首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence has been presented supporting the existence of heterogeneity in cell-cycle progression in mouse epidermis, The present study was undertaken to characterize this heterogeneity in more detail. Hairless mice were continuously labelled with tritiated thymidine every 4 hr for 4 days. Basal cell suspensions were prepared from slices of mouse skin at intervals during the experiment and subjected to DNA flow cytometry. Cell-cycle analysis was combined with sorting of cells from windows in G1, S and G2 phase, and the proportion of labelled cells within each window was determined in autoradiographs. Reanalysis and resorting to control the purity of of sorted fractions were performed. Computer simulations of the data were made using a mathematical model assuming different S and G2 phase characteristics. A good fit to the data was only obtained when heterogeneity in mouse epidermal cell-cycle progression was assumed, indicating the existence of slowly traversing, distinct subpopulations of cells in G2 and S phase. These cells are assumed to contribute to about 40% of all cells in S phase and to about 70% of all in G2 phase. The estimated residence times in the resting states were 38 and 32 hr in S and G2 phase, respectively. Two-parameter sorting based on DNA and light scatter indicated that slowly cycling cells were larger than the average. There is no evidence of significant subpopulations of permanently non-proliferating keratinocytes in any of the cell-cycle phases.  相似文献   

2.
The influence of pulse labelling with 50 °Ci tritiated thymidine ([3H]TdR) (2 μCi/g) on epidermal cell-cycle distribution in mice was investigated. Animals were injected intraperitoneally with the radioactive tracer or with saline at 08.00 hours, and groups of animals were sacrificed at intervals during the following 32 hr. Epidermal basal cells were isolated from the back skin of the animals and prepared for DNA flow cytometry, and the proportions of cells in the S and G2 phases of the cell cycle were estimated from the obtained DNA frequency distributions. the proportions of mitoses among basal cells were determined in histological sections from the same animals, as were the numbers of [3H]TdR-labelled cells per microscopic field by means of autoradiography. The results showed that the [3H]TdR activity did not affect the pattern of circadian rhythms in the proportions of cells in S, G2 and M phase during the first 32 hr after the injection. the number of labelled cells per vision field was approximately doubled between 8 and 12 hr after tracer injection, indicating an unperturbed cell-cycle progression of the labelled cohort. In agreement with previous reports, an increase in the mitotic index was seen during the first 2 hr. These data are in agreement with the assumption that 50 °Ci [3H]TdR given as a pulse does not perturb cell-cycle progression in mouse epidermis in a way that invalidates percentage labelled mitosis (PLM) and double-labelling experiments.  相似文献   

3.
Abstract. In a previous study the epidermal cell kinetics of hairless mice were investigated with bivariate DNA/anti-bromodeoxyuridine (BrdU) flow cytometry of isolated basal cells after BrdU pulse labelling. The results confirmed our previous observations of two kinetically distinct sub-populations in the G2 phase. However, the results also showed that almost all BrdU-positive cells had left S phase 6–12 h after pulse labelling, contradicting our previous assumption of a distinct, slowly cycling, major sub-population in S phase. The latter study was based on an experiment combining continuous tritiated thymidine ([3H]TdR) labelling and cell sorting. The purpose of the present study was to use a mathematical model to analyse epidermal cell kinetics by simulating bivariate DNA/BrdU data in order to get more details about the kinetic organization and cell cycle parameter values. We also wanted to re-evaluate our assumption of slowly cycling cells in S phase. The mathematical model shows a good fit to the experimental BrdU data initiated either at 08.00 hours or 20.00 hours. Simultaneously, it was also possible to obtain a good fit to our previous continuous labelling data without including a sub-population of slowly cycling cells in S phase. This was achieved by improving the way in which the continuous [3H]TdR labelling was simulated. The presence of two distinct sub-populations in G2 phase was confirmed and a similar kinetic organization with rapidly and slowly cycling cells in G1 phase is suggested. The sizes of the slowly cycling fractions in G1 and G2 showed the same distinct circadian dependency. The model analysis indicates that a small fraction of BrdU labelled cells (3–5%) was arrested in G2 phase due to BrdU toxicity. This is insignificant compared with the total number of labelled cells and has a negligible effect on the average cell cycle data. However, it comprises 1/3 to 1/2 of the BrdU positive G2 cells after the pulse labelled cells have been distributed among the cell cycle compartments.  相似文献   

4.
The synthesis of chromosomal proteins and the incorporation of labelled proteins into chromosomes in the mitotic cell cycle ofHaplopappus gracilis, 2n=4, were traced autoradiographically with3H-arginine,3H-lysine, and3H-tryptophane. The duration of the mitotic cell cycle in the root tip cells was determined by3H-thymidine autoradiography and was measured to be 13.0 hr (G1 1.3 hr, S 6.5 hr, G2 3.8 hr and M 1.4 hr).3H-arginine labelled proteins which were synthesized at S and G2 were found to be incorporated into chromosomes to a greater extent than proteins which were synthesized either at G1, at the transition phase from late S to early G2, or at the mitotic phase. Such varied incorporation was also found in3H-lysine labelled proteins, but not in3H-tryptophane labelled proteins. These findings indicate that the chromosomal proteins are synthesized mainly at S and G2. Some of the3H-arginine labelled proteins which were synthesized during the first mitotic cell cycle, were found to be incorporated into the chromosomes of the second mitotic cell cycle. The incorporation of the proteins synthesized at one stage of the mitotic cell cycle was found to occur locally in some regions of the chromosomes, while the pattern of incorporation was observed to be similar between euchromatic and heterochromatic regions.  相似文献   

5.
The partially synchronized cell system of the hamster cheek pouch epithelium shows a characteristic diurnal rhythm of cell proliferation. Bolus injections of methotrexate (Mtx) in both lethal (10 g/m2) and non-lethal (2 g/m2) doses were found to inhibit cell-cycle progression primarily by impairing the G1/S transition. the results were obtained by flow cytometric DNA analysis. the inhibitory effect of Mtx manifested itself as a relative decrease of the S fraction (drug-effector phase), and was found to be dependent both on the dose and on the time of the day it was given. A bolus injection of Mtx was given either at 1200 hr (when a minimal number of cells are in S phase) or at 0200 hr (when a maximum number of cells are in S phase). the greatest cumulative decrease in S fraction was seen when the injection was given at 1200 hr. the time between injection and the effect (seen as a decrease in S fraction) was independent of the time of the Mtx injection, but seemed instead to be related to the natural diurnal period of increasing flux from G1 to S phase (at the onset of the dark period). the main effect (the relative decrease in S fraction) was repeated during the following 24-hr period, pointing to a protracted effect of Mtx on G1 cells. G1 cells affected by the initial high Mtx plasma concentration seem to be responsible for the reduced influx into S phase in both the first and second 24-hr period. In earlier toxicological studies, the survival rate of hamsters was dependent on the time of injection and was highest after injection at 1200 hr. Thus maximum cytokinetic effect on epithelial cells was found at the time of the day when there was a minimum lethal effect on the animal.  相似文献   

6.
Percentage labelled mitosis (PLM) measurements were initiated at four different times during a 24-hr period and continued for 24 hr in hairless mouse epidermis. Estimates of G2 and S phase durations (mean TG2 and mean TS) were calculated. A significant number of labelled mitoses (10–20%) was seen after 30 min in all four PLM measurements and the estimated mean TG2 varied from 1.4 to 2.5 hr and was in agreement with values from PLM measurements in other epithelial tissues. These mean TG2 values were much shorter than expected from [3H]TdR double labelling experiments and from a multiparameter cell kinetic study in hairless mouse epidermis and did not reflect the circadian variations seen in these studies. the differences in estimates of phase durations can be explained by postulating two G2 cell populations; one with a rapid and another with a slow rate of cell cycle progression. the cells with the higher rate are mainly registered by the PLM method, whereas those with the lower rate largely escape detection by this method. TG2 estimates from PLM measurements in mouse epidermis therefore do not reflect the phase duration of the entire G2 population. It is also concluded that circadian variations in TS can not be accurately registered by the PLM method.  相似文献   

7.
The present study analyzed the heterogeneous cell-cycle dependence and fate of single cancer cells in a population treated with UVB using a fluorescence ubiquitination-based cell-cycle (FUCCI) imaging system. HeLa cells expressing FUCCI were irradiated by 100 or 200 J/m2 UVB. Modulation of the cell-cycle and apoptosis were observed by time-lapse confocal microscopy imaging every 30 min for 72 h. Correlation between cell survival and factors including cell-cycle phase at the time of the irradiation of UVB, mitosis and the G1/S transition were analyzed using the Kaplan–Meier method along with the log rank test. Time-lapse FUCCI imaging of HeLa cells demonstrated that UVB irradiation induced cell-cycle arrest in S/G2/M phase in the majority of the cells. The cells irradiated by 100 or 200 J/m2 UVB during G0/G1 phase had a higher survival rate than the cells irradiated during S/G2/M phase. A minority of cells could escape S/G2/M arrest and undergo mitosis which significantly correlated with decreased survival of the cells. In contrast, G1/S transition significantly correlated with increased survival of the cells after UVB irradiation. UVB at 200 J/m2 resulted in a greater number of apoptotic cells.  相似文献   

8.
The proliferating cells of mouse epidermis (basal cells) can be separated from the non-proliferating cells (differentiating cells) (Laerum, 1969) and brought into a mono-disperse suspension. This makes it possible to determine the cell cycle distributions (e.g. the relative number of cells in the G^ S and (G2+ M) phases of the cell cycle) of the basal cell population by means of micro-flow fluorometry. To study the regenerative cell proliferation in epidermis in more detail, changes in cell cycle distributions were observed by means of micro-flow fluorometry during the first 48 hr following adhesive tape stripping. 3H-TdR uptake (LI and grain count distribution) and mitotic rate (colcemid method) were also observed. An initial accumulation of G2 cells was observed 2 hr after stripping, followed by a subsequent decrease to less than half the control level. This was followed by an increase of cells entering mitosis from an initial depression to a first peak between 5 and 9 hr which could be satisfactorily explained by the changes in the G2 pool. After an initial depression of the S phase parameters, three peaks with intervals of about 12 hr followed. The cells in these peaks could be followed as cohorts through the G2 phase and mitosis, indicating a partial synchrony of cell cycle passage, with a shortening of the mean generation time of basal cells from 83-3 hr to about 12 hr. The oscillations of the proportion of cells in G2 phase indicated a rapid passage through this cell cycle phase. The S phase duration was within the normal range but showed a moderate decrease and the Gj phase duration was decreased to a minimum. In rapidly proliferating epidermis there was a good correlation between change in the number of labelled cells and cells with S phase DNA content. This shows that micro-flow fluorometry is a rapid method for the study of cell kinetics in a perturbed cell system in vivo.  相似文献   

9.
Cultured human epidermal cells were studied by cell sorting and autoradiography after different 3H-thymidine (3H-dThd)-labelling procedures and after labelling with DNA precursors that are incorporated via salvage or de novo pathways. It was shown that 3H-dThd incorporation was the best measure of the rate of DNA replication. Dose-response experiments with pulse and continuous labelling revealed that all S- and G2-phase cells were cycling, whereas some 20% of the cells stayed in G1-phase for long periods of time. Most, if not all of these cells were probably non-proliferating differentiated keratinocytes. At least two subpopulations of S-phase cells could be discriminated on the basis of the rate of incorporation of DNA precursors. the difference in precursor incorporation did not seem to be caused by differences in nucleotide metabolism but rather to reflect true differences in the rate of DNA replication. Continuous labelling experiments showed that these subpopulations also were apparent in the G1- and G2-phases. Studies of the grain-count distribution revealed that cells that appeared to move rapidly through the S-phase moved slowly through the G2-phase, and vice versa. Cells stained with acridine orange were subjected to a two-parameter analysis in the cell sorter by simultaneous measurement of the DNA and RNA fluorescence. Autoradiography of sorted cells revealed that, on average, cells with low RNA contents incorporated 3H-dThd at a higher rate than cells with high RNA contents.  相似文献   

10.
Cells of a mutant in vivo subline of the Ehrlich-Lettré mouse ascites tumour (ELAT) were converted to growth in suspension culture. Kinetic analysis revealed the selective character of the conversion process; without a detectable adaptation period, a fraction of about 2 × 10-5 of the explanted cells continued to grow in vitro. the resulting, mutant Ehrlich-Lettré ascites cell strain was designated HD33 and propagated uninterruptedly from 1974 on. the corresponding in vivo ELAT subline HD33 was derived from the HD33 ascites cell strain by intraperitoneal retransplantation. In HD33 cell suspension cultures, the population doubling time, the average intermitotic interval, as determined by videomonitoring, and the average duration of the cell cycle, as determined from percentage of labelled mitoses (PLM) data, were all measured at 15 hr. Cell loss and quiescent compartments were insignificant. the duration of the G1 phase was effectively zero. Both PLM data and [3H]/[14C] thymidine double-labetling measurements revealed an S-phase duration of between 11 and 12 hr. the G2 phase lasted 3–5 hr. The HD33 strain differs from comparable suspension strains of wild-type Ehrlich ascites cells in the insignificant role of density-dependent inhibition in growth, and the striking prolongation of the S phase which is associated with an excessive, cytoplasmic storage of glycogen by the mutant cells.  相似文献   

11.
The DNA synthesis system of freshly isolated tonsillar lymphocytes and those stimulated by phytohaemagglutinin were compared by different methods. Both cell populations had high DNA polymerase α and thymidine kinase activities, as well as a high rate of incorporation of [3H]thymidine into DNA. However, the two cell populations differed when their DNA distributions were compared by flow cytometry. Freshly isolated cells contained many less (6%) cells in S phase than were found in phytohaemagglutinin-stimulated lymphocytes (18%) as detected by flow cytometry. The labelling of different subpopulations of lymphocytes was studied by sorting them electrically with a fluorescence-activated cell sorter. Analysis of the radioactivity of [3H]thymidine pulse-labelled cells, sorted according to their DNA content, showed that cells in the G1 peak of DNA distribution had a significant amount of incorporated [3H]thymidine. Sorting of cells according to their size (i.e., by light scattering) revealed that only large cells were labelled with [3H]thymidine.  相似文献   

12.
A single intracardiac dose of lead acetate (40 μ lead/g body weight) induced a 25-fold increase in mitosis of mouse hepatocytes 5 hr after injection, as determined by autoradiography. the prompt appearance of a mitotic wave and the relatively large number of mitoses suggest that the mitotic cells were derived from a hepatocyte sub-population arrested in the G2 phase. the injection of lead also stimulated a small increase in labeled hepatocytes within 6 hr. Analysis of grain counts gave no evidence for unscheduled DNA synthesis. the incremental labeled cells may have originated from a small fraction of the G1 population that was ready to enter the S phase without the usual pre-synthetic delay.  相似文献   

13.
The strong skin irritant cantharidin dissolved in benzene was applied to the back of hairless mice. Single cell suspensions of epidermal basal cells were obtained and flow microfluorometric measurements of cellular DNA content were made. Smears were made for autoradiography, and the [3H]TdR labelling index (LI) and mean grain count (MGC) were assessed up to 3 days after cantharidin application. Three successive peaks of cells with S phase DNA content accompanied by three LI peaks were observed. The first two peaks were follwed by peaks of cells in G2 phase, indicating that after the acute cell injury caused by cantharidin the cells traversed the cell cycle in partial synchrony through two subsequent cell cycles, each of 10–12 hr duration. During this phase of rapid proliferation the LI reached the proportion of cells in S phase, contrary to what is observed in untreated mouse epidermis, where the labelled cells contribute to about half the proportion of cells with S phase DNA content. The first two peaks of cells in S phase and LI coincided with an increased MGC, whereas the third peak was accompanied by a MGC significantly below control values. This indicates that this latter peak is due to a longer DNA synthesis time rather than to a partially synchronized and increased cell proliferation. The duration of the G1, S and G2 phases seems to be reduced initially in rapidly proliferating epidermis.  相似文献   

14.
Epidermal cell flux at the G1-S, S-G2 and G2-M transition was examined during the first 4 hr after injection of epidermis extract. the flux parameters were estimated by a combination of several methods. the G1-S and S-G2 transit rates were calculated on the basis of a double labelling technique with [3H]TdR, the G2-M flux by means of colcemid and the relative proportion of cells in the S or G2 phase by means of flow cytometry. All experiments were performed both in early morning and late evening, corresponding to maximum and minimum rates of epidermal cell proliferation in the hairless mouse. the epidermis extract inhibited the S-G and G2-M transit rates to the same degree, while the inhibition of cell flux at the G1-S transit was consistently stronger. In general, the inhibition of cell flux at the different transitions was most pronounced when the rate of cell proliferation was low and vice versa.  相似文献   

15.
A simple stochastic model has been developed to determine the cell cycle kinetics of the isoprenaline stimulated proliferative response in rat acinar cells. The response was measured experimentally, using 3H-TdR labelling of interphase cells and cumulative collections of mitotic cells with vincristine. The rise and fall of the fraction of labelled interphase cells and of metaphase cells is expressed by the product of the proliferative fraction and a difference of probability distributions. The probability statements of the model were formulated and then compared by an iterative fitting procedure to experimental data to obtain estimates of the model parameters. The model when fitted to the combined fraction labelled interphase (FLIW) and fraction metaphase (FMW,) waves gave a mean Gis transit time of 21-2 hr, mean Gis+ S transit time of 270 hr, and mean Gis+ S + G2 transit time of 35-8 hr for a single injection of isoprenaline, where Gis is the initiation to S phase time. When successive injections of isoprenaline were given at intervals of 24 and 28 hr the corresponding values after the third injection were 12-4 hr, 20-8 hr and 25-7 hr respectively. The variance of the Gis phase dropped from 18-1 to 1–3 while the other variances remained unchanged. The estimated proliferative fraction was 0–24 after a single injection of isoprenaline, and 0–31 after three injections of the drug. Independently determined values of the proliferative fraction, obtained from repeated 3H-TdR injections, were 0–21 and 0–36 respectively.  相似文献   

16.
The transit time distribution at various points in the cell cycle of synchronized Chinese hamster ovary cells was determined from the mitotic index, [3H]thymidine labeling index and increase in cell number monitored at regular intervals after mitotic selection. Variation in G1 transit time compared with that for the total cell cycle indicates that variation in cell cycle transit time occurs mainly during G1 phase. the cycloheximide (5.0 μg/ml) and actinomycin D (3.0 μg/ml) restriction points occur 0.2 and 1.7 hr prior to entry into S phase, respectively. the transit time distributions are further characterized by the moments of the distributions. the variance (2nd moment about the mean) of the transit time distribution at the actinomycin D restriction point is similar to the variance of the transit time distribution at the G1/S border, thus variation in cell cycle transit time originates earlier than 1.7 hr prior to entry into S phase (i.e., the first 3/4 of G1). If G1 transit time variability and cell cycle control are related, then the results presented here indicate that the major regulatory events do not occur during late G1 phase.  相似文献   

17.
CIRCADIAN RHYTHMS IN MOUSE EPIDERMAL BASAL CELL PROLIFERATION   总被引:2,自引:0,他引:2  
Several kinetic parameters of basal cell proliferation in hairless mouse epidermis were studied, and all parameters clearly showed circadian fluctuations during two successive 24 hr periods. Mitotic indices and the mitotic rate were studied in histological sections; the proportions of cells with S and G2 phase DNA content were measured by flow cytometry of isolated basal cells, and the [3H]TdR labelling indices and grain densities were determined by autoradiography in smears from basal cell suspensions. The influx and efflux of cells from each cell cycle phase were calculated from sinusoidal curves adapted to the cell kinetic findings and the phase durations were determined. A peak of cells in S phase was observed around midnight, and a cohort of partially synchronized cells passed from the S phase to the G2 phase and traversed the G2 phase and mitosis in the early morning. The fluctuations in the influx of cells into the S phase were small compared with the variations in efflux from the S phase and the flux through the subsequent cell cycle phases. The resulting delay in cell cycle traverse through S phase before midnight could well account for the accumulation of cells in S phase and, therefore, also the subsequent partial synchrony of cell cycle traverse through the G2 phase and mitosis. Circadian variations in the duration of the S phase, the G2 phase and mitosis were clearly demonstrated.  相似文献   

18.
Cell Synchrony Techniques. I. A Comparison of Methods   总被引:3,自引:0,他引:3  
Abstract Selected cell synchrony techniques, as applied to asynchronous populations of Chinese hamster ovary (CHO) cells, have been compared. Aliquots from the same culture of exponentially growing cells were synchronized using mitotic selection, mitotic selection and hydroxyurea block, centrifugal elutriation, or an EPICS V cell sorter. Sorting of cells was achieved after staining cells with Hoechst 33258. After synchronization by the various methods the relative distribution of cells in G1 S, or G2+ M phases of the cell cycle was determined by flow cytometry. Fractions of synchronized cells obtained from each method were replated and allowed to progress through a second cell cycle. Mitotic selection gave rise to relatively pure and unperturbed early G1 phase cells. While cell synchrony rapidly dispersed with time, cells progressed through the cell cycle in 12 hr. Sorting with the EPICS V on the modal G1 peak yielded a relatively pure but heterogeneous G1 population (i.e. early to late G1). Again, synchrony dispersed with time, but cell-cycle progression required 14 hr. With centrifugal elutriation, several different cell populations synchronized throughout the cell cycle could be rapidly obtained with a purity comparable to mitotic selection and cell sorting. It was concluded that, either alone or in combination with blocking agents such as hydroxyurea, elutriation and mitotic selection were both excellent methods for synchronizing CHO cells. Cell sorting exhibited limitations in sample size and time required for synchronizing CHO cells. Its major advantage would be its ability to isolate cell populations unique with respect to selected cellular parameters.  相似文献   

19.
Synchronized cells of the Harding Passey melanoma grown in culture were given a heat shock treatment of 44° C for 36 min. Thymidine incorporation was measured at frequent intervals after heat shock to determine the time of onset of the next DNA synthetic period. If the heat shock was given at the end of G1, the following S was delayed by 20 hr. Heating at other times in the cell cycle resulted in an even longer interval before the onset of S. the end of G1 was also the most resistant to hyperthermic killing and to the effect of heat on the magnitude of thymidine incorporation in the following S. Heating the cells a second time did not repeat the effect of the first treatment unless the second heat shock treatment was at a considerably higher temperature. Thus thermotolerance to heat shock killing also applies to cell-cycle delay.  相似文献   

20.
Resting cells in tumours present a major problem in cancer chemotherapy. In the plateau phase of growth of the murine JB-1 ascites tumour (i.e. 10 days after 2–5 × 106 cells i.p.) large fractions of non-cycling cells with G1 and G2 DNA content (Q1 and Q2 cells) are present, and the fate of these resting cells was investigated after treatment with l-β-d-arabinofuranosylcytosine (Ara-C). The experimental work consisted of growth curves, percentage of labelled mitoses curves after continuous labelling with 3H-TdR, and cytophotometric determination of single-cell DNA content in unlabelled tumour cells. Treatment with an i.p. single injection of Ara-C 200 mg/kg in the plateau JB-1 tumour resulted in a significant reduction in the number of tumour cells 1 and 2 days later as compared with untreated controls, while no difference in the number of tumour cells was observed after 3 days. In tumours prelabelled with 3H-TdR 24 hr before Ara-C treatment, a significant decrease in the percentage of labelled mitoses was observed 6–8 hr later followed by a return to the initial value after 12 hr, and a new pronounced fall from 20 hr after Ara-C. The second fall in the percentage of labelled mitoses disappeared when the labelling with 3H-TdR was continued also after Ara-C treatment. Cytophotometry of unlabelled tumour cells prelabelled for 24 hr with 3H-TdR before Ara-C treatment showed 20 hr after Ara-C a pronounced decrease in the fraction of Qt cells paralleled by an increase in the fraction of unlabelled cells with S DNA content. These results indicate recycling of resting cells first with G2 and later with Gx DNA content, which contribute to the regrowth of the tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号