首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular patterns of the oviduct epithelium from the Japanese quail were examined during maturation. The epithelium of a juvenile bird showed a jigsaw puzzle pattern consisting of a single, undifferentiated cell type. At the start of maturation, cells were rearranged into a pattern in which the length of boundaries between goblet type gland (G-) cells and ciliated (C-) cells (G-C boundaries) were maximized. At this stage, the surface area of G-cells was much smaller, but G-cells are more than 2 times more numerous than C-cells. Cells than gradually rearranged themselves into the checkerboard pattern through an increase in the proportion of C-cells and enlargement of the G-cells. At all times of maturation, the length of G-C boundaries was maximized. These observations strongly support the theory that the cellular pattern of the quail oviduct epithelium is spontaneously constructed by maximizing the length of boundaries between two different types of cells owing to the fact that theirs is the greatest adhesion capacity (Yamanaka and Honda, 1990).  相似文献   

2.
Baldwin KM  Hakim RS 《Tissue & cell》1991,23(3):411-422
The number of epithelial cells comprising larval midgut of the tobacco hornworm moth, Manduca sexta increases 200-fold in development from the first to the fifth instar. We have examined larvae periodically before and during molting to follow epithelial cell proliferation and differentiation. The midgut epithelium in Manduca sexta consists predominantly of columnar and goblet cells. These are arranged in a characteristic pattern with each goblet cell surrounded by a single layer of 4-6 columnar cells (Hakim et al., (1988)). While undifferentiated basal stem cells are infrequently seen in intermolt larvae, just prior to the period when external signs of molting are visible, their number increases and mitotic figures become common. Proliferation continues for several hours and then these stem cells differentiate following a pattern similar to that seen during embryogenesis (Hakim et al., (1988)). Here, however, the newly differentiating cells become intercalated among the mature differentiated cells already present in the epithelium. Since the pattern of individual goblet cells surrounded by a reticulum of columnar cells is maintained after the addition of new cells, the midgut epithelium of molting larvae appears to be a useful model for studying pattern formation in development.  相似文献   

3.
The spatial patterns of cell boundaries in a view of the apical surface of a dividing epithelium are explored by constructing a hypothetical cell pattern of an epithelium of dividing cells. The two elements specified in the hypothetical pattern are the orientation of division planes and the separation between the division planes in neighbouring cells. The orientations of division planes in one generation are all the same but are orthogonal to those in the preceding generation. The division-plane orientations follow in an orthogonal succession, as happens in early embryos. The division planes in neighbouring cells are offset. The contractions of division planes that would occur during cytokinesis distort existing boundaries creating various types of cell shapes. The patterns generated resemble cell patterns found in life. The hypothetical pattern is regenerative and shows how epithelial cell patterns where cells divide might arise. It has enabled the putative identification of sister cells and first cousins in the embryonic chick chorion.  相似文献   

4.
The epidermis of Eisenia is covered by a cuticle and rests on a basement lamella. The cuticle, which is resistant to a variety of enzymes, is composed of non-striated, bundles of probable collagen fibers that are orthogonally oriented and are embedded in a proteoglycan matrix. The basement lamella consists of striated collagen fibers with a 560 Å major periodicity. Proximity and morphology suggest that the epidermis may contribute to both the cuticle and the basement lamella — that is, the single tissue may synthesize at least two types of collagen. The epidermis is a pseudostratified epithelium containing three major cell types (columnar, basal and gland) and a rare fourth type with apical cilia. The esophagus is lined by a simple cuticulated epithelium composed predominantly of a single cell type, which resembles the epidermal columnar cell. Rare gland cells occur in the esophageal epithelium, but basal cells are lacking.  相似文献   

5.
A morphological study of the midgut and salivary glands of second and third instars of Gasterophilus intestinalis (De Geer) (Diptera: Oestridae) was conducted by light, scanning and transmission electron microscopy. The midgut is anteriorly delimited by a proventriculus, without caeca, and is composed of posterior foregut and anterior midgut tissue from which a double‐layered peritrophic matrix is produced. The midgut can be divided into anterior, median and posterior regions on the basis of the structural and physiological variations of the columnar cells which occur along its length. Two other types of cell were identified: regenerative cells scattered throughout the columnar cells, and, more rarely, endocrine cells of two structural types (closed and open). Different secretion mechanisms (merocrine, apocrine and microapocrine) occur along the midgut epithelium. Abundant microorganisms are observed in the endoperitrophic space of the anterior midgut. The origin and nature of these microorganisms remain unknown. No structural differences are observed between the second and third instar midguts. The salivary glands of G. intestinalis second and third instars consist of a pair of elongated tubular structures connected to efferent ducts which unite to form a single deferent duct linked dorsally to the pharynx. Several intermediate cells, without cuticle, make the junction with the salivary gland epithelium layer. Cytological characteristics of the gland epithelial cells demonstrate high cellular activity and some structural variations are noticed between the two larval stages.  相似文献   

6.
A morphological basis for transcellular potassium transport in the midgut of the mature fifth instar larvae of Hyalophora cecropia has been established through studies with the light and electron microscopes. The single-layered epithelium consists of two distinct cell types, the columnar cell and the goblet cell. No regenerative cells are present. Both columnar and goblet cells rest on a well developed basement lamina. The basal portion of the columnar cell is incompletely divided into compartments by deep infoldings of the plasma membrane, whereas the apical end consists of numerous cytoplasmic projections, each of which is covered with a fine fuzzy or filamentous material. The cytoplasm of this cell contains large amounts of rough endoplasmic reticulum, microtubules, and mitochondria. In the basal region of the cell the mitochondria are oriented parallel to the long axes of the folded plasma-lemma, but in the intermediate and apical portions they are randomly scattered within the cytoplasmic matrix. Compared to the columnar cell, the goblet cell has relatively little endoplasmic reticulum. On the other hand, the plications of the plasma membrane of the goblet cell greatly exceed those of the columnar cell. One can distinguish at least four characteristic types of folding: (a) basal podocytelike extensions, (b) lateral evaginations, (c) apical microvilli, and (d) specialized cytoplasmic projections which line the goblet chamber. Apically, the projections are large and branch to form villus-like units, whereas in the major portion of the cavity each projection appears to contain an elongate mitochondrion. Junctional complexes of similar kind and position appear between neighboring columnar cells and between adjacent columnar and goblet cells as follows: a zonula adherens is found near the luminal surface and is followed by one or more zonulae occludentes. The morphological data obtained in this study and the physiological information on ion transport through the midgut epithelium have encouraged us to suggest that the goblet cell may be the principal unit of active potassium transport from the hemolymph to the lumen of the midgut. We have postulated that ion accumulation by mitochondria in close association with plicated plasma membranes may play a role in the active movement of potassium across the midgut.  相似文献   

7.
The urinary bladder of a euryhaline marine teleost, Gillichthys mirabilis , was studied by light and electron microscopy. An enlargement of the mesonephric ducts forms a sac-like structure lined by an epithelium composed of two major cell types. Tall columnar cells continuous with the duct epithelium are characterized by a large number of mitochondria and well-developed rough and smooth endoplasmic reticulum. Tubular smooth endoplasmic reticulum is more developed in the basal cytoplasm and often opens into the extracellular space. A second cell type, the low cuboidal cells, forming most of the bladder epithelium, has fewer mitochondria. Basal cells are rarely observed and mucous cells are absent.
In seawater Gillichthys , cells of both types are separated by narrow intercellular spaces. In 5% seawater fish, the columnar cells show functional activation, as evidenced by an increased number of mitochondria and more extensive tubular smooth endoplasmic reticulum. No such changes were noted in the cuboidal cells; however, the lateral intercellular spaces are dilated probably owing to hypotonicity of the urine in the hypotonic environment. A functional difference between the two cell types is strongly suggested. The columnar cells may be responsible for active sodium uptake in hypotonic seawater environments.  相似文献   

8.
9.
The histology of the digestive tract of the amberjack ( Seriola dumerili , Risso) was studied using light and scanning electron microscopy. The anterior oesophagus mucosa displays primary and secondary folds lined with a stratified squamous epithelium with fingerprint-like microridges which is substituted, on the top of the oesogaster folds, by a simple columnar epithelium with short microvilli. Only primary folds are present in the stomach. The anterior portion is rich in simple tubular glands, whereas the oesogaster and the pyloric region are devoid of them. Pyloric caeca and anterior and middle intestine mucosa display the same pattern of folding. The dominant cell type is the enterocyte, which exhibits larger and thinner microvilli in the caeca than in the intestine. The columnar epithelium of the rectum is replaced, in the anal sphincter, by a stratified flattened epithelium. Goblet cells are numerous throughout the whole length of the tract with the exception of the initial part of the oesophagus, the oesogaster, the stomach and the anal sphincter. Mucosubstances have been shown to vary in the different regions of the gut: acid mucines are found in the oesophagus, pyloric stomach, caeca, intestine and rectum, whereas neutral mucosubstances dominate in the anterior portion of the stomach. The muscularis is well developed throughout the length of the tract: two layers of striated muscle at the oesophageal level; two layers of smooth muscle in the stomach wall and three at the intestinal level.  相似文献   

10.
OBJECTIVE: To compare the cytomorphologic features of urine obtained from two different kinds of urinary diversions constructed after total bladder resection. STUDY DESIGN: The smears of urine from 11 ileal conduits and 6 Indiana pouches were evaluated. All patients underwent total bladder resection due to transitional cell carcinoma (TCC) or other kinds of cancer before urine diversion. RESULTS: The cytologic features of Indiana pouch urine include degenerated, small, round cells without columnar cells derived from intestinal epithelium. In ileal conduit urine, well-preserved columnar cells and degenerated, small, round cells were frequently observed. The columnar cells in ileal conduit urine exhibited cytologic features that should be distinguished from TCC cells. CONCLUSION: The method of reconstructing the urinary tract is important in urine cytology from urine diversions because the cytomorphologic features of urine are different between the two kinds of urinary diversions. Since columnar cells in ileal conduit urine might lead to misdiagnosis as TCC, special consideration is required to examine ileal conduit urine.  相似文献   

11.
Somatostatin 14, prolactin, atrial natriuretic peptide, galanin and urotensin II were found using immunohistochemistry in the urinary bladders of the Antarctic fishes Trematomus bernacchii (Nototheniidae) and Chionodraco hamatus (Channichthyidae) caught in the Ross Sea. The urinary bladders of the two species showed a different histology in the epithelial layer. In T. bernacchii the epithelium comprises a single type of columnar cells, while in C. hamatus the columnar cells are restricted to the ventral portion of the bladder, and the dorso-lateral region is lined by cuboidal cells. No difference in the intensity of the immunostaining was observed in the two cell types; the only variation was a different distribution of the immunoreactions, which were present in the whole cytoplasm in the cuboidal cells and restricted to the apical and/or basal portion of the columnar cells. Accepted: 1 November 1998  相似文献   

12.
The hepatopancreatic caeca of the freshwater amphipod Gummarus minus are four tapered blind pouches lined with a simple columnar epithelium bearing an apical surface of regular microvilli and resting on a basement membrane. This epithelium is enclosed by a tonic, striated muscularis. Each caecum consists of three regions. The distal zone is formed of embryonic cells having a high nuclear to cytoplasmic ratio and giving rise to the other cell types. The second or differentiation zone consists of regular tall columnar cells of two morphological types:(1) light staining R-cells which have a large number of lipid droplets and few Golgi bodies; (2) basophilic F-cells which have numerous distended Golgi bodies. The more proximal secretory zone forms the majority of each diverticulum. This mature zone is formed from R-cells and large, basophilic, vacuolated B-cells which differentiate from F-cells. The secretory cell sequence appears to be E-cell — F-cell — B-cell with secretion being apocrine in nature. The exact relationship of Rcells to the other cell types is questionable, but the R-, F - and B-cells all appear to be able to absorb and store nutrients. Within the Malacostraca the hepatopancreatic epithelium of Amphipoda more closely approximates that of Decapoda than that of the Isopoda.  相似文献   

13.
The alimentary tract of the ammocoete of the lamprey, Petromyzon marinus L., is divisible into three morphologically distinct regions: the oesophagus, the anterior intestine, and the posterior intestine. The epithelium of the oesophagus possesses mucous, ciliated, and columnar cells and appears to be specialized for movement of food particles. The epithelium of the anterior intestine possesses secretory cells with numerous zymogen granules, ciliated cells, and columnar-absorptive cells. Although some absorption occurs in the anterior intestine, the main function of this region seems to be the release of digestive enzymes and the continued movement of food particles. The epithelium of the posterior intestine is entirely comprised of columnar absorptive cells, namely tall (light and dark) columnar and low columnar, and the primary function of this region is one of absorption. The epithelium of the hindgut resembles that of the archinephric duct (Youson and McMillan, '71). The morphology of the alimentary tract of ammocoetes suggests that some differentiation and renewal of cell types may occur in the epithelium of the three regions. Comparison of the alimentary tract of larval lamprey with that of other vertebrates indicates that the gut of the ammocoete represents a less specialized level of vertebrate development.  相似文献   

14.
Summary Two general classes of glycoproteins have been identified in the colonic epithelial cells of New Zealand white rabbits. Each is associated with an ultrastructurally distinct secretory cell. The first of these classes is found in cells, termed vesiculated columnar cells, characterized by electron-translucent vesicles, a small rough endoplasmic reticulum-Golgi complex and prominent microvilli. The glycoproteins of the vesiculated cells contain abundantO-sulphate ester, sialic acids with ester substituents at positions C-8 or C-9 (or with two or three side chain substituents) and neutral sugars withvicinal diols whose periodate oxidation is prevented by anO-acyl ester substituent(s). The second class of glycoproteins occurs in goblet cells characterized by electron-dense vesicles, an abundant rough endoplasmic reticulum, a well-developed Golgi apparatus and few, if any, microvilli. Goblet cells along the entire length of the crypts contain neutral sugars with periodate-oxidisablevicinal diols and a ferriferricyanide-reactive component. Cells in the upper halves of the crypts also contain components that are sulphated, Schiff-reactive and acid-fast. In the lower halves of the crypts, the goblet cells contain smaller quantities of the above components plus sialic acids, some of which possibly have anO-acyl substituent located at position C-8 or C-9 (or which have two or three side chainO-acyl substituents). It is suggested that the function of the glycoproteins from the vesiculated columnar cells is protective and that from the goblet cells is lubricative.  相似文献   

15.
While the larval midgut of Manduca sexta has been intensively studied as a model for ion transport, the developmental origins of this organ are poorly understood. In our study we have used light and electron microscopy to investigate the process of midgut epithelial cell differentiation in the embryo. Our studies were confined to the period between 56 and 95 hr of embryonic development (hatching is at 101 hr at 25 degrees C), since preliminary studies indicated that all morphologically visible differentiation of the midgut epithelium occurs during this time. At 56 hr the midgut epithelium is organized into a ragged pseudostratified epithelium. Over the next 10 hr, the embryo molts and the midgut epithelium takes on a distinctive character in which the future goblet and columnar cells can be identified. With further differentiation, closed vesicles in the goblet cells expand and subsequently communicate to the outside by way of a valve. The columnar cells form numerous microvilli on their apical surfaces that extend over the goblet cells. Both cell types form basal folds from a series of plasmalemmal invaginations. Differentiation occurs concurrent with a six-fold elongation of these cells.  相似文献   

16.
Summary The ultimobranchial gland of the laying chicken consists of groups of C cells interspersed among a collection of intercommunicating follicles and ducts of variable size and shape. The epithelium lining this system ranges from squamous to columnar and includes stratified squamous and pseudostratified columnar elements. Four cell types are distinguished in this epithelium: F, mucous, C, and basal cells. F cells show microvilli and microfilaments. Pinocytotic activity and images of fusion of coated vesicles with the plasma membrane are evident. The rough-surfaced endoplasmic reticulum (RER) and the Golgi complex are moderately developed. Dense bodies are encountered apically in some cells. Mucous cells possess microvilli and secretory material in the typical form of partially fused droplets. C cells contain secretory granules and are invariably separated from the follicular lumen by other cell types. The smaller, pyramidal basal cells contain filaments, RER, small Golgi complexes, free ribosomes and hemidesmosomes. The lumina contain flocculent or granular material, cellular debris and desquamated cells. Morphological evidence demonstrates that features of the pharyngeal epithelium are retained and that the majority of the cell types, with the exception of C cells, are presumably nonendocrine.Supported by grant HES 75-09030 from the National Science FoundationThe technical assistance of Quan Nguyen is gratefully acknowledged  相似文献   

17.
In certain regions of the body, transition zones exist where stratified squamous epithelia directly abut against other types of epithelia. Certain transition zones are especially prone to tumorigenesis an example being the anorectal junction, although the reason for this is not known. One possibility is that the abrupt transition of the simple columnar epithelium of the colon to the stratified squamous epithelium of the proximal portion of the anal canal may contain a unique stem cell niche. We investigated whether the anorectal region contained cells with stem cell properties relative to the adjacent epithelium. We utilized a tetracycline-regulatable histone H2B-GFP transgenic mice model, previously used to identify hair follicle stem cells, to fluorescently label slow-cycling anal epithelial cells (e.g. prospective stem cells) in combination with a panel of putative stem cell markers. We identified a population of long-term GFP label-retaining cells concentrated at the junction between the anal canal and the rectum. These cells are BrdU-retaining cells and expressed the stem cell marker CD34. Moreover, tracking the fate of the anal label-retaining cells in vivo revealed that the slow-cycling cells only gave rise to progeny of the anal epithelium. In conclusion, we identified a unique population of cells at the anorectal junction which can be separated from the other basal anal epithelial cells based upon the expression of the stem cell marker CD34 and integrin a6, and thus represent a putative anal stem cell population.  相似文献   

18.
Sea urchins are excellent models to elucidate metamorphic phenomena of echinoderms. However, little attention has been paid to the way that their organ resorption is accomplished by programmed cell death (PCD) and related cellular processes. We have used cytohistochemistry and transmission electron microscopy to study arm resorption in competent larvae of metamorphosing sea urchins, Hemicentrotus pulcherrimus, induced to metamorphose by L-glutamine treatment. The results show that: (1) columnar epithelial cells, which are constituents of the ciliary band, undergo PCD in an overlapping fashion with apoptosis and autophagic cell death; (2) squamous epithelial cells, which are distributed between the two arrays of the ciliary band, display a type of PCD distinct from that of columnar epithelial cells, i.e., a cytoplasmic type of non-lysosomal vacuolated cell death; (3) epithelial integrity is preserved even when PCD occurs in constituent cells of the epithelium; (4) secondary mesenchyme cells, probably blastocoelar cells, contribute to the elimination of dying epithelial cells; (5) nerve cells have a delayed initiation of PCD. Taken together, our data indicate that arm resorption in sea urchins proceeds concomitantly with various types of PCD followed by heterophagic elimination, but that epithelial organization is preserved during metamorphosis.This investigation was supported in part by a Keio University special grant-in-aid for innovative collaborative research projects.  相似文献   

19.
The bronchial-associated lymphoid tissue (BALT) is a lymphoepithelial organ, related to the immune defence of the lung and to alveolar clearance, which changes size in certain states of disease. Changes in the size of BALT were quantified and compared, and Spearman's test was used to test the relation with the bronchial epithelium. A total of 180 rats were used, divided into 6 groups of 30 as follows: 1) untreated controls; 2) exposed to cigarette smoke for two months; 3) treated with anti-pulmonary serum three doses daily over five days; 4) exposed to cigarette smoke and treated with anti-pulmonary serum; 5) sensitized with bovine albumin and exposed to an environment containing this antigen for two months; 6) exposed to cigarette smoke and bovine albumin. The lungs were processed for histological study, and were stained with the PAS-Alcian blue method. The main left bronchi BALT was studied, and the following were quantified: Lymphatic area (LA), as a percentage of the lung surface occupied by BALT; the flat epithelium (FEp), as the length of bronchial epithelium anatomically related to LA, whose cells tend to adopt a flat shape; the Contact epithelium (Cep), as the length of bronchial epithelium which is in direct contact with the LA. A percentage count of bronchial cells was made in the following classifications: globet cells; globet cells stained with the PAS-Alcian blue method; flat cells; lymphoepithelium cells; columnar cells; and bronchial epithelium cells excluding the above two cell types.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The distribution and type of cytokeratins present in the normal human epithelia of the nasopharynx, oropharynx, tongue, palatine tonsil, epiglottis, vocal cord, and laryngeal ventricle were studied using immunohistochemical techniques and by gel electrophoresis of cytoskeletal proteins microdissected from frozen tissues. Noncornifying stratified epithelia covering the oropharynx, tongue, surface of the palatine tonsil, pharyngeal surface of the epiglottis, and vocal cord were all found to contain cytokeratins nos. 4, 5, 6, 13, 14, and 15, together with minor amounts of cytokeratin no. 19, i.e., a pattern similar to that previously reported for esophageal epithelium. The immunohistochemical reaction with KA4, an antibody specific for cytokeratins nos. 14, 15, 16, and 19, revealed reactivity confined to the basal epithelial cells of the tongue, oropharynx, pharyngeal epiglottis, and two out of five samples of vocal cords. This same antibody reacted with the entire thickness of three out of the five true vocal cords which were shown by gel electrophoresis to also contain cytokeratins nos. 16 and 17. Gel electrophoresis revealed that the pseudostratified columnar epithelium covering the laryngeal ventricle was more complex, in that it contained cytokeratins nos. 5, 13, 14, 15, and 17, which are typical of stratified epithelia, as well as cytokeratins nos. 7, 8, 18, and 19, which are characteristic of simple epithelia. This pattern is similar to that found in bronchial epithelium. The laryngeal surface of the epiglottis exhibited cytokeratins nos. 4, 5, 7, 8, 13, 14, 15, 17, 18, and 19, i.e., a pattern combining features of both esophageal- and bronchial-type epithelia. The reaction of these epithelia containing columnar cells with antibody RGE-53, which is specific for cytokeratin no. 18, revealed a staining reaction confined to the superficial columnar cells, whereas KA1 stained only the basal cells of these epithelia. The results of our study make it possible to distinguish two types of noncornifying stratified squamous epithelium, namely the 'esophageal type' which covers the tongue, oropharynx, and pharyngeal surface of the epiglottis, and another type which overlies the vocal cords and the transitional zone between the pharyngeal and laryngeal surfaces of the epiglottis. Furthermore, there appear to be variants of pseudostratified columnar epithelium, i.e., the usual bronchial type lining the laryngeal ventricle, and a type with a thicker subcolumnar cell compartment that is found on the laryngeal surface of the epiglottis. The patterns of expression of cytokeratins in the respiratory tract are compared with those of other epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号