首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Complexity of gene regulatory network has been considered to be responsible for diversity of cells. Different types of cells, characterized by the expression patterns of genes, are produced in early development through the dynamics of gene activities based on the regulatory network. However, very little is known about relationship between the structure of regulatory networks and the dynamics of gene activities. In this paper, I introduce new idea of “steady-state compatibility” by which the diversity of possible gene activities can be determined from the topological structure of gene regulatory networks. The basic premise is very simple: the activity of a gene should be a function of the controlling genes. Thus, a gene should always show unique expression activity if the activities of the controlling genes are unique. Based on this, the maximum possible diversity of steady states is determined using only information regarding regulatory linkages without knowing the regulatory functions of genes. By extending this idea, some general properties were derived. For example, multiple loop structures in regulatory networks are necessary for increasing the diversity of gene activity. On the other hand, connected multiple loops sharing the same genes do not increase the diversity. The method was applied to a gene regulatory network responsible for early development in a sea urchin species. A set of important genes responsible for generating diversities of gene activities was derived based on the concept of compatibility of steady states.  相似文献   

3.
4.
5.
Many genome-scale studies in molecular biology deliver results in the form of a ranked list of gene names, accordingly to some scoring method. There is always the question how many top-ranked genes to consider for further analysis, for example, in order creating a diagnostic or predictive gene signature for a disease. This question is usually approached from a statistical point of view, without considering any biological properties of top-ranked genes or how they are related to each other functionally. Here we suggest a new method for selecting a number of genes in a ranked gene list such that this set forms the Optimally Functionally Enriched Network (OFTEN), formed by known physical interactions between genes or their products. The method allows associating a network with the gene list, providing easier interpretation of the results and classifying the genes or proteins accordingly to their position in the resulting network. We demonstrate the method on four breast cancer datasets and show that 1) the resulting gene signatures are more reproducible from one dataset to another compared to standard statistical procedures and 2) the overlap of these signatures has significant prognostic potential. The method is implemented in BiNoM Cytoscape plugin (http://binom.curie.fr).  相似文献   

6.
Gene network analysis requires computationally based models which represent the functional architecture of regulatory interactions, and which provide directly testable predictions. The type of model that is useful is constrained by the particular features of developmentally active cis-regulatory systems. These systems function by processing diverse regulatory inputs, generating novel regulatory outputs. A computational model which explicitly accommodates this basic concept was developed earlier for the cis-regulatory system of the endo16 gene of the sea urchin. This model represents the genetically mandated logic functions that the system executes, but also shows how time-varying kinetic inputs are processed in different circumstances into particular kinetic outputs. The same basic design features can be utilized to construct models that connect the large number of cis-regulatory elements constituting developmental gene networks. The ultimate aim of the network models discussed here is to represent the regulatory relationships among the genomic control systems of the genes in the network, and to state their functional meaning. The target site sequences of the cis-regulatory elements of these genes constitute the physical basis of the network architecture. Useful models for developmental regulatory networks must represent the genetic logic by which the system operates, but must also be capable of explaining the real time dynamics of cis-regulatory response as kinetic input and output data become available. Most importantly, however, such models must display in a direct and transparent manner fundamental network design features such as intra- and intercellular feedback circuitry; the sources of parallel inputs into each cis-regulatory element; gene battery organization; and use of repressive spatial inputs in specification and boundary formation. Successful network models lead to direct tests of key architectural features by targeted cis-regulatory analysis.  相似文献   

7.
8.
9.
10.
The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover complex gene interactions or to distinguish between direct and indirect downstream regulations of the differentially-expressed genes. As an alternative, genetical genomics study has been proposed to treat naturally-occurring genetic variants as potential perturbants of gene regulatory system and to recover gene networks via analysis of population gene-expression and genotype data. Despite many advantages of genetical genomics data analysis, the computational challenge that the effects of multifactorial genetic perturbations should be decoded simultaneously from data has prevented a widespread application of genetical genomics analysis. In this article, we propose a statistical framework for learning gene networks that overcomes the limitations of experimental perturbation methods and addresses the challenges of genetical genomics analysis. We introduce a new statistical model, called a sparse conditional Gaussian graphical model, and describe an efficient learning algorithm that simultaneously decodes the perturbations of gene regulatory system by a large number of SNPs to identify a gene network along with expression quantitative trait loci (eQTLs) that perturb this network. While our statistical model captures direct genetic perturbations of gene network, by performing inference on the probabilistic graphical model, we obtain detailed characterizations of how the direct SNP perturbation effects propagate through the gene network to perturb other genes indirectly. We demonstrate our statistical method using HapMap-simulated and yeast eQTL datasets. In particular, the yeast gene network identified computationally by our method under SNP perturbations is well supported by the results from experimental perturbation studies related to DNA replication stress response.  相似文献   

11.
12.

Background

MicroRNAs (miRNAs) are a class of endogenous small regulatory RNAs. Identifications of the dys-regulated or perturbed miRNAs and their key target genes are important for understanding the regulatory networks associated with the studied cellular processes. Several computational methods have been developed to infer the perturbed miRNA regulatory networks by integrating genome-wide gene expression data and sequence-based miRNA-target predictions. However, most of them only use the expression information of the miRNA direct targets, rarely considering the secondary effects of miRNA perturbation on the global gene regulatory networks.

Results

We proposed a network propagation based method to infer the perturbed miRNAs and their key target genes by integrating gene expressions and global gene regulatory network information. The method used random walk with restart in gene regulatory networks to model the network effects of the miRNA perturbation. Then, it evaluated the significance of the correlation between the network effects of the miRNA perturbation and the gene differential expression levels with a forward searching strategy. Results show that our method outperformed several compared methods in rediscovering the experimentally perturbed miRNAs in cancer cell lines. Then, we applied it on a gene expression dataset of colorectal cancer clinical patient samples and inferred the perturbed miRNA regulatory networks of colorectal cancer, including several known oncogenic or tumor-suppressive miRNAs, such as miR-17, miR-26 and miR-145.

Conclusions

Our network propagation based method takes advantage of the network effect of the miRNA perturbation on its target genes. It is a useful approach to infer the perturbed miRNAs and their key target genes associated with the studied biological processes using gene expression data.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-255) contains supplementary material, which is available to authorized users.  相似文献   

13.
Cell lineage commitment and differentiation are governed by a complex gene regulatory network. Disruption of these processes by inappropriate regulatory signals and by mutational rewiring of the network can lead to tumorigenesis. Cancer cells often exhibit immature or embryonic traits and dysregulated developmental genes can act as oncogenes. However, the prevailing paradigm of somatic evolution and multi-step tumorigenesis, while useful in many instances, offers no logically coherent reason for why oncogenesis recapitulates ontogenesis. The formal concept of “cancer attractors”, derived from an integrative, complex systems approach to gene regulatory network may provide a natural explanation. Here we present the theory of attractors in gene network dynamics and review the concept of cell types as attractors. We argue that cancer cells are trapped in abnormal attractors and discuss this concept in the light of recent ideas in cancer biology, including cancer genomics and cancer stem cells, as well as the implications for differentiation therapy.  相似文献   

14.
Systems-oriented genetic approaches that incorporate gene expression and genotype data are valuable in the quest for genetic regulatory loci underlying complex traits. Gene coexpression network analysis lends itself to identification of entire groups of differentially regulated genes—a highly relevant endeavor in finding the underpinnings of complex traits that are, by definition, polygenic in nature. Here we describe one such approach based on liver gene expression and genotype data from an F2 mouse intercross utilizing weighted gene coexpression network analysis (WGCNA) of gene expression data to identify physiologically relevant modules. We describe two strategies: single-network analysis and differential network analysis. Single-network analysis reveals the presence of a physiologically interesting module that can be found in two distinct mouse crosses. Module quantitative trait loci (mQTLs) that perturb this module were discovered. In addition, we report a list of genetic drivers for this module. Differential network analysis reveals differences in connectivity and module structure between two networks based on the liver expression data of lean and obese mice. Functional annotation of these genes suggests a biological pathway involving epidermal growth factor (EGF). Our results demonstrate the utility of WGCNA in identifying genetic drivers and in finding genetic pathways represented by gene modules. These examples provide evidence that integration of network properties may well help chart the path across the gene–trait chasm. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Tova F. Fuller, Anatole Ghazalpour contributed equally to this work.  相似文献   

15.
The primary goal of this article is to infer genetic interactions based on gene expression data. A new method for multiorganism Bayesian gene network estimation is presented based on multitask learning. When the input datasets are sparse, as is the case in microarray gene expression data, it becomes difficult to separate random correlations from true correlations that would lead to actual edges when modeling the gene interactions as a Bayesian network. Multitask learning takes advantage of the similarity between related tasks, in order to construct a more accurate model of the underlying relationships represented by the Bayesian networks. The proposed method is tested on synthetic data to illustrate its validity. Then it is iteratively applied on real gene expression data to learn the genetic regulatory networks of two organisms with homologous genes.  相似文献   

16.
17.
18.
19.
TetR家族调控链霉菌次级代谢的机制   总被引:1,自引:1,他引:0  
韩晓伟  沈月毛 《微生物学通报》2013,40(10):1831-1846
  相似文献   

20.
TH Chueh  HH Lu 《PloS one》2012,7(8):e42095
One great challenge of genomic research is to efficiently and accurately identify complex gene regulatory networks. The development of high-throughput technologies provides numerous experimental data such as DNA sequences, protein sequence, and RNA expression profiles makes it possible to study interactions and regulations among genes or other substance in an organism. However, it is crucial to make inference of genetic regulatory networks from gene expression profiles and protein interaction data for systems biology. This study will develop a new approach to reconstruct time delay Boolean networks as a tool for exploring biological pathways. In the inference strategy, we will compare all pairs of input genes in those basic relationships by their corresponding [Formula: see text]-scores for every output gene. Then, we will combine those consistent relationships to reveal the most probable relationship and reconstruct the genetic network. Specifically, we will prove that [Formula: see text] state transition pairs are sufficient and necessary to reconstruct the time delay Boolean network of [Formula: see text] nodes with high accuracy if the number of input genes to each gene is bounded. We also have implemented this method on simulated and empirical yeast gene expression data sets. The test results show that this proposed method is extensible for realistic networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号