首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ashbya gossypii carries only a single gene (TEF) coding for the abundant translation elongation factor 1. Cloning and sequencing of this gene and deletion analysis of the promoter region revealed an extremely high degree of similarity with the well studied TEF genes of the yeast Saccharomyces cerevisiae including promoter upstream activation sequence (UAS) elements. The open reading frames in both species are 458 codons long and show 88.6% identity at the DNA level and 93.7% identity at the protein level. A short DNA segment in the promoter, between nucleotides -268 and -213 upstream of the ATG start codon, is essential for high-level expression of the A. gossypii TEF gene. It carries two sequences, GCCCATACAT and ATCCATACAT, with high homology to the UASrpg sequence of S. cerevisiae, which is an essential promoter element in genes coding for highly expressed components of the translational apparatus. UASrpg sequences are binding sites for the S. cerevisiae protein TUF, also called RAP1 or GRF1. In gel retardation with A. gossypii protein extracts we demonstrated specific protein binding to the short TEF promoter segment carrying the UASrpg homologous sequences.  相似文献   

4.
5.
6.
Summary Methylation protection experiments with four promoters (P1 and P2 of the pBR322 plasmid, lacUV5 and lambda P0) have shown that the RNA polymerases from Escherichia coli and Pseudomonas putida, while differing in the primary structure of the subunits involved in DNA binding, display identical patterns of DNA contacts. Nor do these enzymes differ in covalent cross-linking patterns with a partially apurinized promoter. We conclude that the two RNA polymerases have very similar structures of DNA binding centers. The evolutionary conservation of this structure may account for the fact that diverse RNA polymerases often recognize and efficiently use promoters of distant bacterial species.  相似文献   

7.
Tn163 is a transposable element identified in Rhizobium leguminosarum bv. viciae by its high insertion rate into positive selection vectors. The 4.6 kb element was found in only one further R. leguminosarum bv. viciae strain out of 70 strains investigated. Both unrelated R. leguminosarum bv. viciae strains contained one copy of the transposable element, which was localized in plasmids native to these strains. DNA sequence analysis revealed three large open reading frames (ORFs) and 38 bp terminal inverted repeats. ORF1 encodes a putative protein of 990 amino acids displaying strong homologies to transposases of class 11 transposons. ORF2, transcribed in the opposite direction, codes for a protein of 213 amino acids which is highly homologous to DNA invertases and resolvases of class II transposons. Homology of ORF1 and ORF2 and the genetic structure of the element indicate that Tn163 can be classified as a class II transposon. It is the first example of a native transposon in the genus Rhizobium. ORF3, which was found not to be involved in the transposition process, encodes a putative protein (256 amino acids) of unknown function. During transposition Tn163 produced direct repeats of 5 bp, which is typical for transposons of the Tn3 family. However, one out of the ten insertion sites sequenced showed a 6 by duplication of the target DNA; all duplicated sequences were A/T rich. Insertion of Tn163 into the sacB gene revealed two hot spots. Chromosomes of different R. leguminosarum bv. viciae strains were found to be highly refractory to the insertion of Tn163.  相似文献   

8.
9.
10.
11.
An iron-regulated gene, pbsC, required for siderophore production in fluorescent Pseudomonas sp. strain M114 has been identified. A kanamycin-resistance cassette was inserted at specific restriction sites within a 7 kb genomic fragment of M114 DNA and by marker exchange two siderophore-negative mutants, designated M1 and M2, were isolated. The nucleotide sequence of approximately 4 kb of the region flanking the insertion sites was determined and a large open reading frame (ORF) extending for 2409 by was identified. This gene was designated pbsC (pseudobactin synthesis C) and its putative protein product termed PbsC. PbsC was found to be homologous to a family of enzymes involved in the biosynthesis of secondary metabolites, including EntF of Escherichia coli. These enzymes are believed to act via ATP-dependent binding of AMP to their substrate. Several areas of high sequence homology between these proteins and PbsC were observed, including a conserved AMP-binding domain. The expression of pbsC is iron-regulated as revealed when a DNA fragment containing the upstream region was cloned in a promoter probe vector and conjugated into the wild-type strain, M114. The nucleotide sequence upstream of the putative translational start site contains a region homologous to previously defined –16 to –25 sequences of iron-regulated genes but did not contain an iron-box consensus sequence. It was noted that inactivation of the pbsC gene also affected other iron-regulated phenotypes of Pseudomonas M114.  相似文献   

12.
13.
The Trichoderma reesei xln2 gene coding for the pI 9.0 endoxylanase was isolated from the wild-type strain QM6a. The gene contains one intron of 108 nucleotides and codes for a protein of 223 amino acids in which two putative N-glycosylation target sites were found. Three different T. reesei strains were transformed by targeting a construct composed of the xln2 gene, including its promoter, to the endogenous cbh1 locus. Highest overall production levels of xylanase were obtained using T. reesei ALK02721, a genetically engineered strain, as a host. Integration into the cbh1 locus was not required for enhanced expression under control of the xln2 promoter.  相似文献   

14.
15.
The nucleotide sequence of a plasmid-borne 3.9 kb XhoI-SmaI fragment comprising the 3-region of the nifM gene, the nifL and nifA genes and the 5-region of nifB gene of Enterobacter agglomerans was determined. The genes were identified by their homology to the corresponding nif genes of Klebsiella pneumoniae. A typical 54-dependent promoter and a consensus NtrC-binding motif were identified upstream of nifL. The predicted amino acid sequence of NifL showed close similarities to NifL of K. pneumoniae and Azotobacter vinelandii. However, no histidine residue was found to correspond to histidine-304 of A. vinelandii NifL, which had been proposed to be required for the repressor activity of NifL. The NifA sequence with a putative DNA binding motif (Q(X3) A (X3) G (X5)I) and an ATP binding site in the C-terminal and central domains, respectively, resembles that of other known NifA proteins. The function of the nifL and nifA genes was demonstrated in vivo using a binary plasmid system by their ability to activate a nifH promoter-lacZ fusion at different temperatures and concentrations of NH 4 + . Maximal promoter activity occurred at 25°C, and it appears that the sensitivity of NifA to elevated temperatures is independent of NifL. The expression of nifL inhibited promoter activity in the presence of NifA when the initial NH 4 + concentration in the medium exceeded 4 mM.Communicated by H. Böhme  相似文献   

16.
The RecA protein is a key enzyme involved in DNA recombination in bacteria. Using a polymerase chain reaction (PCR) amplification we cloned arecA homolog fromHelicobacter pylori. The gene revealed an open reading frame (ORF) encoding a putative protein of 37.6 kDa showing closest homology to theCampylobacter jejuni RecA (75.5% identity). A putative ribosome binding site and a near-consensus σ70 promoter sequence was found upstream ofrec A. A second ORF, encoding a putative protein with N-terminal sequence homology to prokaryotic and eukaryotic enolases, is located directly downstream ofrecA. Compared to the wild-type strains, isogenicH. pylori recA deletion mutants of strains 69A and NCTC11637 displayed increased sensitivity to ultraviolet light and abolished general homologous recombination. The recombinantH. pylori RecA protein produced inEscherichia coli strain GC6 (recA ) was 38 kDa in size but inactive in DNA repair, whereas the corresponding protein inH. pylori 69A migrated at the greater apparent molecular weight of approx. 40 kDa in SDS-polyacrylamide gels. However, complementation of theH. pylori mutant using the clonedrecA gene on a shuttle vector resulted in a RecA protein of the original size and fully restored the general functions of the enzyme. These data can be best explained by a modification of RecA inH. pylori which is crucial for its function. The potential modification seems not to occur when the protein is produced inE. coli, giving rise to a smaller but inactive protein.  相似文献   

17.
Summary The nucleotide sequence was determined of a 5.3 kb region of the Xanthomonas campestris pathovar campestris genome carrying a gene cluster encoding protein secretion and pathogenicity functions. A putative promoter sequence and five open reading frames (ORF) which may be part of an operon were revealed. The five predicted primary translation products comprise 531, 390, 147, 169 and 138 amino acids with Mr values of 58854, 42299, 15548, 18214 and 15108 respectively. A sixth, partial ORF is also present. Between ORF1 and ORF2 is a sequence of unknown function showing 7 by duplications. The deduced amino acid sequence of ORF1 is related to the Klebsiella pneumoniae PulE protein, to the Bacillus subtilis ComG ORF1 and to the Agrobacterium tumefaciens VirB ORF11 products. In addition, the deduced amino acid sequence of ORF2 showed homology to the Pu1F and to the ComG ORF2 products. The proteins encoded by ORF3, 4 and 5 showed amino acid homology to PulG, H and I products respectively. The proteins encoded by ORF2, 3, 4 and 5 showed significant hydrophobic domains which may represent membrane-spanning regions. By contrast the protein encoded by ORF1 was largely hydrophilic and had two putative nucleoside triphosphate binding sites.The nucleotide sequence data in this paper have been deposited in the EMBL, Genbank and DDBJ nucleotide sequence databases under the accession number X59079  相似文献   

18.
19.
Summary In the yeast Saccharomyces cerevisiae the RAD2 gene is absolutely required for damage-specific incision of DNA during nucleotide excision repair and is inducible by DNA-damaging agents. In the present study we correlated sensitivity to killing by DNA-damaging agents with the deletion of previously defined specific promoter elements. Deletion of the element DRE2 increased the UV sensitivity of cells in both the G1/early S and S/G2 phases of the cell cycle as well as in stationary phase. On the other hand, increased UV sensitivity associated with deletion of the sequence-related element DRE1 was restricted to cells irradiated in G1/S. Specific binding of protein(s) to the promoter elements DRE1 and DRE2 was observed under non-inducing conditions using gel retardation assays. Exposure of cells to DNA-damaging agents resulted in increased protein binding that was dependent on de novo protein synthesis.  相似文献   

20.
温继龙  彭琦  赵欣  张杰  宋福平 《微生物学报》2019,59(11):2229-2239
【目的】通过分析苏云金芽胞杆菌(Bacillus thuringiensis,Bt)转录调控因子BkdR和多效调控因子CcpA对亮氨酸、异亮氨酸、缬氨酸代谢基因簇bkd的转录调控,明确bkd基因簇的转录调控机制。【方法】通过β-半乳糖苷酶活性测定分析bkd基因簇启动子的诱导转录活性,采用同源重组技术敲除Bt HD73菌株的ccpA基因,通过融合His标签的方法在大肠杆菌中表达纯化BkdR和CcpA蛋白,通过凝胶阻滞实验明确BkdR和CcpA蛋白与bkd基因簇启动子的结合作用。【结果】亮氨酸、异亮氨酸、缬氨酸可诱导bkd基因簇启动子Pptb的转录活性。Pptb的诱导活性在bkdR突变体中明显降低,而在ccpA突变体中明显上升。BkdR和CcpA蛋白与Pptb均有结合作用。【结论】bkd基因簇的转录活性受BkdR正调控,而受CcpA负调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号