首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endosialidase (endo-N-acetylneuraminidase) is a tailspike enzyme of bacteriophages specific for human pathogenic Escherichia coli K1, which specifically recognizes and degrades polySia (polysialic acid). polySia is also a polysaccharide of the capsules of other meningitis- and sepsis-causing bacteria, and a post-translational modification of the NCAM (neural cell-adhesion molecule). We have cloned and sequenced three spontaneously mutated endosialidases of the PK1A bacteriophage and one of the PK1E bacteriophage which display lost or residual enzyme activity but retain the binding activity to polySia. Single to triple amino acid substitutions were identified, and back-mutation constructs indicated that single substitutions accounted for only partial reduction of enzymic activity. A homology-based structural model of endosialidase revealed that all substituted amino acid residues localize to the active site of the enzyme. The results reveal the importance of non-catalytic amino acid residues for the enzymatic activity. The results reveal the molecular background for the dissociation of the polySia binding and cleaving activities of endosialidase and for the evolvement of 'host range' mutants of E. coli K1 bacteriophages.  相似文献   

2.
Escherichia coli K-12 and K-12 hybrid strains constructed to express a polysialic acid capsule, the K1 antigen, were able to efficiently use sialic acid as a sole carbon source. This ability was dependent on induction of at least two activities: a sialic acid-specific transport activity, and an aldolase activity specific for cleaving sialic acids. Induction over basal levels required sialic acid as the apparent inducer, and induction of both activities was repressed by glucose. Induction also required the intracellular accumulation of sialic acid, which could be either added exogenously to the medium or accumulated intracellularly through biosynthesis. Exogenous sialic acid appeared to be transported by an active mechanism that did not involve covalent modification of the sugar. Mutations affecting either the transport or degradation of sialic acid prevented its use as a carbon source and have been designated nanT and nanA, respectively. These mutations were located by transduction near min 69 on the E. coli K-12 genetic map, between argG and glnF. In addition to being unable to use sialic acid as a carbon source, aldolase-negative mutants were growth-inhibited by this sugar. Therefore, the intracellularly accumulated sialic acid was toxic in aldolase-deficient E. coli strains. The dual role of aldolase in dissimilating and detoxifying sialic acids is consistent with the apparent multiple controls on expression of this enzyme.  相似文献   

3.
E R Vimr 《Journal of bacteriology》1992,174(19):6191-6197
The enzymes required for polysialic acid capsule synthesis in Escherichia coli K1 are encoded by region 2 neu genes of the multigenic kps cluster. To facilitate analysis of capsule synthesis and translocation, an E. coli K1 strain with mutations in nanA and neuB, affecting sialic acid degradation and synthesis, respectively, was constructed by transduction. The acapsular phenotype of the mutant was corrected in vivo by exogenous addition of sialic acid. By blocking sialic acid degradation, the nanA mutation allows intracellular metabolite accumulation, while the neuB mutation prevents dilution by the endogenous sialic acid pool and allows capsule synthesis to be controlled experimentally by the exogenous addition of sialic acid to the growth medium. Complementation was detected by bacteriophage K1F adsorption or infectivity assays. Polysialic acid translocation was observed within 2 min after addition of sialic acid to the growth medium, demonstrating the rapidity in vivo of sialic acid transport, activation, and polymerization and translocation of polysaccharide to the cell surface. Phage adsorption was not inhibited by chloramphenicol, demonstrating that de novo protein synthesis was not required for polysialic acid synthesis or translocation at 37 degrees C. Exogenous radiolabeled sialic acid was incorporated exclusively into capsular polysaccharide. The polymeric nature of the labeled capsular material was confirmed by gel permeation chromatography and susceptibility of sialyl polymers to K1F endo-N-acylneuraminidase. The ability to experimentally manipulate capsule expression provides new approaches for investigating polysialic acid synthesis and membrane translocation mechanisms.  相似文献   

4.
With the exception of the polysialic acid capsule (K1 antigen), little is known about other virulence factors needed for systemic infection by Escherichia coli K1, the leading cause of Gram-negative neonatal meningitis in humans. In this work, the functional genomics method of signature-tagged mutagenesis (STM) was adapted to E. coli K1 and the infant-rat model to identify non-capsule virulence genes. Validation of the method was demonstrated by the failure to recover a reconstructed acapsular mutant from bacterial pools used to systemically infect 5-day-old rats. Three new genes required for systemic disease were identified from a total of 192 mutants screened by STM (1.56% hit rate). Gut colonization, Southern blot hybridization, mixed-challenge infection, and DNA sequence analyses showed that the attenuating defects in the mutants were associated with transposon insertions in rfaL (O antigen ligase), dsbA (thiol:disulfide oxidoreductase), and a new gene, puvA (previously unidentified virulence gene A), with no known homologues. The results indicate the ability of STM to identify novel systemic virulence factors in E. coli K1.  相似文献   

5.
Methods were developed for the polyacrylamide gel electrophoretic analysis of capsular polysaccharides of bacteria with Escherichia coli K1 as a model. Conditions were determined for the rapid and gentle extraction of the K1 polysaccharide by incubation of the bacteria in a volatile buffer and for the subsequent removal of the putative phospholipid moiety attached to the reducing end of the polysaccharide. Detection of the polysaccharides after gel electrophoresis was carried out by fluorography of samples labeled by sodium borotritiide reduction or by combined alcian blue and silver staining. The smallest components could be detected only by fluorography, owing to diffusion during staining. Components of the E. coli K1 polysialic acid capsule ranging from monomers to 80 sialic-acid-unit-containing polymers could be separated as distinct bands in a ladderlike pattern. A maximum chain length of 160 to 230 sialyl residues was estimated for the bulk of the K1 polysaccharide from the nearly linear reciprocal relationship between the logarithm of the molecular size and the distance of migration. Gel electrophoresis of capsular polysaccharides of other bacterial species revealed different electrophoretic mobilities for each polysaccharide, with a ladderlike pattern displayed by the fastest-moving components. There are many potential applications of this facile method for the determination of the sizes of molecules present in a polydisperse polysaccharide sample. When combined with the simple method for the isolation of the capsule, as in the case of the K1 capsule, it provides an efficient tool for the characterization and comparison of the capsular polysaccharides of bacteria.  相似文献   

6.
Escherichia coli K1 is responsible for 80% of E. coli neonatal meningitis and is a common pathogen in urinary tract infections. Bacteria of this serotype are encapsulated with the alpha(2-8)-polysialic acid NeuNAc(alpha2-8), common to several bacterial pathogens. The gene cluster encoding the pathway for synthesis of this polymer is organized into three regions: (i) kpsSCUDEF, (ii) neuDBACES, and (iii) kpsMT. The K1 polysialyltransferase, NeuS, cannot synthesize polysialic acid de novo without other products of the gene cluster. Membranes isolated from strains having the entire K1 gene cluster can synthesize polysialic acid de novo. We designed a series of plasmid constructs containing fragments of regions 1 and 2 in two compatible vectors to determine the minimum number of gene products required for de novo synthesis of the polysialic acid from CMP-NeuNAc in K1 E. coli. We measured the ability of the various combinations of region 1 and 2 fragments to restore polysialyltransferase activity in vitro in the absence of exogenously added polysaccharide acceptor. The products of region 2 genes neuDBACES alone were not sufficient to support de novo synthesis of polysialic acid in vitro. Only membrane fractions harboring NeuES and KpsCS could form sialic polymer in the absence of exogenous acceptor at the concentrations formed by wild-type E. coli K1 membranes. Membrane fractions harboring NeuES and KpsC together could form small quantities of the sialic polymer de novo.  相似文献   

7.
The activity of the cytoplasmic CMP-2-keto-3-deoxyoctulosonic acid synthetase (CMP-KDO synthetase), which is low in Escherichia coli rough strains such as E. coli K-12 and in uncapsulated strains such as E. coli O111, was significantly elevated in encapsulated E. coli O10:K5 and O18:K5. This enzyme activity was even higher in an E. coli clone expressing the K5 capsule. This and the following findings suggest a correlation between elevated CMP-KDO synthetase activity and the biosynthesis of the capsular K5 polysaccharide. (i) Expression of the K5 polysaccharide and elevated CMP-KDO synthetase activity were observed with bacteria grown at 37 degrees C but not with cells grown at 20 degrees C or below. (ii) The recovery kinetics of capsule expression of intact bacteria, in vitro K5 polysaccharide-synthesizing activity of bacteria, and CMP-KDO synthetase activity of bacteria after temperature upshift from 18 to 37 degrees C were the same. (iii) Chemicals which inhibit capsule (polysaccharide) expression also inhibited the elevation of CMP-KDO synthetase activity. The chromosomal location of the gene responsible for the elevation of this enzyme activity was narrowed down to the distal segment of the transport region of the K5 expression genes.  相似文献   

8.
The capsular polysaccharide of Escherichia coli K1 is a linear polymer of N-acetylneuraminic acid in alpha-2,8 linkage. Certain substrains of E. coli K1 (designated OAc+) modify the polysaccharide by O-acetylation of the sialic acids. We demonstrate here an acetyl-coenzyme A: polysialosyl O-acetyltransferase activity that is found only in E. coli K1 OAc+ substrains. When form variation between the O-acetyl-positive and -negative states occurred in strain D698:K1, the fluctuations were accompanied by appropriate changes in the expression of enzyme activity. Thus, expression of this enzyme can account for the OAc+ phenotype and for the form variation between OAc+ and OAc-. The enzyme was solubilized in nonionic detergent and freed of endogenous acceptor activity by DEAE-cellulose chromatography, and its general properties were determined. Analysis of the reaction product showed a highly preferential acetylation reaction that was confined to polysialosyl units of greater than 14 residues. Acetyl groups were shown to be transferred to both the 7- and the 9-positions of the sialic acid residues. The partially purified enzyme was stable even after prolonged incubation at 57 degrees C. In contrast, any further purification resulted in loss of activity, even at 4 degrees C. Treatment of the stable enzyme with a polysialic acid-specific endoneuraminidase caused a similar loss of enzyme stability. This effect of the endoneuraminidase could be protected against by the addition of exogenous polysialic acid. This indicates that the partially purified enzyme contains traces of endogenous polysialic acid substrate that are required for the stability of the enzyme. Finally, the enzyme can O-acetylate the polysialic acid chains on the eucaryotic protein neural cell adhesion molecule, suggesting that enzymatic recognition of the substrate requires only the polysialic acid sequence.  相似文献   

9.
Escherichia coli strains that produce the K1 polysaccharide capsule have long been associated with pathogenesis. This capsule is believed to increase the cell's invasiveness, allowing the bacteria to avoid phagocytosis and inactivation by complement. It is also recognized as a receptor by some phages, such as K1F and K1-5, which have virion-associated enzymes that degrade the polysaccharide. In this report we show that expression of the K1 capsule in E. coli physically blocks infection by T7, a phage that recognizes lipopolysaccharide as the primary receptor. Enzymatic removal of the K1 antigen from the cell allows T7 to adsorb and replicate. This observation suggests that the capsule plays an important role as a defense against some phages that recognize structures beneath it and that the K1-specific phages evolved to counter this physical barrier.  相似文献   

10.
Escherichia coli K1 is part of a reservoir of adherent, invasive facultative pathogens responsible for a wide range of human and animal disease including sepsis, meningitis, urinary tract infection and inflammatory bowel syndrome. A prominent virulence factor in these diseases is the polysialic acid capsular polysaccharide (K1 antigen), which is encoded by the kps/neu accretion domain inserted near pheV at 67 map units. Some E. coli K1 strains undergo form (phase) variation involving loss or gain of O-acetyl esters at carbon positions 7 or 9 of the individual sialic acid residues of the polysialic acid chains. Acetylation is catalysed by the receptor-modifying acetyl coenzyme-A-dependent O-acetyltransferase encoded by neuO, a phase variable locus mapping near the integrase gene of the K1-specific prophage, CUS-3, which is inserted in argW at 53.1 map units. As the first E. coli contingency locus shown to operate by a translational switch, further investigation of neuO should provide a better understanding of the invasive K1 pathotype. Minimal estimates of morbidity and economic costs associated with human infections caused by extraintestinal pathogenic E. coli strains such as K1 indicate at least 6.5 million cases with attendant medical costs exceeding 2.5 billion US dollars annually in the United States alone.  相似文献   

11.
External polysaccharides of many pathogenic bacteria form capsules protecting the bacteria from the animal immune system and phage infection. However, some bacteriophages can digest these capsules using glycosidases displayed on the phage particle. We have utilized cryo-electron microscopy to determine the structures of phages K1E and K1-5 and thereby establish the mechanism by which these phages attain and switch their host specificity. Using a specific glycosidase, both phages penetrate the capsule and infect the neuroinvasive human pathogen Escherichia coli K1. In addition to the K1-specific glycosidase, each K1-5 particle carries a second enzyme that allows it to infect E. coli K5, whose capsule is chemically different from that of K1. The enzymes are organized into a multiprotein complex attached via an adapter protein to the virus portal vertex, through which the DNA is ejected during infection. The structure of the complex suggests a mechanism for the apparent processivity of degradation that occurs as the phage drills through the polysaccharide capsule. The enzymes recognize the adapter protein by a conserved N-terminal sequence, providing a mechanism for phages to acquire different enzymes and thus to evolve new host specificities.  相似文献   

12.
There is a molecular mimicry between the polysialic acid polysaccharide of bacterial pathogens causing sepsis and meningitis, and the carbohydrate units of the neural cell adhesion molecule NCAM. We investigated whether bacteriophage mutants with catalytically disabled endosialidase, which bind but do not cleave polysialic acid, could recognise and bind to bacterial and eukaryotic polysialic acid. In nitrocellulose dot blot assay the mutant bacteriophages, but not the wild-type phages, remained specifically bound to polysialic acid–containing bacteria including Escherichia coli K1 and K92, group B meningococci, Mannheimia (Pasteurella) haemolytica A2, and Moraxella nonliquefaciens. A minimum binding requirement was determined to be 10 sialyl residues in the polysialic acid chain. In Western blots the mutant phages specifically bound to the embryonic polysialylated form of NCAM, but not to the adult less sialylated form of the molecule. The mutant phages together with secondary anti-phage antibodies were subsequently successfully used in fluorescence microscopy of cultured cells and light microscopy of paraffin-embedded tissue sections as a probe for the eukaryotic polysialic acid. Thus, mutant bacteriophages of meningitis causing bacteria bind to and detect the molecularly mimicked polysialic acid of the neural cell adhesion molecule in host tissues.  相似文献   

13.
The capsular K5 polysaccharide, a representative of group II capsular antigens of Escherichia coli, has been cloned previously, and three gene regions responsible for polymerization and surface expression have been defined (I. S. Roberts, R. Mountford, R. Hodge, K. B. Jann, and G. J. Boulnois, J. Bacteriol. 170:1305-1310, 1988). In this report, we describe the immunoelectron microscopic analysis of recombinant bacteria expressing the K5 antigen and of mutants defective in either region 1 or region 3 gene functions, as well as the biochemical analysis of the K5 capsular polysaccharide. Whereas the K5 clone expressed the K5 polysaccharide as a well-developed capsule in about 25% of its population, no capsule was observed in whole mount preparations and ultrathin sections of the expression mutants. Immunogold labeling of sections from the region 3 mutant revealed the capsular K5 polysaccharide in the cytoplasm. With the region 1 mutant, the capsular polysaccharide appeared associated with the cell membrane, and, unlike the region 3 mutant polysaccharide, the capsular polysaccharide could be detected in the periplasm after plasmolysis of the bacteria. Polysaccharides were isolated from the homogenized mutants with cetyltrimethylammonium bromide. The polysaccharide from the region 1 mutant had the same size as that isolated from the capsule of the original K5 clone, and both polysaccharides were substituted with phosphatidic acid. The polysaccharide from the region 3 mutant was smaller and was not substituted with phosphatidic acid. These results prompt us to postulate that gene region 3 products are involved in the translocation of the capsular polysaccharide across the cytoplasmic membrane and that region 1 directs the transport of the lipid-substituted capsular polysaccharide through the periplasm and across the outer membrane.  相似文献   

14.
15.
Capsular polysialyl chains of wild-typeEscherichia coli K1 consist of about 200 sialyl units. Factors associated with the degree of polymerization of the K1 polysaccharide were studied by isolation of mutant bacteria resistant to K1 phage. The mutants (n=55) were characterized with respect to the length of their capsular sialyl chains by gel electrophoresis and reactivity with anti-K1 antibodies. No mutants with short sialyl chains were found, although the mutants displayed different phenotypic properties and produced different amounts of sialic acid. Ultrastructural examination revealed phenotypes with accumulations of apparent polysialic acid in the periplasm or cytosol. This observation provides direct support for the previously proposed translocation of the K1 polysaccharide via the periplasmic space during its biosynthesis.  相似文献   

16.
Escherichia coli K1 is a leading pathogen in neonatal sepsis and meningitis. The K1 capsule, composed of alpha2,8-linked polysialic acid, represents the major virulence factor. In some K1 strains, phase-variable O-acetylation of the capsular polysaccharide is observed, a modification that is catalyzed by the prophage-encoded O-acetyltransferase NeuO. Phase variation is mediated by changes in the number of heptanucleotide repeats within the 5'-coding region of neuO, and full-length translation is restricted to repeat numbers that are a multiple of three. To understand the biochemical basis of K1 capsule O-acetylation, NeuO encoded by alleles containing 0, 12, 24, and 36 repeats was expressed and purified to homogeneity via a C-terminal hexahistidine tag. All NeuO variants assembled into hexamers and were enzymatically active with a high substrate specificity toward polysialic acid with >14 residues. Remarkably, the catalytic efficiency (k(cat)/K(m)(donor)) increased linearly with increasing numbers of repeats, revealing a new mechanism for modulating NeuO activity. Using homology modeling, we predicted a three-dimensional structure primarily composed of a left-handed parallel beta-helix with one protruding loop. Two amino acids critical for catalytic activity were identified and corresponding alanine substitutions, H119A and W143A, resulted in a complete loss of activity without affecting the oligomerization state. Our results indicate that in NeuO typical features of an acetyltransferase of the left-handed beta-helix family are combined with a unique regulatory mechanism based on variable N-terminal protein extensions formed by tandem copies of an RLKTQDS heptad.  相似文献   

17.
The study of new biomaterials is the objective of many current research projects in biotechnological medicine. A promising scaffold material for the application in tissue engineering or other biomedical applications is polysialic acid (polySia), a homopolymer of alpha2,8-linked sialic acid residues, which represents a posttranslational modification of the neural cell adhesion molecule and occurs in all vertebrate species. Some neuroinvasive bacteria like, e.g. Escherichia coli K1 (E. coli K1) use polySia as capsular polysaccharide. In this latter case long polySia chains with a degree of polymerization of >200 are linked to lipid anchors. Since in vertebrates no polySia degrading enzymes exist, the molecule has a long half-life in the organism, but degradation can be induced by the use of endosialidases, bacteriophage-derived enzymes with pronounced specificity for polySia. In this work a biotechnological process for the production of bacterial polysialic acid is presented. The process includes the development of a multiple fed-batch cultivation of the E. coli K1 strain and a complete downstream strategy of polySia. A controlled feed of substrate at low concentrations resulted in an increase of the carbon yield (C(product)/C(substrate)) from 2.2 to 6.6%. The downstream process was optimized towards purification of long polySia chains. Using a series of adjusted precipitation steps an almost complete depletion of contaminating proteins was achieved. The whole process yielded 1-2g polySia from a 10-l bacterial culture with a purity of 95-99%. Further product analysis demonstrated maximum chain length of >130 for the final product.  相似文献   

18.
An α-2,8-linked polysialic acid (polySia) capsule confers immune tolerance to neuroinvasive, pathogenic prokaryotes such as Escherichia coli K1 and Neisseria meningitidis and supports host infection by means of molecular mimicry. Bacteriophages of the K1 family, infecting E. coli K1, specifically recognize and degrade this polySia capsule utilizing tailspike endosialidases. While the crystal structure for the catalytic domain of the endosialidase of bacteriophage K1F (endoNF) has been solved, there is yet no structural information on the mode of polySia binding and cleavage available. The crystal structure of activity deficient active-site mutants of the homotrimeric endoNF cocrystallized with oligomeric sialic acid identified three independent polySia binding sites in each endoNF monomer. The bound oligomeric sialic acid displays distinct conformations at each site. In the active site, a Sia3 molecule is bound in an extended conformation representing the enzyme-product complex. Structural and biochemical data supported by molecular modeling enable to propose a reaction mechanism for polySia cleavage by endoNF.  相似文献   

19.
The polysialic acid capsule of Escherichia coli K1 is an essential virulence determinant. The kps gene cluster, which encodes the proteins necessary for polymer synthesis and transport, is divided into three functional regions. In this report, we present evidence that the neuD gene from region 2 is involved in sialic acid synthesis. A non-polar chromosomal deletion in neuD was constructed. The defect was complemented by neuD in trans or by the addition of exogenous sialic acid. A NeuD homologue, Neu(III)D, from serotype III Streptococcus agalactiae (GBS) also restored capsule expression to the neuD deletion strain. These data confirm the role of neuD in E. coli sialic acid capsule synthesis and demonstrate that the neu(III)D homologue from GBS shares a similar enzymatic function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号