首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer’s disease (AD) is the most common form of dementia. Inhibition of BChE might be a useful therapeutic target for AD. A new series of Carbazole-Benzyl Pyridine derivatives were designed synthesized and evaluated as butyrylcholinesterase (BChE) inhibitors. In vitro assay revealed that all of the derivatives had selective and potent anti- BChE activities. 3-((9H-Carbazol-9-yl)methyl)-1-(4-chlorobenzyl)pyridin-1-ium chloride (compound 8f) had the most potent anti-BChE activity (IC50 value?=?0.073?μM), the highest BChE selectivity and mixed-type inhibition. Docking study revealed that 8f interacted with the peripheral site, the choline binding site, catalytic site and the acyl pocket of BChE. Physicochemical properties were accurate to Lipinski's rule. In addition, compound 8f demonstrated neuroprotective activity at 10?µM. This compound could also inhibit AChE-induced and self-induced Aβ peptide aggregation at concentration of 100?µM and 10?µM respectively. The in-vivo study showed that compound 8f in 10?mg/kg increased the time spent in target quadrant in the probe day and decreased mean training period scape latency in rats. All results suggest that new sets of potent selective inhibitors of BChE have a therapeutic potential for the treatment of AD.  相似文献   

2.
Abstract

Brain butyrylcholinesterase (BChE) is an attractive target for drugs designed for the treatment of Alzheimer’s disease (AD) in its advanced stages. It also potentially represents a biomarker for progression of this disease. Based on the crystal structure of previously described highly potent, reversible, and selective BChE inhibitors, we have developed the fluorescent probes that are selective towards human BChE. The most promising probes also maintain their inhibition of BChE in the low nanomolar range with high selectivity over acetylcholinesterase. Kinetic studies of probes reveal a reversible mixed inhibition mechanism, with binding of these fluorescent probes to both the free and acylated enzyme. Probes show environment-sensitive emission, and additionally, one of them also shows significant enhancement of fluorescence intensity upon binding to the active site of BChE. Finally, the crystal structures of probes in complex with human BChE are reported, which offer an excellent base for further development of this library of compounds.  相似文献   

3.
BChE (butyrylcholinesterase) protects the cholinergic nervous system from organophosphorus nerve agents by scavenging these toxins. Recombinant human BChE produced from transgenic goat to treat nerve agent intoxication is currently under development. The therapeutic potential of BChE relies on its ability to stay in the circulation for a prolonged period, which in turn depends on maintaining tetrameric quaternary configuration. Native human plasma BChE consists of 98% tetramers and has a half-life (t((1/2))) of 11-14 days. BChE in the neuromuscular junctions and the central nervous system is anchored to membranes through interactions with ColQ (AChE-associated collagen tail protein) and PRiMA (proline-rich membrane anchor) proteins containing proline-rich domains. BChE prepared in cell culture is primarily monomeric, unless expressed in the presence of proline-rich peptides. We hypothesized that a poly-proline peptide is an intrinsic component of soluble plasma BChE tetramers, just as it is for membrane-bound BChE. We found that a series of proline-rich peptides was released from denatured human and horse plasma BChE. Eight peptides, with masses from 2072 to 2878 Da, were purified by HPLC and sequenced by electrospray ionization tandem MS and Edman degradation. All peptides derived from the same proline-rich core sequence PSPPLPPPPPPPPPPPPPPPPPPPPLP (mass 2663 Da) but varied in length at their N- and C-termini. The source of these peptides was identified through database searching as RAPH1 [Ras-associated and PH domains (pleckstrin homology domains)-containing protein 1; lamellipodin, gi:82581557]. A proline-rich peptide of 17 amino acids derived from lamellipodin drove the assembly of human BChE secreted from CHO (Chinese-hamster ovary) cells into tetramers. We propose that the proline-rich peptides organize the 4 subunits of BChE into a 340 kDa tetramer, by interacting with the C-terminal BChE tetramerization domain.  相似文献   

4.
Classical plasma butyrylcholinesterase (BChE) purification involves dialysis and multiple steps of chromatography. We describe a procainamide affinity gel purification scheme that takes 15-30min to purify BChE from 1ml plasma. The method uses a microfuge spin column to build a 0.2ml procainamide affinity column. The eluted BChE contains 3-4mug of 500-fold purified BChE, free from 99% of contaminating plasma proteins. The BChE was further purified by gel electrophoresis. Tryptic peptides from the BChE containing gel electrophoresis band were prepared by in-gel digestion, separated by reverse phase liquid chromatography and identified by mass spectrometry. The 29 residue active site tryptic peptide labeled with the nerve agents soman or sarin was identified.  相似文献   

5.
The inheritance of the apolipoprotein E4 (APOE4) allele has been shown to increase the plasma cholesterol level, but little information is as concerns the association of the APOE genotype and hyperlipidaemia and the activities of two serum enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Blood samples from 55 type IIb hyperlipidaemic, non-demented patients and 55 age- and sex-matched controls were therefore examined in this pilot study. A significantly increased BChE activity was found in the serum of type IIb hyperlipidaemic patients, but the AChE activity did not differ significantly as compared with that in the control group. The APOE4 allele was significantly overrepresented among the hyperlipidaemic probands, but neither serum cholinesterase activity was affected by the dosage of the APOE4 gene. Our results point to a possible association between an abnormal lipid metabolism and the BChE activity and might have implications as regards the pathomechanism of both Alzheimer's and vascular dementias and the cholinesterase inhibitor therapy of dementing disorders.  相似文献   

6.
A recent study has linked the butyrylcholinesterase (BChE) K-variant and the apolipoprotein epsilon4 isoform to late-onset Alzheimer's disease. These findings have been controversial and have led us to examine the differences between wild-type and K-variant BChE in enzyme activity, protein stability, and quaternary structure. J-variant BChE (E497V/A539T) was also studied because it is associated with the K-variant mutation. The K-variant mutation (A539T) is located in the C-terminal tetramerization domain. Wild-type, K-variant, and J-variant BChE were expressed in Chinese hamster ovary cells and purified. The purified enzymes had similar binding affinity (Km) values and catalytic rates for butyrylthiocholine and benzoylcholine. In pulse-chase studies the K-variant, J-variant, and wildtype BChE were degraded rapidly within the cell, with a half-time of approximately 1.5 h. Less than 5% of the intracellular BChE was exported. The C-terminal peptide containing the K-variant mutation interacted with itself as strongly as did the wild-type peptide in the yeast two-hybrid system. Both K-variant and wild-type BChE assembled into tetramers in the presence of poly-L-proline or the proline-rich attachment domain of the collagen tail. The native K-variant BChE in serum showed the same proportion of tetramers as the native serum wild-type BChE. We conclude that the K-variant BChE is similar to wild-type BChE in enzyme activity, protein turnover, and tetramer formation.  相似文献   

7.
Stereoselectivity of reversible inhibition of butyrylcholinesterase (BChE; EC 3.1.1.8) by optically pure ethopropazine [10-(2-diethylaminopropyl)phenothiazine hydrochloride] enantiomers and racemate was studied with acetylthiocholine (0.002–250 mM) as substrate. Molecular modelling resulted in the reaction between BChE and ethopropazine starting with the binding of ethopropazine to the enzyme peripheral anionic site. In the next step ethopropazine ‘slides down’ the enzyme gorge, resulting in interaction of the three rings of ethopropazine through π–π interactions with W82 in BChE. Inhibition mechanism was interpreted according to three kinetic models: A, B and C. The models differ in the type and number of enzyme–substrate, enzyme–inhibitor and enzyme–substrate–inhibitor complexes, i.e., presence of the Michaelis complex and/or acetylated BChE. Although, all three models reproduced well the BChE activity in absence of ethopropazine, model A was poor in describing inhibition with ethopropazine, while models B and C were better, especially for substrate concentrations above 0.2 mM. However model C was singled out because it approaches fulfilment of the one step-one event criteria, and confirms the inhibition mechanism derived from molecular modelling. Model C resulted in dissociation constants for the complex between BChE and ethopropazine: 61, 140 and 88 nM for R-enantiomer, S-enantiomer and racemate, respectively. The respective dissociation constants for the complexes between acetylated BChE and ethopropazine were 268, 730 and 365 nM. Butyrylcholinesterase had higher affinity for R-ethopropazine.  相似文献   

8.
Human serum butyrylcholinesterase (Hu BChE) is a promising therapeutic against the toxicity of chemical warfare nerve agents, pesticide intoxication, and cocaine overdose. However, its widespread application is hampered by difficulties in large-scale production of the native protein from human plasma and/or availability as a recombinant protein suitable for use in vivo. This limitation may be resolved by in vivo delivery and expression of the Hu BChE gene. In this study, recombinant (r) adenoviruses (Ads) encoding full-length and truncated rHu BChEs were tested for in vivo expression in mice. Mice injected with these rAds intraperitoneally failed to express rHu BChE. However, a single tail vein injection of both rAds resulted in persistent high serum levels of rHu BChE in BChE knockout mice, which peaked on days 4/5 at 377+/-162U/ml for full-length rHu BChE and 574+/-143U/ml for truncated rHu BChE. These activity levels are orders of magnitude higher than 1.9U/ml of mouse BChE present in wild-type mouse serum. Thereafter, rHu BChE levels dropped rapidly and very little or no activity was detected in the serum 10 days post-virus administration. In conclusion, the present study demonstrates the potential of rAd-mediated Hu BChE gene therapy to counteract multiple lethal doses of chemical warfare nerve agent toxicity.  相似文献   

9.
The therapeutic value of human serum butyrylcholinesterase (Hu BChE) as a bioscavenger of chemical warfare agents is due to its high reactivity with organophosphorus compounds and prolonged circulatory stability. Native Hu BChE is mostly tetrameric in form while the enzyme produced using molecular cloning technology is a mixture of tetramers, dimers, and monomers. Previous studies revealed that monomers and dimers of recombinant human (rHu) BChE cleared rapidly from the circulation of mice compared to tetrameric rHu BChE and native Hu BChE, which have mean residence times (MRTs) of 18h and 45h, respectively. It was also shown that polyethylene glycol-20K (PEG) modification of tetrameric rHu BChE prolonged its circulatory stability and bioavailability in vivo. The goal of this study was to determine if modification with PEG could prolong the circulatory stability and eliminate the immunogenicity of monomeric rHu BChE. Monomeric rHu BChE was expressed in human 293A cells using a cDNA lacking the 45 amino acid tetramerization domain from the carboxyl terminus and the adenovirus expression system. The catalytic and inhibitory properties of purified monomeric rHu BChE were similar to those for native Hu BChE and were not affected by PEG modification. As expected, monomeric rHu BChE rapidly cleared from the circulation of mice (MRT=3.2+/-0.3h) while monomeric PEG-rHu BChE demonstrated significant improvement in its bioavailability and circulatory stability in blood (MRT=31.4+/-5.4h). However, a second injection of monomeric PEG-rHu BChE, 28 days after the first, displayed a much shorter MRT=11.6+/-0.4h, and circulating anti-monomeric PEG-rHu BChE antibodies were detected in the blood of mice. These results suggest that PEG modification increased the circulatory stability of monomeric rHu BChE but failed to reduce or eliminate its immunogenicity.  相似文献   

10.
This current study described the design and synthesis of a series of derivatives based on a natural pyranoisaflavone, which was obtained from the seeds of Millettia pachycarpa and displayed attractive BChE inhibition and high selectivity in our previous study. The inhibitory potential of all derivatives against two cholinesterases was evaluated. Only a few compounds demonstrated AChE inhibitory activity at the tested concentrations, while 26 compounds showed significant inhibition on BChE (the IC50 values varied from 9.34 μM to 0.093 μM), most of them presented promising selectivity to ward BChE. Prediction of ADME properties for 7 most active compounds was performed. Among them, 9g (IC50 = 222 nM) and 9h (IC50 = 93 nM) were found to be the most potent BChE inhibitors with excellent selectivity over AChE (SI ratio = 1339 and 836, respectively). The kinetic analysis demonstrated both of them acted as mixed-type BChE inhibitors, while the molecular docking results indicated that they interacted with both residues in the catalytic active site. A cytotoxicity test on PC12 cells showed that both 9g and 9h had a therapeutic safety range similar to tacrine. Overall, the results indicate that 9h could be a good candidate of BChE inhibitors.  相似文献   

11.
Butyrylcholinesterase (BChE) is synthesized in the liver and found in high concentrations in blood plasma, liver, heart, pancreas, vascular endothelium, skin, brain white matter, smooth muscle cells and adipocytes. BChE is a non specific enzyme that hydrolyzes different choline esters (succinylcholine, mivacurium) and many other drugs such as aspirin, cocaine and procaine. The enzyme is also considered as a bioscavenger due to its ability to neutralize the toxic effects of organophosphorus compounds (nervous system fs agents) such as soman. BChE displays several polymorphisms that influence its serum activity; therefore they could determine the individual sensitivity to chemical nerve agents. In this study, we investigated the correlation between BChE variants and the degree of enzyme inhibition and reactivation after soman application on blood samples of 726 individuals. The blood samples of individuals expressing abnormal variants, were more sensitive to soman compared to variants of homozygotes and heterozygotes for U-allele. We found significant differences in the degree of enzyme reactivation between different variants (with and without U-presence).  相似文献   

12.
We have described recently an acetylcholinesterase (AChE) knockout mouse. While comparing the tissue distribution of AChE and butyrylcholinesterase (BChE), we found that extraction buffers containing Triton X-100 strongly inhibited mouse BChE activity. In contrast, buffers with Tween 20 caused no inhibition of BChE. Conventional techniques grossly underestimated BChE activity by up to 15-fold. In Tween 20 buffer, the intestine, serum, lung, liver, and heart had higher BChE than AChE activity. Only brain had higher AChE than BChE activity in AChE +/+ mice. These findings contradict the dogma, based mainly on observations in Triton X-100 extracts, that BChE is a minor cholinesterase in animal tissues. AChE +/- mice had 50% of normal AChE activity and AChE -/- mice had none, but all mice had similar levels of BChE activity. BChE was inhibited by Triton X-100 in all species tested, except rat and chicken. Inhibition was reversible and competitive with substrate binding. The active site of rat BChE was unique, having an arginine in place of leucine at position 286 (human BChE numbering) in the acyl-binding pocket of the active site, thus explaining the lack of inhibition of rat BChE by Triton X-100. The generally high levels of BChE activity in tissues, including the motor endplate, and the observation that mice live without AChE, suggest that BChE has an essential function in nullizygous mice and probably in wild-type mice as well.  相似文献   

13.
Summary The phylo- and ontogenetically related enzymes butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) are expressed consecutively at the onset of avian neuronal differentiation. In order to investigate their possible co-regulation, we have studied the effect of highly selective inhibitors on each of the cholinesterases with respect to their expression in rotary cultures of the retina (retinospheroids) and stationary cultures of the embryonic chick tectum. Adding the irreversible BChE inhibitor iso-OMPA to reaggregating retinal cells has only slight morphological effects and fully inhibits BChE expression. Unexpectedly, iso-OMPA also suppresses the expression of AChE to 35%–60% of its control activity. Histochemically, this inhibition is most pronounced in fibrous regions. The release of AChE into the media of both types of cultures is inhibited by iso-OMPA by more than 85%. Control experiments show that AChE suppression by the BChE inhibitor is only partially explainable by direct cross-inhibition of iso-OMPA on AChE. In contrast, the treatment of retinospheroids with the reversible AChE inhibitor BW284C51 first accelerates the expression of AChE and then leads to a rapid decay of the spheroids. After injection of BW284C51 into living embryos, we find that AChE is expressed prematurely in cells that normally express BChE. We conclude that the cellular expression of AChE is regulated by the amount of both active BChE and active AChE within neuronal tissues. Thus, direct interaction with classical cholinergic systems is indicated for the seemingly redundant BChE.  相似文献   

14.
Isosorbide-2-benzylcarbamate-5-benzoate, a novel butyrylcholinesterase inhibitor, shows interspecies variation in its inhibitory activity (IC(50) of 4.3 nM for human plasma butyrylcholinesterase, but 1.09 microM for mouse plasma butyrylcholinesterase). Stability studies revealed that this drug is resistant to hydrolysis by human plasma (no degradation in 1 h). However, it was found to undergo rapid degradation when incubated with mouse plasma or mouse liver homogenate, yielding benzyl carbamate and benzoic acid. The addition of the carboxylesterase inhibitor bis-(4-nitrophenyl) phosphate (BNPP) inhibited the degradation of the novel drug, indicating that it may be a substrate for both butyrylcholinesterase and carboxylesterase. The absence of carboxylesterase from human plasma explains the drug's stability in this medium. In vivo, pharmacodynamic studies on single doses of 1 mg/kg to na?ve male C57BL/6 mice revealed maximal plasma butyrylcholinesterase inhibition 20 min after intraperitoneal administration (approximately 60% inhibition) and 1 h after administration by gavage (approximately 45% inhibition). While this plasma butyrylcholinesterase inhibition was short-lived, the drug also penetrated the blood-brain barrier resulting in a slight (10-15%) but persistent (> or =72 h) reduction in brain butyrylcholinesterase activity.  相似文献   

15.
Exposure to organophosphorus compounds (OPs), in the form of nerve agents and pesticides poses an ever increasing military and civilian threat. In recent years, attention has focused on the use of exogenously administered cholinesterases as an effective prophylactic treatment for protection against OPs. Clearly, a critical prerequisite for any potential bioscavenger is a prolonged circulatory residence time, which is influenced by the size of protein, the microheterogeneity of carbohydrate structures, and the induction (if any) of anti-enzyme antibodies following repeated injections of the enzyme. Previously, it was demonstrated that multiple injections of equine butyrylcholinesterase (BChE) into rabbits, rats, or rhesus monkeys, resulted in a mean residence time spanning several days, and variable immune responses. The present study sought to assess the pharmacokinetics and immunological consequences of administration of purified macaque BChE into macaques of the same species at a dose similar to that required for preventing OP toxicity. An i.v. injection of 7,000 U of homologous enzyme in monkeys demonstrated much longer mean residence times in plasma (MRT = 225 +/- 19 h) compared to those reported for heterologous Hu BChE (33.7 +/- 2.9 h). A smaller second injection of 3,000 U given four weeks later, attained predicted peak plasma levels of enzyme activity, but surprisingly, the MRT in the four macaques showed wide variation and ranged from 54 to 357 h. No antibody response was detected in macaques following either injection of enzyme. These results bode well for the potential use of human BChE as a detoxifying drug in humans.  相似文献   

16.
Cholinesterase inhibitors have long been used in the treatment of Alzheimer’s Disease (AD) via the protection of acetylcholine levels. However, recent research has shown that the specific inhibition of butyrylcholinesterase (BChE) could better ameliorate symptoms within patients. In addition, it has recently been shown that selective inhibition of BChE can also significantly attenuate the toxicity and physiological effects of heroin. Currently, there are no specific and potent inhibitors of BChE approved for use in AD or heroin abuse. Through a combined use of in silico and in vitro screening, we have found three compounds with sub-50 nM IC50 values that specifically target BChE. These newly discovered BChE inhibitors can act as the lead scaffolds for future development of the desirably potent and selective BChE inhibitors.  相似文献   

17.
Nerve agents are chiral organophosphate compounds (OPs) that exert their acute toxicity by phosphorylating the catalytic serine of acetylcholinesterase (AChE). The inhibited cholinesterases can be reactivated using oximes, but a spontaneous time-dependent process called aging alters the adduct, leading to resistance toward oxime reactivation. Human butyrylcholinesterase (BChE) functions as a bioscavenger, protecting the cholinergic system against OPs. The stereoselectivity of BChE is an important parameter for its efficiency at scavenging the most toxic OPs enantiomer for AChE. Crystals of BChE inhibited in solution or in cristallo with racemic V-agents (VX, Russian VX, and Chinese VX) systematically show the formation of the P(S) adduct. In this configuration, no catalysis of aging seems possible as confirmed by the three-dimensional structures of the three conjugates incubated over a period exceeding a week. Crystals of BChE soaked in optically pure VX(R)-(+) and VX(S)-(-) solutions lead to the formation of the P(S) and P(R) adduct, respectively. These structural data support an in-line phosphonylation mechanism. Additionally, they show that BChE reacts with VX(R)-(+) in the presence of racemic mixture of V-agents, at odds with earlier kinetic results showing a moderate higher inhibition rate for VX(S)-(-). These combined results suggest that the simultaneous presence of both enantiomers alters the enzyme stereoselectivity. In summary, the three-dimensional data show that BChE reacts preferentially with P(R) enantiomer of V-agents and does not age, in complete contrast to AChE, which is selectively inhibited by the P(S) enantiomer and ages.  相似文献   

18.
Butyrylcholinesterase (BChE, EC 3.1.1.8) is important in human cocaine metabolism despite its limited ability to hydrolyze this drug. Efforts to improve the catalytic efficiency of this enzyme have led to a quadruple mutant cocaine hydrolase, “CocH”, that in animal models of addiction appears promising for treatment of overdose and relapse. We incorporated the CocH mutations into a BChE–albumin fusion protein, “Albu-CocH”, and evaluated the pharmacokinetics of the enzyme after i.v. injection in rats. As assessed from the time course of cocaine hydrolyzing activity in plasma, Albu-CocH redistributed into extracellular fluid (16% of estimated total body water) with a t1/2 of 0.66 h and it underwent elimination with a t1/2 of 8 h. These results indicate that the enzyme has ample stability for short-term applications and may be suitable for longer-term treatment as well. Present data also confirm the markedly enhanced power of Albu-CocH for cocaine hydrolysis and they support the view that Albu-CocH might prove valuable in treating phenomena associated with cocaine abuse.  相似文献   

19.
Bambuterol is a chiral carbamate and a selective inhibitor of butyrylcholinesterase (BChE, EC 3.1.1.8). In order to relate bambuterol selectivity and stereoselectivity of BChE and acetylcholinesterase (AChE, EC 3.1.1.7) of different species, we studied the inhibition of human, mouse, and horse BChE, as well as AChE of human and mouse by (R)- and (S)-bambuterol. AChE and BChE of all studied species were progressively inhibited by both bambuterol enantiomers, with a preference for the (R)-bambuterol whose inhibition rate constants were about five times higher than that of (S)-bambuterol. We observed no significant difference between human and mouse in bambuterol enantiomer BChE inhibition. However, (R)-bambuterol inhibited horse BChE about 14 times slower than human and mouse BChE, and the inhibition rate for (S)-bambuterol was about 18 times slower. Although the primary structure of horse BChE differs from the other two species in 15 amino acids, we presumed that differences in inhibition rates could be attributed to threonine at position 69 located close to the peripheral site of BChE. Since BChE inhibition by bambuterol enantiomers was at least 8000 times faster than that of AChE, both bambuterol enantiomers proved to be selective BChE inhibitors, as was previously shown for racemate.  相似文献   

20.
A series of 31 N,N-disubstituted 2-amino-5-halomethyl-2-thiazolines was designed, synthesized, and evaluated for inhibitory potential against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CaE). The compounds did not inhibit AChE; the most active compounds inhibited BChE and CaE with IC50 values of 0.22–2.3 μM. Pyridine-containing compounds were more selective toward BChE; compounds with the para-OMe substituent in one of the two dibenzyl fragments were more selective toward CaE. Iodinated derivatives were more effective BChE inhibitors than brominated ones, while there was no influence of halogen type on CaE inhibition. Inhibition kinetics for the 9 most active compounds indicated non-competitive inhibition of CaE and varied mechanisms (competitive, non-competitive, or mixed-type) for inhibition of BChE. Docking simulations predicted key binding interactions of compounds with BChE and CaE and revealed that the best docked positions in BChE were at the bottom of the gorge in close proximity to the catalytic residues in the active site. In contrast, the best binding positions for CaE were clustered rather far from the active site at the top of the gorge. Thus, the docking results provided insight into differences in kinetic mechanisms and inhibitor activities of the tested compounds. A cytotoxicity test using the MTT assay showed that within solubility limits (<30 μM), none of the tested compounds significantly affected viability of human fetal mesenchymal stem cells. The results indicate that a new series of N,N-disubstituted 2-aminothiazolines could serve as BChE and CaE inhibitors for potential medicinal applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号