首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Key advances are being made on the structures of predator–prey food webs and competitive communities that enhance their stability, but little attention has been given to such complexity–stability relationships for mutualistic communities. We show, by way of theoretical analyses with empirically informed parameters, that structural properties can alter the stability of mutualistic communities characterized by nonlinear functional responses among the interacting species. Specifically, community resilience is enhanced by increasing community size (species diversity) and the number of species interactions (connectivity), and through strong, symmetric interaction strengths of highly nested networks. As a result, mutualistic communities show largely positive complexity–stability relationships, in opposition to the standard paradox. Thus, contrary to the commonly-held belief that mutualism's positive feedback destabilizes food webs, our results suggest that interplay between the structure and function of ecological networks in general, and consideration of mutualistic interactions in particular, may be key to understanding complexity–stability relationships of biological communities as a whole.  相似文献   

2.
Habitat subdivision causes changes in food web structure   总被引:1,自引:1,他引:0  
Theory suggests that the response of communities to habitat subdivision depends on both species' characteristics and the extent to which species interact. For species with dynamics that are independent of other species, subdivision is expected to promote regional extinction as populations become small and isolated. By contrast, intermediate levels of subdivision can facilitate persistence of strongly interacting species. Consistent with this prediction, experimental subdivision lengthened persistence of some species, altering the extent of food web collapse through extinction. Extended persistence was associated with immigration rescuing a basal prey species from local extinction. As predicted by food web theory, habitat subdivision reduced population density of a top predator. Removal of this top predator from undivided microcosms increased the abundance of two other predator species, and these changes paralleled those produced by habitat subdivision. These results show that species interactions structured this community, and illustrate the need for investigations of other communities.  相似文献   

3.
Climate change has the potential to influence the persistence of ecological communities by altering their stability properties. One of the major drivers of community stability is species diversity, which is itself expected to be altered by climate change in many systems. The extent to which climatic effects on community stability may be buffered by the influence of species interactions on diversity is, however, poorly understood because of a paucity of studies incorporating interactions between abiotic and biotic factors. Here, I report results of a 10-year field experiment, the past 7 years of which have focused on effects of ongoing warming and herbivore removal on diversity and stability within the plant community, where competitive species interactions are mediated by exploitation through herbivory. Across the entire plant community, stability increased with diversity, but both stability and diversity were reduced by herbivore removal, warming and their interaction. Within the most species-rich functional group in the community, forbs, warming reduced species diversity, and both warming and herbivore removal reduced the strength of the relationship between diversity and stability. Species interactions, such as exploitation, may thus buffer communities against destabilizing influences of climate change, and intact populations of large herbivores, in particular, may prove important in maintaining and promoting plant community diversity and stability in a changing climate.  相似文献   

4.
The loss of a species from an ecological community can trigger a cascade of secondary extinctions. The probability of secondary extinction to take place and the number of secondary extinctions are likely to depend on the characteristics of the species that is lost--the strength of its interactions with other species--as well as on the distribution of interaction strengths in the whole community. Analysing the effects of species loss in model communities we found that removal of the following species categories triggered, on average, the largest number of secondary extinctions: (a) rare species interacting strongly with many consumers, (b) abundant basal species interacting weakly with their consumers and (c) abundant intermediate species interacting strongly with many resources. We also found that the keystone status of a species with given characteristics was context dependent, that is, dependent on the structure of the community where it was embedded. Species vulnerable to secondary extinctions were mainly species interacting weakly with their resources and species interacting strongly with their consumers.  相似文献   

5.
The significant role of space in maintaining species coexistence and determining community structure and function is well established. However, community ecology studies have mainly focused on simple competition and predation systems, and the relative impact of positive interspecific interactions in shaping communities in a spatial context is not well understood. Here we employ a spatially explicit metacommunity model to investigate the effect of local dispersal on the structure and function of communities in which species are linked through an interaction web comprising mutualism, competition and exploitation. Our results show that function, diversity and interspecific interactions of locally linked communities undergo a phase transition with changes in the rate of species dispersal. We find that low spatial interconnectedness favors the spontaneous emergence of strongly mutualistic communities which are more stable but less productive and diverse. On the other hand, high spatial interconnectedness promotes local biodiversity at the expense of local stability and supports communities with a wide range of interspecific interactions. We argue that investigations of the relationship between spatial processes and the self-organization of complex interaction webs are critical to understanding the geographic structure of interactions in real landscapes.  相似文献   

6.
7.
Mike S. Fowler 《Oikos》2010,119(5):864-873
The distribution of interaction strengths among community members has important consequences for assembly processes and community responses to perturbations. Species deletion from communities can trigger cascading extinction events, with strong evidence from empirical and theoretical work. I examined model competitive communities, sequentially assembled using species drawn from a global pool with interaction strengths described by different distribution shapes (uniform or beta), with the same mean and variance. As community size increased, it became harder to assemble communities drawn from a uniform distribution compared to a beta distribution. The distribution of interaction values in the assembled communities differed from the shape of the initial distribution. The distribution shape and the relative abundance of the deleted species also had strong impacts on the probability of extinction cascades following primary species removal. Extinction cascades occurred in communities with a higher mean and variance of interaction strengths before the primary extinction. Those species lost had negative equilibrium densities and tended to be the least abundant, when assessed following the reorganisation that occurred after the primary and subsequent extinctions. Knowledge of the shape of the distribution of interaction strengths from real communities will allow us to make better predictions about which species are most at risk in extinction cascades under natural circumstances.  相似文献   

8.
The response of individual species to climate change may alter the composition and dynamics of communities. Here, we show that the impacts of environmental change on communities can depend on the nature of the interspecific interactions: mutualistic communities typically respond differently than commensalistic or parasitic communities. We model and analyse the geographic range shifting of metapopulations of two interacting species – a host and an obligate species. Different types of interspecific interactions are implemented by modifying local extinction rates according to the presence/absence of the other species. We distinguish and compare three fundamentally different community types: mutualism, commensalism and parasitism. We find that community dynamics during geographic range shifting critically depends on the type of interspecific interactions. Parasitic interactions exacerbate the negative effect of environmental change whereas mutualistic interactions only partly compensate it. Commensalistic interactions exhibit an intermediate response. Based on these model outcomes, we predict that parasitic species interactions may be more vulnerable to geographic range shifting than commensalistic or mutualistic ones. However, we observe that when climate stabilises following a period of change, the rate of community recovery is largely independent of the type of interspecific interactions. These results emphasize that communities respond delicately to environmental change, and that local interspecific interactions can affect range shifting communities at large spatial scales.  相似文献   

9.
To understand the dynamics of natural species communities, a major challenge is to quantify the relationship between their assembly, stability, and underlying food web structure. To this end, two complementary aspects of food web structure can be related to community stability: sign structure, which refers to the distributions of trophic links irrespective of interaction strengths, and interaction strength structure, which refers to the distributions of interaction strengths with or without consideration of sign structure. In this paper, using data from a set of relatively well documented community food webs, I show that natural communities generally exhibit a sign structure that renders their stability sensitive to interaction strengths. Using a Lotka-Volterra type population dynamical model, I then show that in such communities, individual consumer species with high values of a measure of their total biomass acquisition rate, which I term “weighted generality”, tend to undermine community stability. Thus consumer species’ trophic modules (a species and all its resource links) should be “selected” through repeated immigrations and extinctions during assembly into configurations that increase the probability of stable coexistence within the constraints of the community's trophic sign structure. The presence of such constraints can be detected by the incidence and strength of certain non-random structural characteristics. These structural signatures of dynamical constraints are readily measurable, and can be used to gauge the importance of interaction-driven dynamical constraints on communities during and after assembly in natural communities.  相似文献   

10.
Mechanistic insights from invasion biology indicate that propagule pressure of exotic species and native community structure can independently influence establishment success. The role of native community connectivity via species dispersal and its potential interaction with propagule pressure on invasion success in metacommunities, however, remains unknown. Native community connectivity may increase biotic resistance to invasion by enhancing species richness and evenness, but the effects could depend upon the level of propagule pressure. In this study, a mesocosm experiment was used to evaluate the independent and combined effects of exotic propagule pressure and native community connectivity on invasion success. The effects of three levels of exotic Daphnia lumholtzi propagule pressure on establishment success, community structure and ecosystem attributes were evaluated in native zooplankton communities connected by species dispersal versus unconnected communities, and relative to a control without native species. Establishment of the exotic species exhibited a propagule dose‐dependent relationship with high levels of propagule pressure resulting in the greatest establishment success. Native community connectivity, however, effectively reduced establishment at the low level of propagule pressure and further augmented native species richness across propagule pressure treatments. Propagule pressure largely determined the negative impacts of the exotic species on native species richness, native biomass and edible producer biomass. The results highlight that native community connectivity can reduce invasion success at a low propagule dose and decrease extinction risk of native competitors, but high propagule pressure can overcome connectivity‐mediated biotic resistance to influence establishment and impact of the exotic species. Together, the results emphasize the importance of the interaction of propagule pressure and community connectivity as a regulator of invasion success, and argue for the maintenance of metacommunity connectivity to confer invasion resistance.  相似文献   

11.
At large scales, the mechanisms underpinning stability in natural communities may vary in importance due to changes in species composition, mean abundance, and species richness. Here we link species characteristics (niche positions) and community characteristics (richness and abundance) to evaluate the importance of stability mechanisms in 156 butterfly communities monitored across three European countries and spanning five bioclimatic regions. We construct niche-based hierarchical structural Bayesian models to explain first differences in abundance, population stability, and species richness between the countries, and then explore how these factors impact community stability both directly and indirectly (via synchrony and population stability). Species richness was partially explained by the position of a site relative to the niches of the species pool, and species near the centre of their niche had higher average population stability. The differences in mean abundance, population stability, and species richness then influenced how much variation in community stability they explained across the countries. We found, using variance partitioning, that community stability in Finnish communities was most influenced by community abundance, whereas this aspect was unimportant in Spain with species synchrony explaining most variation; the UK was somewhat intermediate with both factors explaining variation. Across all countries, the diversity–stability relationship was indirect with species richness reducing synchrony which increased community stability, with no direct effects of species richness. Our results suggest that in natural communities, biogeographical variation observed in key drivers of stability, such as population abundance and species richness, leads to community stability being limited by different factors and that this can partially be explained due to the niche characteristics of the European butterfly assemblage.  相似文献   

12.
The foundational concepts behind the persistence of ecological communities have been based on two ecological properties: dynamical stability and feasibility. The former is typically regarded as the capacity of a community to return to an original equilibrium state after a perturbation in species abundances and is usually linked to the strength of interspecific interactions. The latter is the capacity to sustain positive abundances on all its constituent species and is linked to both interspecific interactions and species demographic characteristics. Over the last 40 years, theoretical research in ecology has emphasized the search for conditions leading to the dynamical stability of ecological communities, while the conditions leading to feasibility have been overlooked. However, thus far, we have no evidence of whether species interactions are more conditioned by the community''s need to be stable or feasible. Here, we introduce novel quantitative methods and use empirical data to investigate the consequences of species interactions on the dynamical stability and feasibility of mutualistic communities. First, we demonstrate that the more nested the species interactions in a community are, the lower the mutualistic strength that the community can tolerate without losing dynamical stability. Second, we show that high feasibility in a community can be reached either with high mutualistic strength or with highly nested species interactions. Third, we find that during the assembly process of a seasonal pollinator community located at The Zackenberg Research Station (northeastern Greenland), a high feasibility is reached through the nested species interactions established between newcomer and resident species. Our findings imply that nested mutualistic communities promote feasibility over stability, which may suggest that the former can be key for community persistence.  相似文献   

13.
Nutrient enrichment can reduce ecosystem stability, typically measured as temporal stability of a single function, e.g. plant productivity. Moreover, nutrient enrichment can alter plant–soil interactions (e.g. mycorrhizal symbiosis) that determine plant community composition and productivity. Thus, it is likely that nutrient enrichment and interactions between plants and their soil communities co-determine the stability in plant community composition and productivity. Yet our understanding as to how nutrient enrichment affects multiple facets of ecosystem stability, such as functional and compositional stability, and the role of above–belowground interactions are still lacking. We tested how mycorrhizal suppression and phosphorus (P) addition influenced multiple facets of ecosystem stability in a three-year field study in a temperate steppe. Here we focused on the functional and compositional stability of plant community; functional stability is the temporal community variance in primary productivity; compositional stability is represented by compositional resistance, turnover, species extinction and invasion. Community variance was partitioned into population variance defined as community productivity weighted average of the species temporal variance in performance, and species synchrony defined as the degree of temporal positive covariation among species. Compared to treatments with mycorrhizal suppression, the intact AM fungal communities reduced community variance in primary productivity by reducing species synchrony at high levels of P addition. Species synchrony and population variance were linearly associated with community variance with the intact AM fungal communities, while these relationships were decoupled or weakened by mycorrhizal suppression. The intact AM fungal communities promoted the compositional resistance of plant communities by reducing compositional turnover, but this effect was suppressed by P addition. P addition increased the number of species extinctions and thus promoted compositional turnover. Our study shows P addition and AM fungal communities can jointly and independently modify the various components of ecosystem stability in terms of plant community productivity and composition.  相似文献   

14.
Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among‐patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape‐scale. In this study, we used extensive field data from a fragmented, semi‐arid landscape in Israel to parameterize a multi‐species incidence‐function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics – the metacommunity, the mainland‐island, or the island communities type – best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch‐matrix study landscape is best represented as a system of highly isolated ‘island’ communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33–60% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity.  相似文献   

15.
Dispersal among local communities can have a variety of effects on species composition and diversity at local and regional scales. Local conditions (e.g., resource and predator densities) can have independent effects, as well as interact with dispersal, to alter these patterns. Based on metacommunity models, we predicted that local diversity would show a unimodal relationship with dispersal frequency. We manipulated dispersal frequencies, resource levels, and the presence of predators (mosquito larvae) among communities found in the water-filled leaves of the pitcher plant Sarracenia purpurea. Diversity and abundance of species of the middle trophic level, protozoa and rotifers, were measured. Increased dispersal frequencies significantly increased regional species richness and protozoan abundance while decreasing the variance among local communities. Dispersal frequency interacted with predation at the local community scale to produce patterns of diversity consistent with the model. When predators were absent, we found a unimodal relationship between dispersal frequency and diversity, and when predators were present, there was a flat relationship. Intermediate dispersal frequencies maintained some species in the inquiline communities by offsetting extinction rates. Local community composition and the degree of connectivity between communities are both important for understanding species diversity patterns at local and regional scales.  相似文献   

16.
In this article, we explain an often overlooked process that may significantly contribute to positive correlations between measures of species diversity and community stability. Empirical studies showing positive stability-diversity relationships have, for the most part, used a single class of stability (or, more accurately, instability) measures: the temporal variation in aggregate community properties such as biomass or productivity. We show that for these measures, stability will essentially always rise with species diversity because of the statistical averaging of the fluctuations in species' abundances. This simple probabilistic process will operate in the absence of any strong species interactions, although its strength is driven by the relative abundances of species, as well as by the existence of positive or negative correlations in the fluctuations of species. To explore the possible importance of this effect in real communities, we fit a simple simulation model to Tilman's grassland community. Our results indicate that statistical averaging might play a substantial role in explaining stability-diversity correlations for this and other systems. Models of statistical averaging can serve as a useful baseline for predictions of community stability, to which the influences of both negative and positive species interactions may then be added and tested.  相似文献   

17.
Coral species richness: ecological versus biogeographical influences   总被引:3,自引:0,他引:3  
Species richness in communities varies with habitat area, productivity, disturbance level, intensity of species interactions, and regional/historical effects. All of these factors influence coral richness but their effects vary with spatial scale, position on the reef, and regional location. Species richness of corals along depth gradients shows a unimodal, hump-shaped curve that peaks at intermediate depths. Moreover, the peak of the curve is higher in regions with larger species pools. This “regional enrichment” of the local community appears in line transect samples as small as 10 m in length. The pattern suggests that ecological factors operating over scales of tens of meters and regional/historical factors operating over thousands of kilometers can both affect local richness. Regional factors probably include differences in speciation relative to extinction rates among regions and proximity of local sites to richness hotspots. Plausible factors operating at the local scale are species interactions, disturbance, and productivity which combine in different ways to produce the unimodal pattern. Shallow areas support few species because extinction rates are high due to frequent disturbance or because of environmental extremes. In addition, high productivity encourages rapid growth and thus the potential for intense interspecific competition. In areas where branching acroporids are abundant, exclusion by these dominant competitors is possible. Deep areas may be depauperate because few species can tolerate the low light levels found there. Areas of intermediate depth have the richest communities because they are open for colonization by many species and because extinction rates are low. Several theories may explain this “openness” and species persistence: 1. Occasional disturbance coupled with low growth rates results in glacially slow exclusion by the dominant competitor. 2. Aggregation of corals creates spatial variation in the intensity of competition and thus refuges from competition within a spatial landscape. Inferior competitors persist because they are superior at dispersal and refuge colonization. 3. Specialist predators focus on high-density juvenile populations near the parent, creating ecological space for colonization by non-prey. 4. Coral competitive abilities are roughly equal and recruitment into the community is a probabilistic event. The community thus exhibits random drift and exclusion is an extremely lengthy process. Based upon empirical evidence, these theories are listed in order of plausibility, but still need to be rigorously tested. Accepted: 9 September 1999  相似文献   

18.
A Bodini 《Bio Systems》1991,26(1):21-30
A basic question in ecology concerns the role of species interaction on dynamics of natural communities. In this framework, ecologists have considered predation, competition, mutualism, the three most important interactions, highlighting their specific effects on distribution and abundance of species, providing knowledge about phenomena like coexistence and extinction. This paper seeks to identify the effects of predation on stability of natural communities by mathematical models. Simple multispecies community models, organized in trophic levels, are analyzed by means of a qualitative technique, loop analysis, combined with a computer calculation procedure. Results do not support the hypothesis of predation as a stabilizing factor. Rather, the outcomes of the analysis suggest that predation may or may not stabilize a community. This depends on the predator's behaviour and on the network of the community.  相似文献   

19.
对自然生态系统的观察给人们以复杂的群落更稳定的直观印象, 但数学模型却得出了截然相反的结论。这一“悖论”使得复杂性-稳定性研究自20世纪70年代以来成为长期的热点。本文对这一领域的数学模型研究进行简要综述。首先对这一论题进行概念剖析, 然后将各类模型分为线性和非线性两大类, 前者即群落矩阵法, 后者包括相互作用矩阵法、复杂网络数值模拟法和食物网构件动力学法。它们分别基于不同的群落构建方法和稳定性判断标准, 探求各物种是如何相互作用并实现共存的。总体而言, 在随机构建的群落模型中, 多样性和连接度的增长不利于系统稳定; 而在更接近真实自然群落的模型中, 相互作用方式、网络拓扑结构、相互作用强度分布等方面的机制提供了稳定效应, 按此组织的生态网络可达到很高的复杂度。然而, 复杂性-稳定性的研究还远未结束, 当前的模型仍不足以反映自然群落中的复杂相互作用, 稳定性的概念也有待拓展。对这一议题的深入研究在生态学理论和生态系统管理实践方面都具有重大价值。  相似文献   

20.
The complexity-stability relation is a central issue in ecology. In this paper, we show how the sampling method most often used to parameterize an ecological community, can affect the conclusions about whether or not complexity promotes stability and we suggest a sampling algorithm that overcomes the problem. We also illustrate the importance of treating feasibility separately from stability when constructing model communities. Using model Lotka-Volterra competition communities we found that probability of feasibility decreases with increasing interaction strength and number of species in the community. However, for feasible systems we found that local stability probability and resilience do not significantly differ between communities with few or many species, in contrast with earlier studies that, did not account for feasibility and concluded that species-poor communities had higher probability of being locally stable than species-rich communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号