首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The angiopoietins act through the endothelial receptor tyrosine kinase Tie2 to regulate vessel maturation in angiogenesis and control quiescence and stability of established vessels. The activating ligand, Ang1 (angiopoietin-1), is constitutively expressed by perivascular cells, and the ability of endothelial cells to respond to the ligand is controlled at the level of the Ang1 receptor. This receptor interacts with the related protein Tie1 on the cell surface, and Tie1 inhibits Ang1 signalling through Tie2. The responsiveness of endothelium to Ang1 is determined by the relative levels of Tie2 and the inhibitory co-receptor Tie1 in the cells. Tie1 undergoes regulated ectodomain cleavage which is stimulated by a range of factors including VEGF (vascular endothelial growth factor), inflammatory cytokines and changes in shear stress. Ectodomain cleavage of Tie1 relieves inhibition of Tie2 and enhances Ang1 signalling. This mechanism regulates Ang1 signalling without requiring changes in the level of the ligand and allows Ang1 signalling to be co-ordinated with other signals in the cellular environment. Regulation of signalling at the level of receptor responsiveness may be an important adaptation in systems in which an activating ligand is normally present in excess or where the ligand provides a constitutive maintenance signal.  相似文献   

2.
Angiopoietin-1 (Ang1) signals via the receptor tyrosine kinase Tie2 which exists in complex with the related protein Tie1 at the endothelial cell surface. Tie1 undergoes regulated ectodomain cleavage in response to phorbol esters, vascular endothelial growth factor (VEGF) and tumour necrosis factor-α (TNFα). Recently phorbol esters and VEGF were found also to stimulate ectodomain cleavage of Tie2. Here we investigate for the first time the effects of factors activating ectodomain cleavage on both Tie1 and Tie2 within the same population of cells, and their impact on angiopoietin signalling. We find that phorbol ester and VEGF activated Tie1 cleavage within minutes followed by restoration to control levels by 24 h. However, several hours of PMA and VEGF treatment were needed to elicit a detectable decrease in cellular Tie2, with complete loss seen at 24 h of PMA treatment. TNFα stimulated Tie1 cleavage, and induced a sustained decrease in cellular Tie1 over 24 h whilst increasing cellular Tie2. These differential effects of agonists on Tie1 and Tie2 result in dynamic modulation of the cellular Tie2∶Tie1 ratio. To assess the impact of this on Ang1 signalling cells were stimulated with VEGF and TNFα for differing times and Ang1-induced Tie2 phosphorylation examined. Elevated Tie2∶Tie1, in response to acute VEGF treatment or chronic TNFα, was associated with increased Ang1-activated Tie2 in cells. These data demonstrate cellular levels of Tie1 and Tie2 are differentially regulated by pathophysiologically relevant agonists resulting in dynamic control of the cellular Tie2∶Tie1 balance and modulation of Ang1 signalling. These findings highlight the importance of regulation of signalling at the level of the receptor. Such control may be an important adaptation to allow modulation of cellular signalling responses in systems in which the activating ligand is normally present in excess or where the ligand provides a constitutive maintenance signal.  相似文献   

3.
The ability of cells to respond appropriately to changes in their environment requires integration and cross-talk between relevant signalling pathways. The vascular endothelial growth factor (VEGF) and angiopoietin families of ligands are key regulators of blood vessel formation. VEGF binds to receptor tyrosine kinases of the VEGF-receptor family to activate signalling pathways leading to endothelial migration, proliferation and survival whereas the angiopoietins interact with the Tie receptor tyrosine kinases to control vessel stability, survival and maturation. Here we show that VEGF can also activate the angiopoietin receptor Tie2. Activation of human endothelial cells with VEGF caused a four-fold stimulation of tyrosine phosphorylation of Tie2. This stimulation was not due to VEGF-induction of Tie2 ligands as soluble ligand binding domain of Tie2 failed to inhibit VEGF activation of the receptor. Immunoprecipitation analysis demonstrated no physical interaction between VEGF receptors and Tie2. However Tie2 does interact with the related receptor tyrosine kinase Tie1 and this receptor was found to be essential for VEGF activation of Tie2. VEGF stimulated proteolytic cleavage of Tie1 generating a truncated Tie1 intracellular domain. Similarly, phorbol ester also both stimulated Tie1 truncation and activated Tie2 phosphorylation. Inhibition of Tie1 cleavage with the metalloprotease inhibitor TAPI-2 suppressed VEGF- and phorbol ester-induced phosphorylation of Tie2. Truncated Tie1 formed in response to VEGF was also found to be tyrosine phosphorylated and this was independent of Tie2, though Tie2 could enhance Tie1 intracellular domain phosphorylation. Together these data demonstrate that VEGF activates Tie2 via a mechanism involving proteolytic cleavage of the associated tyrosine kinase Tie1 leading to trans-phosphorylation of Tie2. This novel mechanism of receptor tyrosine kinase activation is likely to be important in integrating signalling between two of the key receptor groups regulating angiogenesis.  相似文献   

4.
We previously reported the expression of angiopoietin receptor Tie2 on human neutrophils. Both angiopoietins (Ang1 and Ang2) induce platelet activating factor (PAF) synthesis from endothelial cells (ECs) and neutrophils. Both angiopoietins can also modulate EC viability and since PAF can promote pro-survival activity on neutrophils, we addressed whether Ang1 and/or Ang2 could modulate neutrophil viability. Neutrophils were isolated from venous blood of healthy volunteers and neutrophil viability was assessed by flow cytometry using apoptotic and necrotic markers (annexin-V and propidium iodide (P.I.), respectively). Basal neutrophil viability from 0 to 24 h post-isolation decreased from 98% to ≈45%. Treatment with anti-apoptotic mediators such as interleukin-8 (IL-8; 25 nM) and PAF (100 nM) increased neutrophil basal viability by 34 and 26% (raising it from 43 to 58 and 55%) respectively. Treatment with Ang1 (0.001-50 nM) increased neutrophil viability by up to 41%, while Ang2 had no significant effect. Combination of IL-8 (25 nM) or PAF (100 nM) with Ang1 (10 nM) further increased neutrophil viability by 56 and 60% respectively. We also observed that Ang1, but not Ang2 can promote IL-8 release and that a pretreatment of the neutrophils with blocking anti-IL-8 antibodies inhibited the anti-apoptotic effect of IL-8 and Ang1 by 92 and 81% respectively. Pretreatment with a selective PAF receptor antagonist (BN 52021), did abrogate PAF pro-survival activity, without affecting Ang1-induced neutrophil viability. Our data are the first ones to report Ang1 pro-survival activity on neutrophils, which is mainly driven through IL-8 release.  相似文献   

5.
6.
Angiogenic factors such as vascular endothelial growth factor (VEGF) are implicated in pulmonary hypertension (PH). However, the pathway of angiogenic factor-mediated pathologic angiogenesis in PH remains unclear. In this study, we evaluated the temporal expression of angiopoietin (Ang) 1, Ang2, and their receptor (Tie2) as well as VEGF, endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), and heme oxygenase 1 (HO1) in the monocrotaline-induced PH model. Histologic evaluation showed pathologic vascular remodeling in the arteries of lung sections 1 wk after monocrotaline treatment. Protein levels of Ang1, Ang2, eNOS, iNOS, HO1, and VEGF were increased 1 wk after monocrotaline treatment but Tie2 protein levels were decreased 2 wk afterward. These results suggest that Ang2 mediates vascular remodeling in PH by decreasing Tie2 expression. Therefore, the Ang–Tie2 system may play a role in the pathophysiology of PH.Abbreviations: Ang, angiopoietin; eNOS, endothelial nitric oxide synthase; HO1, heme oxygenase 1; iNOS, inducible nitric oxide synthase; PH, pulmonary hypertension; VEGF, vascular endothelial growth factorPulmonary hypertension (PH) is a disease characterized by pathologic angiogenesis caused by diffuse smooth muscle cell hyperplasia and hypertrophy of the distal pulmonary vasculature, resulting in obliteration of small pulmonary arterioles.13 Vascular remodeling is governed by the interaction of several angiogenic factors on endothelial and smooth muscle cells. Vascular remodeling requires complex, multistep signaling pathways and a high degree of spatial and temporal coordination among endothelial and smooth muscle cells.29 However, the precise mechanisms of vascular remodeling at the cellular and molecular levels are not completely defined.The angiopoietin (Ang) family and vascular endothelial growth factor (VEGF) are 2 types of vascular regulatory molecules that have been the subject of intense investigation in both physiologic and pathologic generation of blood vessels.2,38 Members of the Ang family have opposing effects on receptor activation, with Ang1 stimulating Tie2 and Ang2 antagonizing this stimulation.3,8,22 In particular, Ang1 plays an important role in the assembly of newly formed vasculature and in the maintenance of vascular integrity.7,14,36 In contrast, Ang2 antagonizes the activation of Tie2 by Ang1 and causes endothelial cell apoptosis and vascular regression.22 The functions of Ang2 appear to be more complex than those of Ang1, in that Ang2 binds to the Tie2 receptor, blocking Ang1–Tie2 signaling and acting as a vessel-destabilizing factor.26 However, prolonged exposure of endothelial cells to Ang2 activates Tie2 signaling.16 Thus, the precise roles of Ang2 during the development of PH are not well understood. Tie2 is a receptor tyrosine kinase that is expressed principally on vascular endothelium and that plays a role in integrity and survival of endothelial cells.27,30 Disrupting Tie2 function in mice results in embryonic lethality with defects in embryonic vasculature.11Neither Ang1 nor Ang2 alone can trigger an angiogenic response, but both enhance angiogenesis or induce vascular remodeling, depending on the presence of VEGF or other angiogenic factors. Nitric oxide is produced by endothelial cells through the action of nitric oxide synthase (NOS). Northern blot analysis of hypoxic rat lungs showed significantly increased mRNA levels for both endothelial NOS (eNOS) and inducible NOS (iNOS).18 Increased NOS activity coincided with the beginning of the vascular remodeling process during chronic hypoxia.37 Hypoxia and nitric oxide stimulate VEGF production and induce HO1 expression in vascular tissue.10 In addition, several studies have shown that VEGF works in conjunction with other angiogenic factors to produce a stable and functional microvasculature.21,35The purpose of the present study was to demonstrate the temporal changes of several angiogenic factors during the development of PH induced by treatment of rats with monocrotaline. This research was focused on the Ang–Tie2 system and other angiogenic factors and suggested that this system plays an important role in modulating vascular remodeling during PH.  相似文献   

7.
Tie2 and VEGF receptors (VEGFRs) are tyrosine kinases that play essential roles in angiogenesis. Activation of both receptors leads to the activation of Akt, an important mediator of cell survival and cell motility. In this study, we compared the role of Akt in Tie2-mediated versus VEGF-mediated endothelial cell (EC) survival and EC sprouting. Our data show that Akt is required and sufficient to mediate Ang1-induced EC survival in response to growth factor depletion. Blocking Akt function abolishes angiopoietin 1 (Ang1), a ligand for Tie2, mediated EC survival, and activating Akt rescues a Tie2 blockade-induced EC apoptosis. In contrast, activating Akt rescues EC apoptosis induced by a VEGF blockade, but interestingly, blocking Akt function has no effects on VEGF-induced EC survival, demonstrating that Akt is sufficient but not required for VEGF-mediated EC survival. In addition, we show that both Ang1 and VEGF induce EC sprouting in a three-dimensional collagen gel, which depends on the activation of Akt. Blocking Akt action inhibited EC sprouting induced by Ang1 or VEGF. Therefore, the data show that Akt is the primary mediator of Ang1-induced EC survival while multiple pathways are involved downstream of VEGF responsible for EC survival. However, Akt is required and sufficient to mediate the EC sprouting induced by both Ang1 and VEGF.  相似文献   

8.
Stimulation of human endothelial cells (EC) by thrombin elicits a rapid increase of intracellular free Ca2+ [(Ca2+]i), platelet-activating factor (PAF) production and 1-O-alkyl-2-lyso-sn-glycero-3- phosphocholine (lyso-PAF): acetyl-CoA acetyltransferase (EC 2.3.1.67) activity. The treatment of EC with thrombin leads to a 90% decrease in the cytosolic protein kinase C (PKC) activity; this dramatic decline is accompanied by an increase of the enzymatic activity in the particulate fraction. The role of PKC in thrombin-mediated PAF synthesis has been assessed: (1) by the blockade of PKC activity with partially selective inhibitors (palmitoyl-carnitine, sphingosine and H-7); (2) by chronic exposure of EC to phorbol 12-myristate 13-acetate (PMA), which results in down-regulation of PKC. In both cases, a strong inhibition of thrombin-induced PAF production is observed, suggesting obligatory requirement of PKC activity for PAF synthesis. It is suggested that PKC regulates EC phospholipase A2 (PLA2) activity as thrombin-induced arachidonic acid (AA) release is 90% inhibited in PKC-depleted cells. Brief exposure of EC to PMA strongly inhibits thrombin-induced [Ca2+]i rise, acetyltransferase activation and PAF production, suggesting that, in addition to the positive forward action, PKC provides a negative feedback control over membrane signalling pathways involved in the thrombin effect on EC. Forskolin and iloprost, two agents that increase the level of cellular cAMP in EC, are very effective in inhibiting thrombin-evoked cytosolic Ca2+ rise, acetyltransferase activation and PAF production; this suggests that endogenously generated prostacyclin (PGI2) may modulate the synthesis of PAF in human endothelial cells.  相似文献   

9.
The aim of the present study was to investigate whether stimulation of CD40 expressed by endothelial or smooth muscle cells triggers the synthesis of platelet-activating factor (PAF), an inflammatory mediator with angiogenic properties, and whether PAF contributes to CD40-induced neoangiogenesis. The results obtained indicate that the interaction of CD40 with soluble CD154 or with CD154 expressed on the membrane of leukocytes (CD154-transfected J558 cells) or of activated platelets, stimulated the synthesis of PAF by endothelial cells but not by smooth cells. The synthesis of PAF triggered by activated platelets was inhibited by a soluble CD40-murine Ig fusion protein that prevents the interaction between membrane CD40 and CD154. Studies with specific inhibitors and evaluation of protein phosphorylation indicated the involvement in PAF synthesis of two intracellular signaling pathways leading to cytosolic phospholipase A(2) activation: a phospholipase Cgamma-protein kinase C-Raf-p42/p44-mitogen-activated protein kinase (MAPK) and a MAPK kinase-3/6-dependent activation of p38 MAPK. PAF synthesized by endothelial cells after CD40 stimulation was instrumental in the in vitro migration and vessel-like organization of endothelial cells, and in the interaction between endothelial cells and smooth muscle cells, as inferred by the inhibitory effect of two different PAF receptor antagonists, WEB2170 and CV3988. In vivo, blockade of PAF receptors prevented the angiogenic effect triggered by CD40 stimulation in a murine model of s.c. Matrigel implantation. In conclusion, these observations indicate that PAF synthesis induced by stimulation of endothelial CD40 contributes to the formation and organization of new vessels. This may be relevant in the vascular remodeling associated with tumor and inflammatory neoangiogenesis.  相似文献   

10.
Although Angiopoietin (Ang) 2 has been shown to function as a Tie2 antagonist in vascular endothelial cells, several recent studies on Ang2-deficient mice have reported that, like Ang1, Ang2 acts as a Tie2 agonist during in vivo lymphangiogenesis. However, the mechanism governing the Tie2 agonistic activity of Ang2 in lymphatic endothelial cells has not been investigated. We found that both Ang1 and Ang2 enhanced the in vitro angiogenic and anti-apoptotic activities of human lymphatic endothelial cells (HLECs) through the Tie2/Akt signaling pathway, while only Ang1 elicited such effects in human umbilical vein vascular endothelial cells (HUVECs). This Tie2-agonistic effect of Ang2 in HLECs resulted from low levels of physical association between Tie2 and Tie1 receptors due to a reduced level of Tie1 expression in HLECs compared to HUVECs. Overexpression of Tie1 and the resulting increase in formation of Tie1/Tie2 heterocomplexes in HLECs completely abolished Ang2-mediated Tie2 activation and the subsequent cellular responses, but did not alter the Ang1 function. This inhibitory role of Tie1 in Ang2-induced Tie2 activation was also confirmed in non-endothelial cells with adenovirus-mediated ectopic expression of Tie1 and/or Tie2. To our knowledge, this study is the first to describe how Ang2 acts as a Tie2 agonist in HLECs. Our results suggest that the expression level of Tie1 and its physical interaction with Tie2 defines whether Ang2 functions as a Tie2 agonist or antagonist, thereby determining the context-dependent differential endothelial sensitivity to Ang2.  相似文献   

11.
Sepsis-mediated endothelial Angiopoeitin-2 (Ang2) signaling may contribute to microvascular remodeling in the developing lung. The mechanisms by which bacterial cell wall components such as LPS mediate Ang2 signaling in human pulmonary microvascular endothelial cells (HPMECs) remain understudied. In HPMEC, LPS-induced Ang2, Tie2, and VEGF-A protein expression was preceded by increased superoxide formation. NADPH oxidase 2 (Nox2) inhibition, but not Nox4 or Nox1 inhibition, attenuated LPS-induced superoxide formation and Ang2, Tie2, and VEGF-A expression. Nox2 silencing, but not Nox4 or Nox1 silencing, inhibited LPS-mediated inhibitor of κ-B kinase β (IKKβ) and p38 phosphorylation and nuclear translocation of NF-κB and AP-1. In HPMECs, LPS increased the number of angiogenic tube and network formations in Matrigel by >3-fold. Conditioned media from LPS-treated cells also induced angiogenic tube and network formation in the presence of Toll-like receptor 4 blockade but not in the presence of Ang2 and VEGF blockade. Nox2 inhibition or conditioned media from Nox2-silenced cells attenuated LPS-induced tube and network formation. Ang2 and VEGF-A treatment rescued angiogenesis in Nox2-silenced cells. We propose that Nox2 regulates LPS-mediated Ang2-dependent autocrine angiogenesis in HPMECs through the IKKβ/NF-κB and MAPK/AP-1 pathways.  相似文献   

12.
Angiopoietin-1 (Ang1) and its receptor, Tie2, play critical roles in blood vessel formation. Ang1 triggers a variety of signaling events in endothelial cells leading to vasculogenic and angiogenic processes. However, the underlying mechanism for Ang1/Tie2 signaling is not fully understood. Here, we show that Tie2 and phospholipase D (PLD) are localized in the caveolae, specialized subdomains of the endothelial cell plasma membrane enriched with signaling molecules. Interestingly, Ang1 increased PLD activities in a dose- and time-dependent manner. Ang1-induced MEK/ERK activation was abrogated when PLD was inhibited, suggesting that PLD mediates Ang1-induced MEK/ERK activation. Moreover, PLD inhibitor, 1-butanol, inhibited Ang1-induced endothelial cell migration. Our results indicate that: (1) caveolae may be the platform for Tie2/PLD association in endothelial cells; (2) PLD is a new mediator of Ang1/Tie2-induced signaling pathway, and it participates in MAPK activation and endothelial cell migration.  相似文献   

13.
The differentiation, growth, and survival of endothelial cells (ECs) are regulated by multiple signalling pathways, such as vascular endothelial growth factors (VEGFs) and angiopoietins through their receptor tyrosine kinases, VEGF receptor (VEGFR) 2 and Tie2, respectively. Bone morphogenetic proteins (BMPs), members of the transforming growth factor (TGF)-beta family, have been implicated in the development and maintenance of vascular systems. However, their effects on EC proliferation remain to be elucidated. In the present study, we show that BMPs induce the proliferation and migration of mouse embryonic stem cell (ESC)-derived endothelial cells (MESECs) and human microvascular endothelial cells (HMECs). Addition of BMP-4 to culture induced significant proliferation and migration of both types of ECs. BMP-4 also increased the expression and phosphorylation of VEGFR2 and Tie2. These findings suggest that BMP signalling activates endothelium via activation of VEGF/VEGFR2 and Angiopoietin/Tie2 signalling.  相似文献   

14.
The Tie2 receptor tyrosine kinase plays a pivotal role in vascular and hematopoietic development. The major intracellular signaling systems activated by Tie2 in response to Angiopoietin-1 (Ang1) include the Akt and Erk1/2 pathways. Here, we investigated the role of cholesterol-rich plasma membrane microdomains (lipid rafts) in Tie2 regulation. Tie2 could not be detected in the lipid raft fraction of human umbilical vein endothelial cells (HUVECs) unless they were first stimulated with Ang1. After stimulation, a minor fraction of Tie2 associated tightly with the lipid rafts. Treatment of HUVECs with the lipid raft disrupting agent methyl-β-cyclodextrin selectively inhibited Ang1-induced Akt phosphorylation, but not Erk1/2 phosphorylation. It has been reported that inhibition of FoxO activity is an important mechanism for Ang1-stimulated Tie2-mediated endothelial function. Consistent with this, we found that phosphorylation of FoxO mediated by Tie2 activation was attenuated by lipid raft disruption. Therefore, we propose that lipid rafts serve as signaling platforms for Tie2 receptor tyrosine kinase in vascular endothelial cells, especially for the Akt pathway.  相似文献   

15.
Angiopoietins and Tie2 receptor were recently identified as an endothelial cell-specific ligand-receptor system that is critical for vascular development and postnatal pathologic angiogenesis by mediating vascular integrity. In this study, we identified a series of small-molecule Tie2 inhibitors, which blocked Ang1-induced Tie2 autophosphorylation and downstream signaling with an IC(50) value at 0.3 microM. Further optimization yields improved selectivity, aqueous solubility, microsomal stability and cytochrome P450 profile for one of the compounds (compound 7). Both compound 1 and compound 7 inhibit endothelial cell tube formation. Furthermore, in a rat model of Matrigel-induced choroidal neovascularization, compound 7 significantly diminished aberrant vessel growth. Our findings demonstrate a potential clinical benefit by specifically targeting Tie2-mediated angiogenic disorders.  相似文献   

16.
Tie2 belongs to the receptor tyrosine kinase family and functions as a receptor for Angiopoietin-1 (Ang1). Gene-targeting analyses of either Ang1 or Tie2 in mice reveal a critical role of Ang1-Tie2 signalling in developmental vascular formation. It remains elusive how the Tie2 signalling pathway plays distinct roles in both vascular quiescence and angiogenesis. We demonstrate here that Ang1 bridges Tie2 at cell-cell contacts, resulting in trans-association of Tie2 in the presence of cell-cell contacts. In clear contrast, in isolated cells, extracellular matrix-bound Ang1 locates Tie2 at cell-substratum contacts. Furthermore, Tie2 activated at cell-cell or cell-substratum contacts leads to preferential activation of Akt and Erk, respectively. Microarray analyses and real-time PCR validation clearly show the differential gene expression profile in vascular endothelial cells upon Ang1 stimulation in the presence or absence of cell-cell contacts, implying downstream signalling is dependent upon the spatial localization of Tie2.  相似文献   

17.
Angiogenesis is a critical element for adaptation to low levels of oxygen and occurs following long-term exposure to mild hypoxia in rats. To test whether a similar response in mice occurs, CD1, 129/Sv, C57Bl/6, and Balb/c mice were exposed to 10% oxygen for up to 3 wk. All mice showed significant increases in the percentage of packed red blood cells, and CD1 and 129/Sv mice showed increased respiration frequency and minute volume, common physiological measures of hypoxia. Significant angiogenesis was observed in all strains except Balb/c following 3-wk exposure to chronic hypoxia. CD1 hypoxic mice had the largest increase (88%), followed by C57Bl/6 (48%), 129/Sv (41%), and Balb/c (12%), suggesting that some mice undergo more remodeling than others in response to hypoxia. Protein expression analysis of vascular endothelial growth factor (VEGF), angiopoietin (Ang)-1 and Ang2, and Tie2 were examined to determine whether regulation of different angiogenic proteins could account for the differences observed in hypoxia-induced angiogenesis. CD1 mice showed the strongest upregulation of VEGF, Ang2, Ang1, and Tie2, whereas Balb/c had only subtle increases in VEGF and no change in the other proteins. C57Bl/6 mice showed a regulatory response that fell between the CD1 and Balb/c mice, consistent with the intermediate increase in angiogenesis. Our results suggest that genetic heterogeneity plays a role in angiogenesis and regulation of angiogenic proteins and needs to be accounted for when designing and interpreting experiments using transgenic mice and when studying in vivo models of angiogenesis.  相似文献   

18.
Vascular endothelial growth factor (VEGF)-mediated inflammation requires the synthesis of acute platelet-activating factor (PAF) by endothelial cells (ECs). We previously reported that VEGF-mediated PAF synthesis involves the activation of the homodimeric tyrosine kinase receptor VEGFR-2/R-2, leading to the recruitment of p38 and p42/p44 mitogen-activated protein kinases (MAPKs) and activation of secreted group V phospholipase A? (sPLA?-V). We have also reported that VEGF-A???-mediated prostacyclin (PGI?) synthesis requires VEGFR-1/R-2 heterodimeric receptor activation. Selective activation of VEGF receptors can coordinate the synthesis of pro-PAF and anti-PGI? inflammatory factors. It is unknown which VEGFR-2 tyrosine phosphorylation site(s) contribute(s) to PAF synthesis. Bovine aortic endothelial cells (BAECs) were transfected with pcDNA vectors encoding for native VEGF receptor-2 (VEGFR-2) cDNA or VEGFR-2 cDNA containing tyrosine phosphorylation sites mutated into phenylalanine residues (Y801F, Y1059F, Y1175F, Y1214F); an empty pcDNA vector was used as a negative control. Treatment of pcDNA-transfected BAECs with VEGF (10?? mol/L) for 15 min increased PAF synthesis by 180%. In BAECs transfected with pcDNA vectors encoding mutated Y801F, Y1059F, Y1175F, or Y1214F VEGFR-2 cDNA, we observed a marked reduction of VEGF-mediated PAF synthesis by 38%, 46%, 69%, and 31%, respectively, compared with BAECs transfected with pcDNA vector encoding VEGFR-2 cDNA. Our data provide a novel insight as to the mechanisms by which VEGF promotes PAF synthesis.  相似文献   

19.
The vessel-stabilizing effect of angiopoietin-1 (Ang1)/Tie2 receptor signaling is a potential target for pro-angiogenic therapies as well as anti-angiogenic inhibition of tumor growth. We explored the endothelial and vascular specific activities of the Ang1 monomer, i.e. dissociated from its state as an oligomer. A truncated monomeric Ang1 variant (i.e. DeltaAng1) containing the isolated fibrinogen-like receptor-binding domain of Ang1 was created and recombinantly produced in insect cells. DeltaAng1 ligated the Tie2 receptor without triggering its phosphorylation. Moreover, monomeric DeltaAng1 was observed to bind alpha(5)beta(1) integrin with similar affinity compared with Tie2. Unexpectedly, in vitro treatment of endothelial cells with DeltaAng1 showed some of the known effects of full-length Ang1, including inhibition of basal endothelial cell permeability and stimulation of cell adhesion as well as activation of MAPKs. Local treatment of the microvasculature of the developing chicken chorioallantoic membrane with the DeltaAng1 protein led to profound reduction of the mean vascular length density, thinning of vessels, and reduction of the number of vessel branching points. Similar effects were observed in side-by-side experiments with the recombinant full-length Ang1 protein. These effects of simplification of the vessel branching pattern were confirmed through local gene transfer with lentiviral particles encoding DeltaAng1 or full-length Ang1. Together, our findings suggest a potential use for exogenous Ang1 in reducing rather than increasing vascular density. Furthermore, we show that the isolated receptor-binding domain of Ang1 is capable of mediating some effects of full-length Ang1 independently of Tie2 phosphorylation, possibly through integrin ligation.  相似文献   

20.
Tie2/Tek is an endothelial cell receptor tyrosine kinase that induces signal transduction pathways involved in cell migration upon angiopoietin-1 (Ang1) stimulation. To address the importance of the various tyrosine residues of Tie2 in signal transduction, we generated a series of Tie2 mutants and examined their signaling properties. Using this approach in conjunction with a phosphorylation state-specific antibody, we identified tyrosine residue 1106 on Tie2 as an Ang1-dependent autophosphorylation site that mediates binding and phosphorylation of the downstream-of-kinase-related (Dok-R) docking protein. This tyrosine residue is contained within a unique interaction motif for the phosphotyrosine binding domain of Dok-R, and the pleckstrin homology domain of Dok-R further contributes to Tie2 binding in a phosphatidylinositol 3'-kinase-dependent manner. Introduction of a Tie2 mutant lacking tyrosine residue 1106 into endothelial cells interferes with Dok-R phosphorylation in response to Ang1. Furthermore, this mutant is unable to restore the migration potential of endothelial cells derived from mice lacking Tie2. Together, these findings demonstrate that tyrosine residue 1106 on Tie2 is critical for coupling downstream cell migration signal transduction pathways with Ang1 stimulation in endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号