首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present evidence for the existence of two phases of retinoic acid (RA) signaling required for vertebrate limb development. Limb RA synthesis is under the control of retinaldehyde dehydrogenase-2 (Raldh2) expressed in the lateral plate mesoderm, which generates a proximodistal RA signal during limb outgrowth. We report that Raldh2(-/-) embryos lack trunk mesodermal RA activity and fail to initiate forelimb development. This is associated with deficient expression of important limb determinants Tbx5, Meis2, and dHand needed to establish forelimb bud initiation, proximal identity, and the zone of polarizing activity (ZPA), respectively. Limb expression of these genes can be rescued by maternal RA treatment limited to embryonic day 8 (E8) during limb field establishment, but the mutant forelimbs obtained at E10 display a significant growth defect associated with a smaller apical ectodermal ridge (AER), referred to here as an apical ectodermal mound (AEM). In these RA-deficient forelimbs, a ZPA expressing Shh forms, but it is located distally adjacent to the Fgf8 expression domain in the AEM rather than posteriorly as is normal. AER formation in Raldh2(-/-) forelimbs is rescued by continuous RA treatment through E10, which restores RA to distal ectoderm fated to become the AER. Our findings indicate the existence of an early phase of RA signaling acting upstream of Tbx5, Meis2, and dHand, followed by a late phase of RA signaling needed to expand AER structure fully along the distal ectoderm. During ZPA formation, RA acts early to activate expression of dHand, but it is not required later for Shh activation.  相似文献   

3.
Vertebrate limbs develop in a temporal proximodistal sequence, with proximal regions specified and generated earlier than distal ones. Whereas considerable information is available on the mechanisms promoting limb growth, those involved in determining the proximodistal identity of limb parts remain largely unknown. We show here that retinoic acid (RA) is an upstream activator of the proximal determinant genes Meis1 and Meis2. RA promotes proximalization of limb cells and endogenous RA signaling is required to maintain the proximal Meis domain in the limb. RA synthesis and signaling range, which initially span the entire lateral plate mesoderm, become restricted to proximal limb domains by the apical ectodermal ridge (AER) activity following limb initiation. We identify fibroblast growth factor (FGF) as the main molecule responsible for this AER activity and propose a model integrating the role of FGF in limb cell proliferation, with a specific function in promoting distalization through inhibition of RA production and signaling.  相似文献   

4.
5.
Cellular retinoic acid binding proteins are considered to be involved in retinoic acid (RA) signaling pathways. Our aim was to compare the expression and localization of cellular retinoic acid binding proteins I and II (CRABP I and II) in embryonic mouse hearts during normal development and after a single teratogenic dose of RA. Techniques such as real-time PCR, RT-PCR, Western blots and immunostaining were employed to examine hearts from embryos at 9-17 dpc. RA treatment at 8.5dpc affects production of CRABP I and II in the heart in the 48-h period. Changes in expression of mRNA for retinaldehyde dehydrogenase II (Raldh2), Crabp1 and Crabp2 genes also occur within the same time window (i.e. 10-11dpc) after RA treatment. In the embryonic control heart these proteins are localized in groups of cells within the outflow tract (OT), and the atrioventricular endocardial cushions. A gradient of labeling is observed with CRABP II but not for CRABP I along the myocardium of the looped heart at 11 dpc; this gradient is abolished in hearts treated with RA, whereas an increase of RALDH2 staining has been observed at 10 dpc in RA-treated hearts. Some populations of endocardial endothelial cells were intensively stained with anti-CRABP II whereas CRABP I was negative in these structures. These results suggest that CRABP I and II are independently regulated during heart development, playing different roles in RA signaling, essential for early remodeling of the heart tube and alignment of the great arteries to their respective ventricles.  相似文献   

6.
7.
Exogenous retinoic acid (RA) induces marked effects on limb patterning, but the precise role of endogenous RA in this process has remained unknown. We have studied the role of RA in mouse limb development by focusing on CYP26B1, a cytochrome P450 enzyme that inactivates RA. Cyp26b1 was shown to be expressed in the distal region of the developing limb bud, and mice that lack CYP26B1 exhibited severe limb malformation (meromelia). The lack of CYP26B1 resulted in spreading of the RA signal toward the distal end of the developing limb and induced proximodistal patterning defects characterized by expansion of proximal identity and restriction of distal identity. CYP26B1 deficiency also induced pronounced apoptosis in the developing limb and delayed chondrocyte maturation. Wild-type embryos exposed to excess RA phenocopied the limb defects of Cyp26b1(-/-) mice. These observations suggest that RA acts as a morphogen to determine proximodistal identity, and that CYP26B1 prevents apoptosis and promotes chondrocyte maturation, in the developing limb.  相似文献   

8.
The fly homeodomain (HD) protein EXTRADENTICLE (EXD) is dependent on a second HD protein, HOMOTHORAX (HTH), for nuclear localization. We show here that in insect cells the mammalian homolog of EXD, PBX1A, shows a similar dependence on the HTH homologs MEIS1, 2, and 3 and the MEIS-like protein PREP1. Paradoxically, removal of residues N-terminal to the PBX1A HD abolishes interactions with MEIS/PREP but allows nuclear accumulation of PBX1A. We use deletion mapping and fusion to green fluorescent protein to map two cooperative nuclear localization signals (NLSs) in the PBX HD. The results of DNA-binding assays and pull-down experiments are consistent with a model whereby the PBX N-terminus binds to the HD and masks the two NLSs. In support of the model, a mutation in the PBX HD that disrupts contact with the N-terminus leads to constitutive nuclear localization. The HD mutation also increases sensitivity to protease digestion, consistent with a change in conformation. We propose that MEIS family proteins induce a conformational change in PBX that unmasks the NLS, leading to nuclear localization and increased DNA-binding activity. Consistent with this, PBX1 is nuclear only where Meis1 is expressed in the mouse limb bud.  相似文献   

9.
10.
The proximodistal identity of a newt limb regeneration blastema is respecified by exposure to retinoic acid, but its molecular basis is unclear. We identified from a differential screen the cDNA for Prod 1, a gene whose expression in normal and regenerating limbs is regulated by proximodistal location and retinoic acid: Prod 1 is the newt ortholog of CD59. Prod 1/CD59 was found to be located at the cell surface with a GPI anchor which is cleaved by PIPLC. A proximal newt limb blastema engulfs a distal blastema after juxtaposition in culture, and engulfment is specifically blocked by PIPLC, and by affinity-purified antibodies to two distinct Prod 1/CD59 peptides. Prod 1 is therefore a cell surface protein implicated in the local cell-cell interactions mediating positional identity.  相似文献   

11.
12.
13.
Complex genetic and biochemical interactions between HOX proteins and members of the TALE (i.e., PBX and MEIS) family have been identified in embryonic development, and some of these interactions also appear to be important for leukemic transformation. We have previously shown that HOXA9 collaborates with MEIS1 in the induction of acute myeloid leukemia (AML). In this report, we demonstrate that HOXB3, which is highly divergent from HOXA9, also genetically interacts with MEIS1, but not with PBX1, in generating AML. In addition, we show that the HOXA9 and HOXB3 genes play key roles in establishing all the main characteristics of the leukemias, while MEIS1 functions only to accelerate the onset of the leukemic transformation. Contrasting the reported functional similarities between PREP1 and MEIS1, such as PBX nuclear retention, we also show that PREP1 overexpression is incapable of accelerating the HOXA9-induced AML, suggesting that MEIS1 function in transformation must entail more than PBX nuclear localization. Collectively, these data demonstrate that MEIS1 is a common leukemic collaborator with two structurally and functionally divergent HOX genes and that, in this collaboration, the HOX gene defines the identity of the leukemia.  相似文献   

14.
Limb skeletal muscle is derived from cells of the dermomyotome that detach and migrate into the limb buds to form separate dorsal and ventral myogenic precursor domains. Myogenic precursor cell migration is dependent on limb bud mesenchymal expression of hepatocyte growth factor/scatter factor (Hgf), which encodes a secreted ligand that signals to dermomyotome through the membrane receptor tyrosine kinase Met. Here, we find that correct patterning of Hgf expression in forelimb buds is dependent on retinoic acid (RA) synthesized by retinaldehyde dehydrogenase 2 (Raldh2) expressed proximally. Raldh2(-/-) forelimb buds lack RA and display an anteroproximal shift in expression of Hgf such that its normally separate dorsal and ventral expression domains are joined into a single anterior-proximal domain. Met and MyoD are expressed in this abnormal domain, indicating that myogenic cell migration and differentiation are occurring in the absence of RA, but in an abnormal location. An RA-reporter transgene revealed that RA signaling in the forelimb bud normally exists in a gradient across the proximodistal axis, but uniformly across the anteroposterior axis, with all proximal limb bud cells exhibiting activity. Expression of Bmp4, an inhibitor of Hgf expression, is increased and shifted anteroproximally in Raldh2(-/-) limb buds, thus encroaching into the normal expression domain of Hgf. Our studies suggest that RA signaling provides proximodistal information for limb buds that counterbalances Bmp signaling, which in turn helps mediate proximodistal and anteroposterior patterning of Hgf expression to correctly direct migration of Met-expressing myogenic precursor cells.  相似文献   

15.
16.
17.
18.
Using a subtractive hybridisation approach, we enriched for genes likely to play a role in embryonic development of the mammalian face and other structures. This was achieved by subtracting cDNA derived from adult mouse liver from that derived from 10.5 dpc mouse embryonic branchial arches 1 and 2. Random sequencing of clones from the resultant library revealed that a high percentage correspond to genes with a previously established role in embryonic development and disease, while 15% represent novel or uncharacterised genes. Whole mount in situ hybridisation analysis of novel genes revealed that approximately 50% have restricted expression during embryonic development. In addition to expression in branchial arches, these genes showed a range of expression domains commonly including neural tube and somites. Notably, all genes analysed were found to be expressed not only in the branchial arches but also in the developing limb buds, providing support for the hypothesis that development of the limbs and face is likely to involve analogous molecular processes.  相似文献   

19.
20.
BACKGROUND: Derivatives of retinol (vitamin A), commonly referred to as retinoids, signal through retinoic acid and retinoid X receptors (RARs/RXRs) and are essential for normal limb formation. Retinoid imbalances or perturbations in receptor function result in aberrant limb development. To examine the mechanisms underlying retinol-induced limb defects, we determined the responsiveness of limbs from RARalpha1-/-gamma mice to excess retinol in vitro. METHODS: RARalpha1-/-gamma+/- mice were bred and their embryos were recovered at gestational day (GD) 12.5. The forelimbs were excised and cultured in vitro in the presence of all-trans retinol acetate (0, 1.25, 12.5, or 62.5 microM) for 6 days. The expression profiles of genes known to affect chondrogenesis (sox9 and col2a1) and limb outgrowth (meis1, meis2, and pbx1a) were examined by real-time qRT-PCR following retinol exposure for 3 hr. RESULTS: Whereas RARalpha1-/-gamma+/+ and RARalpha1-/-gamma+/- limbs exhibited deleterious effects on limb outgrowth and chondrogenesis in the presence of exogenous retinol, this outcome was significantly attenuated in RARalpha1-/-gamma-/- limbs. The expressions of sox9 and col2a1 were significantly decreased in retinol-exposed RARalpha1-/-gamma+/+ limbs. In contrast, expression was not altered in limbs from their RARalpha1-/-gamma+/- or RARalpha1-/-gamma-/- littermates. Retinol exposure upregulated the expression of meis1 and meis2 in RARalpha1-/-gamma+/+ limbs; however, in RARalpha1-/-gamma-/- limbs the expression of both genes was unresponsive to retinol. Pbx1a remained unresponsive to retinol treatment in all genotypes. CONCLUSION: In the absence of RARalpha1, RARgamma is a functionally important mediator of retinoid-induced limb dysmorphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号