首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of protein conformation on the spin-state equilibria of several derivatives of carp hemoglobin have been examined. This has been done by measuring the pH dependence of the paramagnetic susceptibilities of these derivatives in the presence and absence of inositol hexakisphosphate, P6-inositol. In all cases the addition of P6-inositol at low pH and the lowering of the pH in the presence of P6-inositol shift the spin-state equilibrium in favor of the high-spin electronic configuration. The P6-inositol and pH dependence of these magnetic properties parallels the pH and P6-inositol dependence of the conformational state of the hemoglobin as determined in earlier studies and further supports a thermodynamic linkage between the electronic state of the iron atoms and the quaternary structure of the hemoglobin molecule.  相似文献   

2.
L J Parkhurst  D J Goss 《Biochemistry》1984,23(10):2180-2186
Oxygen and CO ligand binding kinetics have been studied for the hybrid hemoglobin (Hb) alpha (human):beta (carp), hybrid II. Valency and half-saturated hybrids were used to aid in the assignment of the conformations of both chains. In hybrid II, an intermediate S state occurs, in which one chain has R- and the other T-state properties. In HbCO at pH 6 (plus 1 mM inositol hexaphosphate), the human alpha-chain is R state and the carp beta-chain is T state. We have no evidence at this pH that the carp beta-chain ever assumes the R conformation. At pH 6, the human alpha-chain shows human Hb R-state kinetics at low fractional photolysis and T-state rates for CO ligation by stopped flow. At pH 7, the human-chain R-state rate slows toward a carp hemoglobin rate. The carp beta-chains, on the other hand, react 50% more rapidly in the liganded conformation than in carp hemoglobin, and while the human alpha-chains are in the R state, the two beta-chains appear to function as a cooperative dimer. In this hemoglobin, the chains appear to be somewhat decoupled near pH 7, allowing a sequential conformational change from the R state in which the beta-chains first assume T-state properties, followed by the alpha-chains. The rate of the R-T conformational change for the carp beta-chains is at least 300 times greater than that for the human alpha-chains. At pH 9, the R----T conformational transition rate is at least 200 times slower than that for human hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Changes in the ultraviolet/visible spectrum of human oxyferrohemoglobin upon addition of aniline were indicative of a concentration-dependent interaction of aniline with hemoglobin, resulting in accelerated autooxidation of the hemoprotein. Oxygen was found to markedly inhibit this interaction of aniline with oxyhemoglobin. The dependence of the rate of autooxidation on aniline concentration followed saturation kinetics and showed a half-maximal response at 8 mM aniline. This value is equal to the value of Km for aniline as substrate for the O2-dependent, hemoglobin-catalyzed hydroxylation reaction which yields p-aminophenol (Mieyal, J. J., Ackerman, R.S., Blumer, J.L., and Freeman, L.S. (1976) J. Biol. Chem. 241, 3436-3441). Thus, an aniline-oxyhemoglobin complex is implicated in the overall catalytic reaction. No detectable p-aminophenol was formed when aniline was combined with oxyhemoglobin in the absence of an electron donor, but hydroxylation of aniline does occur when NADPH, NADPH plus P-450 reductase, or Na2S2O4 are also added.  相似文献   

4.
1. The oxygen binding properties of the hemoglobin from the Lesser Rorqual, Balaenoptera acutorostrata, has been investigated with respect to the possible effects of organic phosphates on gas transport in arctic environments. 2. The intrinsic oxygen affinity of the hemoglobin is high and strongly modulated by the effects of organic phosphates. 3. In the absence of organic phosphates, the temperature sensitivity of oxygen binding expressed by the heat of oxygenation, delta H, is -16.2 kcal/mol when corrected for the heat of oxygen in solution. 4. In the presence of organic phosphates there is a marked decrease in the temperature sensitivity delta H approximately -5 kcal/mol). 5. This feature is of great importance for oxygen unloading in the flippers and the tail, where the temperature is lower than the trunk of the whale. 6. Furthermore the organic phosphates strongly increase the Bohr coefficient, delta log P50/delta pH, from less than -0.3 in stripped hemoglobin to about -1.5 when the hemoglobin is saturated with P6-inositol. 7. This feature may be of great physiological importance by reducing the CO2 tension and acidosis after a prolonged dive.  相似文献   

5.
The mechanism by which superoxide anion is generated by the interaction of phenylhydrazine with either oxy- or methemoglobin was investigated. Rather than superoxide anion generation resulting from an accelerated autooxidation of oxyhemoglobin, it was found that both oxy- and methemoglobin function as peroxidases toward phenylhydrazine with the resultant oxidation of this compound to phenyldiazine. Generation of phenyldiazine from the oxidation of phenylhydrazine by hemoglobin or by the hydrolysis and subsequent decarboxylation of methyl phenylazoformate (C6H5N=NCOOCH3) resulted in the production of superoxide anion. It is suggested that under certain conditions hemoglobin may function as a drug-metabolizing peroxidase.  相似文献   

6.
We use the low-temperature recombination kinetics of carbon monoxide with carp hemoglobin to determine that the R and T states of hemoglobin exhibit different low-temperature geminate recombination kinetics. The peak of the fitted Gaussian activation energy spectrum is at 1.5 kcal/mol for R state and 1.8 kcal/mol for T state. The distribution in activation energies is fit well by the Agmon-Hopfield linear strain model. The T state is fit with a stronger elastic constant than R, and has a larger displacement of the protein conformation coordinate than does the R state, indicating that the T state does have a significantly greater rigidity and also stores more strain energy in its conformational states than does R hemoglobin. The pre-exponential in the activation energy spectrum is only a factor of two greater in the R than the T state and the low-temperature activation energy spectrum does not correctly predict the difference in the on rates for R and T states at 300 degrees K, indicating that processes removed from the binding site are important in cooperativity.  相似文献   

7.
A mathematical model has been formulated to analyze the effect of nonequilibrium kinetics on oxygen delivery to tissue. The model takes into account molecular diffusion, facilitated diffusion in the capillary blood, convection, chemical kinetics of O2 with hemoglobin, and the rate of metabolic consumption. A line iterative technique is described to solve numerically the resulting coupled system of nonlinear partial differential equations with physiologically relevant boundary and entrance conditions. With nonequilibrium kinetics the end-capillary PO2 is found to be lower than that in the venous blood. The effect is more pronounced during hypoxia and anemia. It is found that the tissue PO2 at the lethal corner decreases with the decrease in blood velocity, arterial PO2, hemoglobin concentration, P50, and increase in COHb concentration or metabolic rate, while the difference between end-capillary PO2 and venous PO2 increases, which reflects the effect of nonequilibrium kinetics on the delivery of O2 to tissue. Thus, the consideration of venous PO2 as an indicator of tissue PO2 in clinical and experimental studies may be questionable.  相似文献   

8.
The wide ligand affinity range previously observed for carp hemoglobin is bounded at both extremes by regions of constant affinity. Within these regions, pH, organic phosphates, and the extent of ligand binding have no effect on the measured affinity and the cooperativity of ligand binding is greatly reduced or absent. The rates of CO recombination to fully and partially unliganded carp hemoglobin, under various organic phosphate and pH conditions, are shown to reflect this behavior. Constant kinetic rates are seen to directly correspond to the regions of constant affinity. Therefore, these are taken to be single protein conformations, one of high and one of low ligand affinity. In the simplest view, these conformations represent the R and T states of a two-state model, and most of the properties of carp hemoglobin are explained quite well within this framework. Increases in either hydrogen or phosphate ion concentrations favor the stabilization of the low affinity structure of even fully liganded carp hemoglobin. We have studied the structural transition from high to low affinity by monitoring the absorption spectra of carp hemoglobins at constant pH as a function of organic phosphate concentration. We find that different spectra are induced in both carp methemoglobin and cyanomethemoglobin by inositol hexaphosphate addition. Furthermore, the dependence of the magnitude of the spectral changes on pH and organic phosphate concentration is the close agreement with that predicted from studies of the ligand binding properties of the molecule.  相似文献   

9.
A Hampton  L A Slotin 《Biochemistry》1975,14(25):5438-5444
N6-O- and p-fluorobenzoyladenosine 5'-triphosphates (IIIc and IIc, respectively) have been synthesized as potential adenosine 5'-triphosphate (ATP) site-directed reagents for enzymes. IIc and IIIc were substrates of yeast hexokinase; neither they nor the corresponding ADP derivatives inactivated yeast hexokinase or rabbit pyruvate kinase. IIc rapidly inactivated rabbit and carp muscle adenylate kinases; the effect is probably ATP site directed because N6-benzoyl-ATP did not inactivate and was a substrate (Vmax = 28 and 10%, respectively, that of ATP), and because of ATP retarded the inactivation. The inactivations followed pseudo-firsr-order kinetics; in the presence of 2.64 mM ATP at 0 degrees the half-life of the rabbit kinase was 210 min with 50 muM IIc and the half-life of the carp kinase was 130 min with 100 muM IIc. Adenylate kinase of pig muscle was inactivated by IIc in a manner similar to the rabbit and carp enzymes except that the rate of inactivation exhibited an inflexion. IIIc inactivated rabbit, pig, and carp adenylate kinases by pseudo-first-order kinetics; the rate constants for inactivation at 0 degrees were 9.1 X 10(-3), 1.3 X 10(-3), and 1.9 X 10(-3) min-1 and the apparent dissociation constants (K) of the IIIc-enzyme complexes were 710, 970, and 720 muM, respectively. From the substrate properties of IIIc alone and in admixture with ATP its dissociation constants (Ki) from the ATP sites of the enzymes were found to be 500, 700, and 845 muM, respectively. The similarity between the K and Ki values, together with marked retardation of the inactivations by ATP, indicates that IIIc is an ATP-site-directed reagent for the three adenylate kinases.  相似文献   

10.
The high-resolution proton nuclear magnetic resonance spectra of carp hemoglobin have been compared to those of human normal adult hemoglobin. Carp deoxy and carbonmonoxy hemoglobins in the deoxy-type quaternary state exhibit two downfield exchangeable proton resonances as compared to four seen in human normal adult deoxyhemoglobin. This suggests that two of the hydrogen bonds present in human normal adult deoxyhemoglobin are absent or occur in very different environments in carp hemoglobin. One of the exchangeable proton resonances of carp hemoglobin, while present in the deoxy-type quaternary state of the carbonmonoxy and deoxy derivatives, is absent in the oxy-type quaternary state of both, in agreement with the assignments of these quaternary structures by other methods. The ring-current-shifted proton resonances (sensitive tertiary structural markers) of carp carbonmonoxyhemoglobin are substantially different from those of human normal adult hemoglobin. The aromatic proton resonance region of carp hemoglobin has fewer resonances than that of human normal adult hemoglobin, consistent with its much reduced histidine content. The hyperfine-shifted proximal histidyl NH-exchangeable proton resonances of carp hemoglobin suggest that during the transition from the oxy to the deoxy quaternary structure, there is a greater alteration in the heme pocket of one type of subunits (presumably the beta chain) than that in the other subunit. The present results suggest that there are differences in both tertiary and quaternary structures between carp and human normal adult hemoglobins which could contribute to the great differences in the functional properties between these two proteins.  相似文献   

11.
Superoxide anion, either generated during the autooxidation of dihydroxyfumaria acid or by the interaction of 1,4-naphthoquinone-2-sulfonate and intracellular hemoglobin in red cells pretreated with the intracellular superoxide dismutase inhibitor, diethyldithiocarbamate, produces structural changes in red cells hemoglobin and hypotonic lysis. No evidence for lipid peroxidation was found in red cells exposed to either 1,4 naphthoquinone-2-sulfonate in the presence of diethyldithiocarbamate or to dihydroxyfumaric acid, although the membranes of these cells exposed to either 1,4 naphthoquinone-2-sulfonate in the presence of diethyldithiocarbamate or to dihydroxyfumaric acid, although the membranes of these cells retained a green pigment. These results suggest that superoxide anion reacts with cellular hemoglobin to form hemoglobin breakdown products which bind to the red cell membrane and thereby increase the osmotic fragility of the cell.  相似文献   

12.
Recent evidence suggests that the reaction between nitrite and deoxygenated hemoglobin provides a mechanism by which nitric oxide is synthesized in vivo. This reaction has been previously defined to follow second order kinetics, although variable product stoichiometry has been reported. In this study we have re-examined this reaction and found that under fully deoxygenated conditions the product stoichiometry is 1:1 (methemoglobin:nitrosylhemoglobin), and unexpectedly, the kinetics deviate substantially from a simple second order reaction and exhibit a sigmoidal profile. The kinetics of this reaction are consistent with an increase in reaction rate elicited by heme oxidation and iron-nitrosylation. In addition, conditions that favor the "R" conformation show an increased rate over conditions that favor the "T" conformation. The reactivity of nitrite with heme is clearly more complex than has been previously realized and is dependent upon the conformational state of the hemoglobin tetramer, suggesting that the nitrite reductase activity of hemoglobin is under allosteric control.  相似文献   

13.
The functional properties of squirrel-fish hemoglobin have been measured by studying ligand binding equilibria and kinetics. The results show that squirrel-fish hemoglobin has a Root effect with a corresponding stabilization of the low affinity state. The properties of this state are pH dependent even in the absence of cooperativity. The effect of ATP shifts the overall ligant affinity towards the low affinity state and is characteristic of the allosteric effect caused by organic phosphates. Under pH and ATP conditions favoring the low affinity conformational state, a 10-fold difference in the binding kinetics of carbon monoxide to the alpha and beta subunits is observed.  相似文献   

14.
In addition to its capacity to increase fetal hemoglobin levels, other mechanisms are implicated in hydroxyurea's ability to provide beneficial effects to patients with sickle cell disease. We hypothesize that the reaction of hemoglobin with hydroxyurea may play a role. It is shown that hydroxyurea reacts with deoxy-sickle cell hemoglobin (Hb) to form methemoglobin (metHb) and nitrosyl hemoglobin (HbNO). The products of the reaction as well as the kinetics are followed by absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. Analysis of the kinetics shows that the reaction can be approximated by a pseudo-first order rate constant of 3.7x10(-4) (1/(s.M)) for the disappearance of deoxy-sickle cell hemoglobin. Further analysis shows that HbNO is formed at an observed average rate of 5.25x10(-5) (1/s), three to four times slower than the rate of formation of metHb. EPR spectroscopy is used to show that the formation of HbNO involves the specific transfer of NO from the NHOH group of hydroxyurea. The potential importance of this reaction is discussed in the context of metHb and HbNO being able to increase the delay time for sickle cell hemoglobin polymerization and HbNO's vasodilating capabilities through conversion to S-nitrosohemoglobin.  相似文献   

15.
A series of cross-linking reagents with 4 to 7 carbons have been synthesized and used to modify human hemoglobin. The product yields and biochemical properties of these cross-linked hemoglobins are compared to those made with both longer and shorter cross-linkers. Several trends become apparent. The yields decrease as the cross-linker becomes longer, which correlates well with molecular dynamics studies of reagent binding pathways presented here. The autooxidation rates increase while thermal stability decreases with longer reagents. Cross-linking under deoxy conditions also increases autooxidation rates, but the effect is less than that of increased cross-linker length. The results suggest that shorter reagents may provide better-stabilized tetramers for the construction of more complex hemoglobin-based oxygen carriers.  相似文献   

16.
It was shown earlier that functional properties of hemoglobin changed during storage. Our goal was to evaluate processes of hemoglobin autooxidation and to develop simple methods for conservation of hemoglobin samples. It is revealed that cryoprotective effect of glycerol rapidly rises with increase of its concentration up to 5% for hemoglobins of all 4 studied species of sturgeon fish, sterlet, Russian sturgeon, starred sturgeon, and great sturgeon. The cryoprotective effect of glycerol is the highest on hemoglobin of the starred sturgeon, the lowest, of the sterlet. The results of this study allow proposing the method for cryoconservation of the sturgeon fish hemoglobin with addition of glycerol (up to 5% ) to the frozen solution of hemoglobin.  相似文献   

17.
Ammonia causes astrocyte swelling which is abrogated by methionine sulfoximine (MSO). Since myo-inositol is an important osmolyte, we investigated the effects of ammonia and MSO on myo-inositol flux in cultured astrocytes for periods up to 72 hours. Uptake of myo-inositol was significantly decreased by 26.7 (P < 0.05) and 39.3 (P lt; 0.006) percent after 48 hours of exposure to 5 or 10 mM ammonia, respectively. The maximum rate of uptake was 14.0 ± 0.5 nmol/hour/mg protein which was reduced to 7.45 ± 0.27 and 7.02 ± 0.57 nmoles/hour/mg protein by 5 or 10 mM ammonia, respectively. The Kms by Michaelis-Menten equation for the control, and in the presence of 5, or 10 mM ammonia were 32.5 ± 4.52, 44.4 ± 5.82, and 39.3 ± 7.0 M, respectively. Kms by Hanes-Woolf plot for the control, 5, or 10 mM ammonia were 25, 45, and 40 M, respectively. Treatment of astrocytes with either 5 or 10 mM NH4Cl for 6 hours caused a decrease in myo-inositol content by 66% and 58%, respectively. MSO (3 mM) partially diminished the ammonia-induced inhibition of myo-inositol uptake and decreased myo-inositol content by 31% after 24 hours. Additionally, ammonia increased myo-inositol efflux briefly through the fast efflux component but had little effect on myo-inositol efflux through the slow efflux component of astrocytes exposed to ammonia for up to 72 hours. Predominantly decreased myo-inositol influx coupled with brief efflux through the fast component may represent an adaptive response to diminish the extent of ammonia-induced astrocyte swelling.  相似文献   

18.
myo-Inositol:NAD(P)+ oxidoreductase (myo-inositol oxidoreductase) has been identified in bovine brain. This enzyme elutes from DEAE cellulose with 0.3 M KCl in 50 mM Tris buffer, pH 7.5. Using NADH as cofactor myo-inosose-2 is reduced selectively to myo-inositol. With NADPH the enzyme forms both myo-inositol and scyllo-inositol, however, at a lower rate. The enzyme was chromatographed on G-100 Sephadex and found to have an apparent molecular weight of 74,000. This enzyme differs in DEAE binding, molecular weight and cofactor specificity from the previously described scyllo-inositol oxidoreductase which utilizes NADPH exclusively to produce 3 fold more scyllo-inositol than myo-inositol.  相似文献   

19.
Potentiometric, conductometric and 31P NMR titrations have been applied to study interactions between myo-inositol hexakisphosphate (phytic acid), (±)-myo-inositol 1,2,3,5-tetrakisphosphate and (±)-myo-inositol 1,2,3-trisphosphate with iron(III) ions. Potentiometric and conductometric titrations of myo-inositol phosphates show that addition of iron increases acidity and consumption of hydroxide titrant. By increasing the Fe(III)/InsP6 ratio (from 0.5 to 4) 3 mol of protons are released per 2 mol of iron(III). At first, phytates coordinate iron octahedrally between P2 and P1,3. The second coordination site represents P5 and neighbouring P4,6 phosphate groups. Complexation is accompanied with the deprotonation of P1,3 and P4,6 phosphate oxygens. At higher concentration of iron(III) intermolecular P–O–Fe–O–P bonds trigger formation of a polymeric network and precipitation of the amorphous Fe(III)–InsP6 aggregates. 31P NMR titration data complement the above results and display the largest chemical shift changes at pD values between 5 and 10 in agreement with strong interactions between iron and myo-inositol phosphates. The differences in T1 relaxation times of phosphorous atoms have shown that phosphate groups at positions 1, 2 and 3 are complexated with iron(III). The interactions between iron(III) ions and inositol phosphates depend significantly on the metal to ligand ratio and an attempt to coordinate more than two irons per InsP6 molecule results in an unstable heterogeneous system.  相似文献   

20.
The effect of prior heavy-intensity warm-up exercise on subsequent moderate-intensity phase 2 pulmonary O2 uptake kinetics (tauVO2) was examined in young adults exhibiting relatively fast (FK; tauVO2 < 30 s; n = 6) and slow (SK; tauVO2 > 30 s; n = 6) VO2 kinetics in moderate-intensity exercise without prior warm up. Subjects performed four repetitions of a moderate (Mod1)-heavy-moderate (Mod2) protocol on a cycle ergometer with work rates corresponding to 80% estimated lactate threshold (moderate intensity) and 50% difference between lactate threshold and peak VO2 (heavy intensity); each transition lasted 6 min, and each was preceded by 6 min of cycling at 20 W. VO2 and heart rate (HR) were measured breath-by-breath and beat-by-beat, respectively; concentration changes of muscle deoxyhemoglobin (HHb), oxyhemoglobin, and total hemoglobin were measured by near-infrared spectroscopy (Hamamatsu NIRO 300). tauVO2 was lower (P < 0.05) in Mod2 than in Mod1 in both FK (20 +/- 5 s vs. 26 +/- 5 s, respectively) and SK (30 +/- 8 s vs. 45 +/- 11 s, respectively); linear regression analysis showed a greater "speeding" of VO2 kinetics in subjects exhibiting a greater Mod1 tauVO2. HR, oxyhemoglobin, and total hemoglobin were elevated (P < 0.05) in Mod2 compared with Mod1. The delay before the increase in HHb was reduced (P <0.05) in Mod2, whereas the HHb mean response time was reduced (P <0.05) in FK (Mod2, 22 +/- 3 s; Mod1, 32 +/- 11 s) but not different in SK (Mod2, 36 +/- 13 s; Mod1, 34 +/- 15 s). We conclude that improved muscle perfusion in Mod2 may have contributed to the faster adaptation of VO2, especially in SK; however, a possible role for metabolic inertia in some subjects cannot be overlooked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号