-induced activation of p21ras. In addition, we investigated whether the Grb2-mSOS complex associates with the insulin receptor or with insulin receptor substrate 1 (IRS1). Although we observed association of Grb2 with IRS1, we did not detect complex formation between mSOS and IRS1 in experiments in which the association of mSOS with Shc was readily detectable. Furthermore, whereas EGF treatment resulted in the association of mSOS with the EGF receptor, insulin treatment did not result in the association of mSOS with the insulin receptor. These results indicate that the association of Grb2-nSOS with Shc may be an important event in insulin-induced, mSOS-mediated activation of p21ras.  相似文献   

9.
Although arsenite is an established carcinogen, the mechanisms underlying its tumor-promoting properties are poorly understood. Previously, we reported that arsenite treatment leads to the activation of the extracellular signal-regulated kinase (ERK) in rat PC12 cells through a Ras-dependent pathway. To identify potential mediators of the upstream signaling cascade, we examined the tyrosine phosphorylation profile in cells exposed to arsenite. Arsenite treatment rapidly stimulated tyrosine phosphorylation of several proteins in a Ras-independent manner, with a pattern similar to that seen in response to epidermal growth factor (EGF) treatment. Among these phosphorylated proteins were three isoforms of the proto-oncoprotein Shc as well as the EGF receptor (EGFR). Tyrosine phosphorylation of Shc allowed for enhanced interactions between Shc and Grb2 as identified by coimmunoprecipitation experiments. The arsenite-induced tyrosine phosphorylation of Shc, enhancement of Shc and Grb2 interactions, and activation of ERK were all drastically reduced by treatment of cells with either the general growth factor receptor poison suramin or the EGFR-selective inhibitor tyrphostin AG1478. Down-regulation of EGFR expression through pretreatment of cells with EGF also attenuated ERK activation and Shc tyrosine phosphorylation in response to arsenite treatment. These results demonstrate that the EGFR and Shc are critical mediators in the activation of the Ras/ERK signaling cascade by arsenite and suggest that arsenite acts as a tumor promoter largely by usurping this growth factor signaling pathway.  相似文献   

10.
The receptor for insulin-like growth factor 1 (IGF-1) mediates multiple cellular responses, including stimulation of both proliferative and anti-apoptotic pathways. We have examined the role of cross talk between the IGF-1 receptor (IGF-1R) and the epidermal growth factor receptor (EGFR) in mediating responses to IGF-1. In COS-7 cells, IGF-1 stimulation causes tyrosine phosphorylation of the IGF-1R beta subunit, the EGFR, insulin receptor substrate-1 (IRS-1), and the Shc adapter protein. Shc immunoprecipitates performed after IGF-1 stimulation contain coprecipitated EGFR, suggesting that IGF-1R activation induces the assembly of EGFR.Shc complexes. Tyrphostin AG1478, an inhibitor of the EGFR kinase, markedly attenuates IGF-1-stimulated phosphorylation of EGFR, Shc, and ERK1/2 but has no effect on phosphorylation of IGF-1R, IRS-1, and protein kinase B (Akt). Cross talk between IGF-1 and EGF receptors is mediated through an autocrine mechanism involving matrix metalloprotease-dependent release of heparin-binding EGF (HB-EGF), because IGF-1-mediated ERK activation is inhibited both by [Glu(52)]Diphtheria toxin, a specific inhibitor of HB-EGF, and the metalloprotease inhibitor 1,10-phenanthroline. These data demonstrate that IGF-1 stimulation of the IRS-1/PI3K/Akt pathway and the EGFR/Shc/ERK1/2 pathway occurs by distinct mechanisms and suggest that IGF-1-mediated "transactivation" of EGFR accounts for the majority of IGF-1-stimulated Shc phosphorylation and subsequent activation of the ERK cascade.  相似文献   

11.
Steroid hormones exhibit diverse biological activities. Despite intensive studies on steroid function at the genomic level, their nongenomic actions remain an enigma. In this study, we investigated the role of reactive oxygen species (ROS) in androgen-stimulated prostate cancer (PCa) cell proliferation. In androgen-treated PCa cells, increased cell growth and ROS production correlated with elevated p66Shc protein, an authentic oxidase. This growth stimulation was blocked by antioxidants. Further, elevated expression of p66Shc protein by cDNA transfection encoding wild-type protein, but not a redox-deficient (W134F) mutant, was associated with increased PCa cell proliferation. Conversely, knockdown of p66Shc expression by shRNA resulted in diminished cell growth. Increased p66Shc expression in PCa cells enhanced their tumorigenicity in xenograft animals. Importantly, p66Shc protein level is higher in clinical prostate adenocarcinomas than in adjacent noncancerous cells. Expression of redox-deficient p66Shc mutant protein abolished androgen-stimulated cell growth. In androgen-treated, H(2)O(2)-treated, and p66Shc cDNA-transfected PCa cells, cellular prostatic acid phosphatase, an authentic tyrosine phosphatase, was inactivated by reversible oxidation; subsequently, ErbB-2 was activated by phosphorylation at tyrosine-1221/1222. These results together support the notion that androgens induce ROS production through the elevation of p66Shc protein, which inactivates tyrosine phosphatase activity for the activation of interacting tyrosine kinase, leading to increased cell proliferation and enhanced tumorigenicity. Our results thus suggest that p66Shc protein functions at the critical junction point between androgens and tyrosine phosphorylation signaling in human PCa cells.  相似文献   

12.
Phosphorylation plays an important role in regulation of protein kinase C delta (PKCdelta). To date, three Ser/Thr residues (Thr 505, Ser 643, and Ser 662) and nine tyrosine residues (Tyr 52, Tyr 64, Tyr 155, Tyr 187, Tyr 311, Tyr 332, Tyr 512, Tyr 523, and Tyr 565) have been defined as regulatory phosphorylation sites for this protein (rat PKCdelta numbering). We combined doxycycline-regulated inducible gene expression technology with a hypothesis-driven mass spectrometry approach to study PKCdelta phosphorylation pattern in colorectal cancer cells. We report identification of five novel Ser/Thr phosphorylation sites: Thr 50, Thr 141, Ser 304, Thr 451, and Ser 506 (human PKCdelta numbering) following overexpression of PKCdelta in HCT116 human colon carcinoma cells grown in standard tissue culture conditions. Identification of potential novel phosphorylation sites will affect further functional studies of this protein, and may introduce additional complexity to PKCdelta signaling.  相似文献   

13.
Protein kinase C (PKC) delta is regulated allosterically by phosphatidylserine and diacylglycerol (which promote its translocation to the membrane) and by phosphorylation of Ser/Thr and Tyr residues. Although phosphorylation on Thr-505/Ser-643/Ser-662 may simply "prime" PKCdelta for activation, it could be regulatory. We examined the regulation of PKCdelta in cardiac myocytes by endothelin-1 (Gq protein-coupled receptor agonist) and platelet-derived growth factor (receptor tyrosine kinase agonist) in comparison with phorbol 12-myristate 13-acetate (PMA). All increased phosphorylation of PKCdelta(Thr-505/Ser-643) and of Tyr residues, although to differing extents. De novo phosphorylation occurred mainly after translocation of PKCdelta to the particulate fraction, and phosphorylations of Thr-505/Ser-643 versus Tyr residues were essentially independent events. Following chromatographic separation of the PKCdelta subspecies, activities were correlated with immunoreactivity profiles of total and phosphorylated forms. In unstimulated cells, approximately 25% of PKCdelta lacked phosphorylation of Thr-505/Ser-643 and displayed minimal activity (assayed in the presence of phosphatidylserine/PMA following chromatography). Endothelin-1 or PMA (10 min) promoted Thr-505/Ser-643 phosphorylation of this pool, and this was associated with an increase in total recoverable PKCdelta activity. Meanwhile, in cells exposed to endothelin-1 or PMA, the overall pool of PKCdelta translocated rapidly (30 s) to the particulate fraction and was phosphorylated on Tyr residues. This was associated with an increase in lipid-independent activity (i.e. the phosphatidylserine/PMA requirement disappeared). For endothelin-1, Tyr phosphorylation of PKCdelta and the increase in phosphatidylserine/PMA-independent activity persisted after PKCdelta retrotranslocated to the soluble fraction. We concluded that, with this physiological agonist, PKCdelta becomes activated in the particulate fraction but retains activity following its retrotranslocation, presumably to phosphorylate substrates elsewhere.  相似文献   

14.
Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation   总被引:7,自引:0,他引:7  
Oxidative stress is known to induce apoptosis in a wide variety of cell types, apparently by modulating intracellular signaling pathways. High concentrations of H2O2 have been found to induce apoptosis in L929 mouse fibroblast cells. To elucidate the mechanisms of H2O2-mediated apoptosis, ERK1/2, p38-MAPK, and JNK1/2 phosphorylation was examined, and ERK1/2 and JNK1/2 were found to be activated by H2O2. Inhibition of ERK1/2 activation by treatment of L929 cells with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced apoptosis, while inhibition of JNK1/2 by dominant-negative JNK1 or JNK2 or MKK4 or MKK7 transfection did not affect H2O2-mediated apoptosis. H2O2-mediated ERK1/2 activation was not only Ras-Raf dependent, but also both tyrosine kinase (PDGFbeta receptor and Src) and PKCdelta dependent. H2O2-mediated PKCdelta-dependent and tyrosine kinase-dependent ERK1/2 activations were independent from each other. Based on the above results, we suggest for the first time that oxidative damage-induced apoptosis is mediated by ERK1/2 phosphorylation which is not only Ras-Raf dependent, but also both tyrosine kinase and PKCdelta dependent.  相似文献   

15.
Lu W  Lee HK  Xiang C  Finniss S  Brodie C 《Cellular signalling》2007,19(10):2165-2173
Protein kinase C delta (PKCdelta plays a major role in the regulation of cell apoptosis and survival. PKCdelta is cleaved by caspase 3 to generate a constitutively active catalytic domain that mediates both its apoptotic and anti-apoptotic effects. The caspase cleavage site of PKCdelta in the hinge region is flanked by the two tyrosine residues, Y311 and Y332. Here, we examined the role of the phosphorylation of tyrosines 311 and 332 in the cleavage and apoptotic function of PKCdelta using the apoptotic stimuli, TRAIL and cisplatin. Tyrosine 332 was constitutively phosphorylated in the A172 and HeLa cells and was further phosphorylated by TRAIL and cisplatin. This phosphorylation was inhibited by the Src inhibitors, PP2 and SU6656, and by silencing of Src. Treatment of the A172 and HeLa cells with TRAIL induced cleavage of the WT PKCdelta and of the PKCdeltaY311F mutant, whereas a lower level of cleavage was observed in the PKCdeltaY332F mutant. Similarly, a smaller degree of cleavage of the PKCdeltaY332 mutant was observed in LNZ308 cells treated with cisplatin. Mutation of Y332F affected the apoptotic function of PKCdelta; overexpression of the PKCdeltaY332 mutant increased the apoptotic effect of TRAIL, whereas it decreased the apoptotic effect of cisplatin. Inhibition of Src decreased the cleavage of PKCdelta and modified the apoptotic responses of the cells to TRAIL and cisplatin, similar to effect of the PKCdeltaY332F mutant. These results demonstrate that the phosphorylation of tyrosine 332 by Src modulates the cleavage of PKCdelta and the sensitivity of glioma cells to TRAIL and cisplatin.  相似文献   

16.
Stimulation of T47D cells with epidermal growth factor (EGF) results in the activation of the intrinsic tyrosine kinases of the receptor and the phosphorylation of multiple cellular proteins including the receptor, scaffold molecules such as c-Cbl, adapter molecules such as Shc, and the serine/threonine protein kinase Akt. We demonstrate that EGF stimulation of T47D cells results in the activation of the Src protein-tyrosine kinase and that the Src kinase inhibitor PP1 blocks the EGF-induced phosphorylation of c-Cbl but not the activation/phosphorylation of the EGF receptor itself. PP1 also blocks EGF-induced ubiquitination of the EGF receptor, which is presumably mediated by phosphorylated c-Cbl. Src is associated with c-Cbl, and we have previously demonstrated that the Src-like kinase Fyn can phosphorylate c-Cbl at a preferred binding site for the p85 subunit of phosphatidylinositol 3'-kinase. PP1 treatment blocks EGF-induced activation of the anti-apoptotic protein kinase Akt suggesting that Src may regulate activation of Akt, perhaps by a Src --> c-Cbl --> phosphatidylinositol 3'-kinase --> Akt pathway.  相似文献   

17.
Thrombin activates protease-activated receptor-1 (PAR-1) and engages signaling pathways that influence the growth and survival of cardiomyocytes as well as extracellular matrix remodeling by cardiac fibroblasts. This study examines the role of Shc proteins in PAR-1-dependent signaling pathways that influence ventricular remodeling. We show that thrombin increases p46Shc/p52Shc phosphorylation at Tyr(239)/Tyr(240) and Tyr(317) (and p66Shc-Ser(36) phosphorylation) via a pertussis toxin-insensitive epidermal growth factor receptor (EGFR) transactivation pathway in cardiac fibroblasts; p66Shc-Ser(36) phosphorylation is via a MEK-dependent mechanism. In contrast, cardiac fibroblasts express beta(2)-adrenergic receptors that activate ERK through a pertussis toxin-sensitive EGFR transactivation pathway that does not involve Shc isoforms or lead to p66Shc-Ser(36) phosphorylation. In cardiomyocytes, thrombin triggers MEK-dependent p66Shc-Ser(36) phosphorylation, but this is not via EGFR transactivation (or associated with Shc-Tyr(239)/Tyr(240) and/or Tyr(317) phosphorylation). Importantly, p66Shc protein expression is detected in neonatal, but not adult, cardiomyocytes; p66Shc expression is induced (via a mechanism that requires protein kinase C and MEK activity) by Pasteurella multocida toxin, a Galpha(q) agonist that promotes cardiomyocyte hypertrophy. These results identify novel regulation of individual Shc isoforms in receptor-dependent pathways leading to cardiac hypertrophy and the transition to heart failure. The observations that p66Shc expression is induced by a Galpha(q) agonist and that PAR-1 activation leads to p66Shc-Ser(36) phosphorylation identifies p66Shc as a novel candidate hypertrophy-induced mediator of cardiomyocyte apoptosis and heart failure.  相似文献   

18.
Protein kinase C (PKC) delta becomes tyrosine phosphorylated in rat parotid acinar cells exposed to muscarinic and substance P receptor agonists, which initiate fluid secretion in this salivary cell. Here we examine the signaling components of PKCdelta tyrosine phosphorylation and effects of phosphorylation on PKCdelta activity. Carbachol- and substance P-promoted increases in PKCdelta tyrosine phosphorylation were blocked by inhibiting phospholipase C (PLC) but not by blocking intracellular Ca2+ concentration elevation, suggesting that diacylglycerol, rather than D-myo-inositol 1,4,5-trisphosphate production, positively modulated this phosphorylation. Stimuli-dependent increases in PKCdelta activity in parotid and PC-12 cells were blocked in vivo by inhibitors of Src tyrosine kinases. Dephosphorylation of tyrosine residues by PTP1B, a protein tyrosine phosphatase, reduced the enhanced PKCdelta activity. Lipid cofactors modified the tyrosine phosphorylation-dependent PKCdelta activation. Two PKCdelta regulatory sites (Thr-505 and Ser-662) were constitutively phosphorylated in unstimulated parotid cells, and these phosphorylations were not altered by stimuli that increased PKCdelta tyrosine phosphorylation. These results demonstrate that PKCdelta activity is positively modulated by tyrosine phosphorylation in parotid and PC-12 cells and suggest that PLC-dependent effects of secretagogues on salivary cells involve Src-related kinases.  相似文献   

19.
Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor tyrosine kinase activation by H2O2 involving a metalloprotease-dependent generation of heparin-binding EGF-like growth factor (HB-EGF) and protein kinase C (PKC)-delta activation, respectively. H2O2-induced EGF receptor tyrosine phosphorylation was inhibited by a metalloprotease inhibitor, whereas the inhibitor had no effect on H2O2-induced JAK2 tyrosine phosphorylation. HB-EGF neutralizing antibody inhibited H2O2-induced EGF receptor phosphorylation. In COS-7 cells expressing an HB-EGF construct tagged with alkaline phosphatase, H2O2 stimulates HB-EGF production through metalloprotease activation. By contrast, dominant negative PKC-delta transfection inhibited H2O2-induced JAK2 phosphorylation but not EGF receptor phosphorylation. Dominant negative PYK2 inhibited H2O2-induced JAK2 activation but not EGF receptor activation, whereas dominant negative PKC-delta inhibited PYK2 activation by H2O2. These data demonstrate the presence of distinct tyrosine kinase activation pathways (PKC-delta/PYK2/JAK2 and metalloprotease/HB-EGF/EGF receptor) utilized by H2O2 in VSMCs, thus providing unique therapeutic targets for cardiovascular diseases.  相似文献   

20.
The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have recently been elucidated biochemically and genetically. The present study was undertaken to determine whether common signaling components are used by these two distinct classes of receptors. Here we report that the adaptor protein Shc, is phosphorylated on tyrosine residues following stimulation of the thrombin receptor in growth-responsive CCL39 fibroblasts. Shc phosphorylation by thrombin or the thrombin receptor agonist peptide is maximal by 15 min and persists for > or = 2 h. Following thrombin stimulation, phosphorylated Shc is recruited to Grb2 complexes. One or more pertussis toxin-insensitive proteins appear to mediate this effect, since (i) pertussis toxin pre-treatment of cells does not blunt the action of thrombin and (ii) Shc phosphorylation on tyrosine can be stimulated by the muscarinic m1 receptor. Shc phosphorylation does not appear to involve protein kinase C, since the addition of 4-beta-phorbol-12,13-dibutyrate has no effect. Rather, thrombin-induced Shc phosphorylation is enhanced in cells depleted of phorbol ester-sensitive protein kinase C isoforms. Expression of mutant Shc proteins defective in Grb2 binding displays a dominant-negative effect on thrombin-stimulated p44 MAP kinase activation, gene induction and cell growth. From these data, we conclude that Shc represents a crucial point of convergence between signaling pathways activated by receptor tyrosine kinases and G protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号