首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red tilapia has aroused interest in many countries for its commercial potential. This tilapia strain combines a desirable coloration and appearance with other advantageous farming characteristics. To study the early appearance of melanophore pigmentation in tilapia, a red tilapia strain originating from Thailand and a wild type coloration of Oreochromis niloticus were used as broodstock to produce artificially wild x wild and red x red progenies. The larvae were assessed periodically up to the first feeding and were recorded. Wild type fish showed a regular appearance of stellate melanophores. In the red strain, the pattern of chromatophores varies from total absence of black spotting to different degrees of macromelanophore distribution. Comparison between red and wild types showed that these two tilapia can be easily scored at day 7. Further, we present indications that the pigmentation over the body develops independently of the initial degree of pigmentation.  相似文献   

2.
Nile tilapia were raised from eggs to 2 months of age under a coloured light regime (violet, blue, green, yellow, and red) and then tested for colour preference in a multiple chamber maze with different colour options. Fish were observed individually during three days at 8, 11, 14, and 17 h, every 2 min for 20 min and the visit frequency in each compartment was analyzed. Young Nile tilapia kept under yellow and red light showed preference for yellow and red, respectively. Fish held under violet, blue, and green light did not show any colour preference or avoidance. These results imply that environmental colour affects colour preference of Nile tilapia, possibly due to light-dependent shift of visual pigments in the retina, indicating that colour preference is not an innate response. This conclusion reinforces the idea that environmental colour modulates fish physiological and behavioural processes.  相似文献   

3.
Guppies (Poecilia reticulata) are colorful fish that have attracted the attention of pigmentation researchers for almost a century. Here, we report that the blond phenotype of the guppy is caused by a spontaneous mutation in the guppy ortholog of adenylate cyclase 5 (adcy5). Using double digest restriction site‐associated DNA sequencing (ddRADseq) and quantitative trait locus (QTL) mapping, we linked the blond phenotype to a candidate region of 118 kb, in which we subsequently identified a 2‐bp deletion in adcy5 that alters splicing and leads to a premature stop codon. We show that adcy5, which affects life span and melanoma growth in mouse, is required for melanophore development and formation of male orange pigmentation traits in the guppy. We find that some components of the male orange pattern are particularly sensitive to loss of Adcy5 function. Our work thus reveals a function for Adcy5 in patterning of fish color ornaments.  相似文献   

4.
L. Reich  J. Don  R. R. Avtalion 《Genetica》1990,80(3):195-200
The inheritance of the red color was studied in two different varieties of tilapia which are both considered as hybrids of Oreochromis mossambicus. Crosses between red tilapia from the Philippines (PRT) and Sarotherodon galilaeus, or Oreochromis aureus gave a 1:1 ratio of red: normal and crosses between F1 black fish gave only black offspring. On the other hand crosses between the F1 red fish gave a 3:1 ratio of red:black and crosses between F1 red and black offspring gave a 1:1 ratio. These results lead to the conclusion that red color is dominant over the normal black color and controlled by a single autosomal gene (R). A unique phenotype named albino with black eyes was observed among offspring of PRT and a presumed model of inheritance of this trait is proposed. Genetic analysis of a second variety of red tilapia (derived from an unknown origin) showed the following results: crosses between parents and between their F1 offspring consistently gave 100% red fish and crosses between this red tilapia and Oreochromis aureus gave 100% black offspring. The crosses between red and black F1 of these last two crosses gave a 1:1 ratio and crosses carried out between the black F1 offspring gave a 1:3 ratio of red:black. It may be concluded from these results that the black color is dominant in this strain and that this color is controlled by a single autosomal gene (B). The presumed mode of action of the dominant gene (R) as well as of the recessive gene (b) are discussed.  相似文献   

5.
Summary The guppy, Poecilia reticulata, is economically the most important species of freshwater ornamental fish cultured in Singapore. About 30 strains with different color patterns and fin shapes are reared in guppy farms practising monoculture in Singapore. To compare the growth rates of domesticated strains with different color patterns, newborn fry of 11 strains were obtained on the same day from a single farm in Singapore and were reared experimentally in the laboratory for about 100 days. Each strain was distributed randomly into 4 tanks with 30 fish/tank. Weekly weighings of 10 fish/tank were made from 17 to 100 days of age. Three strains were homozygous for the autosomal recessive blond gene which gives rise to a pale yellow background pigmentation (bb). These blond strains had significantly smaller body weights than corresponding ones with the same color pattern but with the wild-type grey-brown background coloration due to the dominant allele (BB). The strains with the red tail pattern due to a dominant X-linked gene (Rdt) had more rapid growth than those with other tail color patterns including the blue, black, green snakeskin and variegated. However, no significant differences were detected among the other color pattern strains. Thus among the strains studied, the blond strains were associated with slower growth while those with the red tail color were associated with faster growth.  相似文献   

6.
Sympatric speciation driven by sexual selection by female mate choice on a male trait is a much debated topic. The process is problematic because of the lack of negative frequency-dependent selection that can facilitate the invasion of a novel colour phenotype and stabilize trait polymorphism. It has recently been proposed that male-male competition for mating territories can generate frequency-dependent selection on male colouration. Rare male cichlid fish would enjoy a fitness advantage if territorial defenders bias aggression towards male cichlid fish of their own colour. We used blue (ancestral type) and red phenotypes of the Lake Victoria cichlid species complex Pundamilia. We tested the aggression bias of wild-caught territorial blue male cichlid fish from five separate populations for blue vs. red rival male cichlid fish using simulated intruder choice tests. The different populations vary in the frequency of red male cichlid fish, and in the degree of reproductive isolation between red and blue, reflecting different stages of speciation. Blue male cichlid fish from a population that lack red phenotypes biased aggression towards blue stimulus male cichlid fish. The same was found in two populations where blue and red are reproductively isolated sister species. This aggression bias may facilitate the invasion of a novel colour phenotype and species coexistence. Blue male cichlid fish from two populations where red and blue are hybridizing incipient species biased aggression towards red stimulus male cichlid fish. Thus, after a successful invasion of red, aggression bias alone is not likely to generate frequency dependence required to stabilize the coexistence of phenotypes. The findings show that aggression bias varies between stages of speciation, but is not enough to stabilize the process of speciation.  相似文献   

7.
Many teleost fish can adapt their body color to a background color by changing the morphology and density of their skin pigment cells. Melanophore density in fish skin decreases during long-term adaptation to a white background. Although cell death, especially apoptosis, is thought to be involved in these morphological changes, there are no data clearly supporting this mechanism. Using medaka fish, Oryzias latipes, we observed that, on a white background, melanophore size was reduced first and this was followed by a decrease in melanophore density caused by gradual cell death. The process of cell death included loss of cell activity, cell fragmentation, phagocytosis of the fragments, and clearance via the epidermis. Apoptosis was assessed by the appearance of phosphatidylserine on the cell surface of melanophores that had lost motile activity, and DNA fragments involved in cell fragmentation were detected by the TUNEL (TDT-mediated dUTP-biotin nick end-labeling) assay. However, when chemically denervated fish were used, although melanophore size was reduced as expected, cell death was suppressed even on a white background. In skin tissue culture, apoptosis in melanophores was stimulated significantly by norepinephrine, but not by melanin-concentrating hormone. These results indicate that melanophore density decreases by apoptosis, and suggest that sympathetic innervation has an important role in the regulation of apoptosis in melanophores. In analogous fashion, leucophores showed a significant decrease in density with an increase of cell death on a black background. We suggest that apoptosis regulates the balance of pigment cells in the skin of medaka fish to adapt their body color to a particular background.  相似文献   

8.
The Pin-tailed Manakin (Ilicura militaris) is a small, sexually dimorphic, frugivorous suboscine songbird (Pipridae; Passeriformes; Aves) endemic to the Atlantic Forest of Brazil. A variant individual of this species was recently described in which the red patches that characterise the male's Definitive plumage were replaced by orange-yellow ones. We show here that the pigments in the feathers of the colour variant are common dietary carotenoids (zeaxanthin, beta-cryptoxanthin), not carotenoids synthesised by birds, lending support to the suggestion that the individual is a colour mutant lacking the capability to transform yellow dietary pigments into the red pigments normally present in these feathers. By comparison, the yellow crown feathers of a close relative, the Golden-winged Manakin (Masius chrysopterus), contained predominantly endogenously produced epsilon-caroten-3'-ones. Surprisingly, the normal-coloured feathers of the male Pin-tailed Manakin owe their red hue to rhodoxanthin, an unusual carotenoid more commonly found in plants, rather than 4-keto-carotenoids typically found in red plumages and found lacking in previously characterised bird colour variants. The implication is that birds, like the tilapia fish, may be able to synthesise this unusual pigment endogenously from dietary precursors. A newly described carotenoid, 6-hydroxy-epsilon,epsilon-carotene-3,3'-dione, here named piprixanthin, present in the red feathers of the Pin-tailed Manakin, provides a plausible intermediate between epsilon,epsilon-carotene-3,3'-dione (canary-xanthophyll B), a bright yellow pigment found in this and other songbirds, and rhodoxanthin. It is apparent that pigeons (Columbidae, Columbiformes) also have the capability to produce rhodoxanthin, and a structurally related pigment, endogenously. The ability to synthesise rhodoxanthin might have arisen at least twice in birds.  相似文献   

9.
We studied the colour preference of isolated Nile tilapia (Oreochromis niloticus) and whether previous residence or body size can affect environmental colour choice. In the first phase, a cylindrical tank was divided into five differently coloured compartments (yellow, blue, green, white and red), a single fish was introduced into the tank and the frequency at which this fish visited each compartment was recorded over a 2-day study period. An increasingly larger fish (approx +2 cm in length each time) was then added into the tank on each of days 3, 5 and 7 (=four fish in the tank by day 7), and the frequency at which each fish visited the different compartments of the tank was observed twice a day to obtain visit frequency data on the differently sized fishes. This experiment was replicated six times. In the first phase, the solitary fish established residence inside the yellow compartment on the first and second days. Following the introduction of a larger fish, the smaller fish was displaced from the occupied compartment. Nile tilapia possibly shows this preference for yellow as a function of its visual spectral sensitivity and/or the spectral characteristics of its natural environment. Moreover, body size is an important factor in determining hierarchical dominance and territorial defence, and dominant fish chose the preferred environmental colour compartment as their territory.  相似文献   

10.
A golden clue to human skin colour variation   总被引:1,自引:0,他引:1  
Variations in human skin pigmentation are obvious, but how have skin colour differences evolved? Although clearly a polymorphic trait, the number and identity of key variants has remained unclear. Investigation of pigmentation phenotypes in model organisms provides a route to identify these genes and showed MC1R to be one key locus. Now, cloning of a classic zebrafish mutant, golden, identifies slc24a5 as a gene involved in fish skin pigmentation. 1 Strikingly this study identifies the human orthologue, SLC24A5, as likely to make a major contribution to the pale skin colouration of Western Europeans. BioEssays 28: 578–582, 2006. © 2006 Wiley Periodicals, Inc.  相似文献   

11.

Introduction

Animal colouration is a trade-off between being seen by intended, intra- or inter-specific receivers while not being seen by the unintended. Many fishes solve this problem by adaptive colouration. Here, we investigate whether this also holds for fluorescent pigments. In those aquatic environments in which the ambient light is dominated by bluish light, red fluorescence can generate high-contrast signals. The marine, cryptic fish Tripterygion delaisi inhabits such environments and has a bright red-fluorescent iris that can be rapidly up- and down-regulated. Here, we described the physiological and cellular mechanism of this phenomenon using a neurostimulation treatment with KCl and histology.

Results

KCl-treatment revealed that eye fluorescence regulation is achieved through dispersal and aggregation of black-pigmented melanosomes within melanophores. Histology showed that globular, fluorescent iridophores on the anterior side of the iris are grouped and each group is encased by finger-like extensions of a single posterior melanophore. Together they form a so-called chromatophore unit. By dispersal and aggregation of melanosomes into and out of the peripheral membranous extensions of the melanophore, the fluorescent iridophores are covered or revealed on the anterior (outside) of the iris.

Conclusion

T. delaisi possesses a well-developed mechanism to control the fluorescent emission from its eyes, which may be advantageous given its cryptic lifestyle. This is the first time chromatophore units are found to control fluorescent emission in marine teleost fishes. We expect other fluorescent fish species to use similar mechanisms in the iris or elsewhere in the body. In contrast to a previously described mechanism based on dendritic fluorescent chromatophores, chromatophore units control fluorescent emission through the cooperation between two chromatophore types: an emitting and an occluding type. The discovery of a second mechanism for fluorescence modulation strengthens our view that fluorescence is a relevant and adaptive component of fish colouration.  相似文献   

12.
ABSTRACT

The effects of cadmium concentration (0, 2.5 and 5 mg L?1) on melanocyte-stimulating hormone (MSH), melanophore index (MI), and melanophore number (MN), as well as a microscopic examination of scale melanocytes in tilapia (Oreochromis niloticus Linnaeus, 1757) was evaluated at different salinity levels (0, 5 and 15 ppt). The levels of MSH, MI, and MN were lower in Cd-exposed fish than in control fish (not exposed to Cd) at salinity level of 0 and 5 ppt. In ppt, however these levels of MSH, MI and MN in control and Cd-exposed fish were not significantly different. In the media without Cd, the levels of MSH, MI and MN were not significantly different at all salinities. The morphological changes of melanophores were higher in Cd-exposed fish than in control fish at salinity 0 and 5 ppt, respectively. These morphological changes were not significantly different in the control fish at all salinities as well as in fish exposed to 0–5 mg L?1 Cd at salinity of 15 ppt. This study therefore demonstrates that the toxic effect of Cd on MSH levels and melanophore morphology decreased with increasing salinity. Further, due to the sensitivity of chromatophores to Cd, melanophore morphology is proposed as a biomarker of Cd exposure in aquatic ecosystems.  相似文献   

13.
Whether premating isolation is achieved by male‐specific, female‐specific or sex‐independent assortative preferences often depends on the underlying evolutionary processes. Here we test mate preferences of males presented with females of different allopatric colour variants of the cichlid fish Tropheus sp., a Lake Tanganyika endemic with rich geographical colour pattern variation, in which the strength of sexual isolation varies between populations. We conducted two‐way mate choice experiments to compare behaviour of males of a red‐bodied morph (population Moliro) towards females from their own population with behaviour towards females from four allopatric populations at different stages of phylogenetic and phenotypic divergence. Males courted same‐population females significantly more intensely than females of other populations, and reduced their heteromorphic courtship efforts both with increasing genetic and increasing phenotypic distinctness of the females. In particular, females of a closely related red‐bodied population received significantly more courtship than either genetically distinct, similarly coloured females (‘Kirschfleck’ morph) or genetically related, differently coloured females (‘yellow‐blotch’ morph), both of which were courted similarly. Genetically and phenotypically distinct females (Tropheus polli) were not courted at all. Consistent with previous female‐choice experiments, female courtship activity also decreased with increasing genetic distance from the males’ population. Given successful experimental and natural introgression between colour morphs and the pervasive allopatry of related variants, we consider it unlikely that assortative preferences of both sexes were driven by direct selection during periods of secondary contact or, in turn, drove colour pattern differentiation in allopatry. Rather, we suggest that sexual isolation evolved as by‐product of allopatric divergence.  相似文献   

14.
Pinctada margaritifera is French Polynesia's most economically important aquaculture species. This pearl oyster has the specific ability to produce cultured pearls with a very wide range of colours, depending on the colour phenotypes of donor oysters used. Its aquaculture is still based on natural spat collection from wild stocks. We investigated three rare colour variants of P. margaritifera – orange flesh, and red and white shell colour phenotypes – in comparison with the wild‐type black flesh and shell commonly found in this species. The study aimed to assess the geographic distribution and genetic basis of these colour variants. Colour frequencies were evaluated during transfer and graft processes of pearl oyster seed captured at collector stations. Among the collection locations studied, Mangareva Island showed the highest rate of the orange flesh phenotype, whereas Takaroa and Takume atolls had relatively high rates of red and white shell phenotypes respectively. Broodstocks were made of these rare colour variants, and crosses were performed to produce first‐ and second‐generation progenies to investigate segregation. The results were consistent with Mendelian ratios and suggest a distinct model with no co‐dominance: (i) a two‐allele model for flesh trait, whereby the orange allele is recessive to the black fleshed type, and (ii) a three‐allele model for shell trait, whereby the black wild‐type allele is dominant to the red coloration, which is dominant to the white shell. Furthermore, the proposed model provides the basis for producing selected donor pearl oyster lines through hatchery propagation.  相似文献   

15.
Fish can change their skin and eye colour for background matching and signalling. Males of Gasterosteus aculeatus develop ornamental blue eyes and a red jaw during the reproductive season, colours that are further enhanced during courtship. Here, the effects of different hormones on physiological colour changes in the eyes and jaws of male and female G. aculeatus were investigated in vitro. In an in vivo experiment, G. aculeatus were injected with a receptor blocker of a pivotal hormone (noradrenaline) that controls colour change. In males, noradrenaline had aggregating effects on melanophore and erythrophore pigments resulting in blue eyes and a pale jaw, whereas melanocyte‐concentrating hormone (MCH) and melatonin resulted in a pale jaw only. When noradrenalin was combined with melanocyte stimulating hormone (MSH) or prolactin, the jaw became red, while the eyes remained blue. In vivo injection of yohimbine, an alpha‐2 adrenoreceptor blocker, resulted in dispersion of melanophore pigment in the eyes and inhibited the blue colouration. Altogether, the data suggest that noradrenalin has a pivotal role in the short‐term enhancement of the ornamental colouration of male G. aculeatus, potentially together with MSH or prolactin. This study also found a sex difference in the response to MCH, prolactin and melatonin, which may result from different appearance strategies in males, versus the more cryptic females.  相似文献   

16.
基于计算机视觉的罗非鱼适应环境的体色变化研究   总被引:2,自引:0,他引:2  
多数鱼类的体色会受应激条件、环境背景、健康状况、生长发育和社会地位等因素的影响而发生改变。本文利用基于计算机视觉的体色量化技术研究正常情况和社会应激条件下罗非鱼对背景颜色的适应性,以及在背景颜色变化过程中体色变化的响应速度。实验结果表明:已适应白色背景的鱼放入黑色背景水体后,体色变化主要发生在前10s内,放入时和放入10s后的体色明度值差异极显著(**p<0.01);在白色背景下适应的鱼放入黑色背景下适应2h后其体色变得很黑,将其放入白色背景水体后体色在10s内可发生由深到浅的变化,放入时和放入10s后的体色明度值差异极显著(** p<0.01)。在蓝色背景下适应的鱼放入黑色背景水体后,体色变化主要发生在前10s内,放入时和放入10s后的体色明度值差异显著(*p<0.05)。在蓝色背景下适应的鱼放入黑色背景下适应2h后的体色变得很黑,再将其放入白色背景水体后体色由深变浅,放入时和10s后的体色明度值发生极显著变化(**p<0.01)。处于社会应激条件下劣势地位的鱼体色会变黑,刚放入白色背景水体时的平均灰级达到12.7阶,放入60s、1800s后的体色和刚放入时没有显著差异。受社会应激影响轻微的鱼体色在1800s后适应了环境的颜色,明度值和没有受应激影响鱼的体色接近,而受伤或受社会应激影响较严重的鱼体色改变较小。鱼在高浓度非离子氨(UIA浓度为0.178 mg/L)的水中处理3h后,鱼的体色变得很黑,刚放入白色背景水体时平均灰级达到15.1阶,放入10s、120s后鱼的体色变化不大,放入180s后鱼的体色变浅,平均灰级达到9.3阶,与刚放入时的体色明度相比差异显著(*p<0.05)。  相似文献   

17.
The amount of ultraviolet (UV)-B radiation reaching the sea surface has increased due to ozone depletion. Several laboratory studies have highlighted the negative impacts of UV radiation on fish using hatchery-reared specimens. However, potential differences in UV tolerance between wild and hatchery-reared fish have been given little consideration. Wild and reared juveniles of red sea bream and black sea bream were exposed to one of four different UV-B radiation levels (1.8; 1.1; 0.4; 0?W/m2) for 4?h. Survival rate was measured every 2?h for a period of 24?h (red sea bream) or 48?h (black sea bream) following exposure. Wild and reared juvenile red sea bream were characterized by similar survival rate, with survival declining to almost 0?% 24?h after exposure at the 1.1 and 1.8?W/m2 levels. In black sea bream, wild individuals showed significantly higher survival than reared fish in levels 1.1 and 1.8?W/m2. Melanophore density was also measured since melanin absorbs UV radiation. Wild black sea bream showed higher melanophore density compared to reared individuals, while no such difference was observed in red sea bream. We conclude that wild black sea bream juveniles acquire higher UV tolerance partly by increasing melanophore density through exposure to UV radiation. Our results indicate that the predicted impacts of UV radiation on fish populations solely based on experimentation with hatchery-reared specimens may be overestimated for some species.  相似文献   

18.
Examined was the influence of different colours of light on the growth of adult Nile tilapia (Oreochromis niloticus) held either individually (initial size 12.8 ± 1.1 cm; 62.9 ± 15.6 g) or in groups (initial size 7.8 ± 0.8 cm; 17.2 ± 6.4 g). Various colours (blue 434.5 nm, violet 430.0 nm, red 609.7 nm, green 525.2 nm and yellow 545.2 nm) did not affect weight gain of fish held individually (initial to final weights: blue 62.5 ± 18.4 to 72.9 ± 16.0 g, violet 63.5 ± 17.8 to 78.0 ± 19.1 g, green 62.1 ± 13.0 to 72.9 ± 15.7 g, and yellow 60.4 ± 20.4 to 71.0 ± 21.1 g); red seemed to restrict growth (initial to final weights: 65.8 ± 13.3 to 71.8 ± 10.8 g). Final weight differences were observed among individuals in groups maintained under blue, violet, red and green light (smaller and larger fish: blue 13.2 ± 5.0 and 18.9 ± 7.0 g, violet 17.3 ± 5.2 and 23.8 ± 4.7 g, red 14.7 ± 3.3 and 23.9 ± 4.7 g, and green 19.4 ± 7.8 and 28.6 ± 8.1 g); however, under the yellow light there were no differences in final weights (smaller fish 19.1 ± 4.8 g; larger fish 26.2 ± 5.2 g). Under the red light, heterogeneity in growth was observed earlier than with the other colours. It is therefore suggested that the red colour might have some harmful effects on Nile tilapia growth, limiting weight gain when fish are individually maintained, and with weight differences increasing when fish are held in groups. On the other hand, the yellow light seems to be positive for Nile tilapia, as it appears not to affect individually‐held fish, but reduces variation in growth of group‐maintained fish, promoting growth homogeneity.  相似文献   

19.
Although the function of the OCA2 gene product has not been totally clarified, variation in OCA2 has been associated with skin and hair pigmentation in human and mouse. However, its contribution to skin colour in domestic species has not been reported. In this study, cDNA and intron 9 sequences of the porcine OCA2 gene have been characterized in several pig populations. The cDNA sequence alignment of 20 animals from eight porcine populations allowed the identification of 10 single nucleotide polymorphisms (SNPs); five of the 10 SNPs were non-synonymous. The intron 9 sequence alignment of 12 animals belonging to four pig populations revealed four additional SNPs. Skin colour variation was analysed in a red strain of Iberian pigs with segregation of three SNPs forming two OCA2 intragenic haplotypes. Results from this study provide evidence of a suggestive dominant effect of haplotypes on colour intensity and indicate an important contribution of additive polygenic effects (h2 = 0.56 +/- 0.21) to the variance of this trait.  相似文献   

20.
A histological, histochemical and ultrastructural examination of the skin of wild and cultured plaice was carried out, using fish from each year class from 0+ to 4+. The skin was shown to be similar in general structure to that of other teleosts but a previously undescribed cell, designated the Eosinophilic Granular Cell, a dendritic secretory cell found throughout the basal layers of the epidermis, is described. It was fixed only by formalin or dichromate, and contained numerous acidophilic granules. Melanin-bearing macrophages were observed migrating through the epithelium, but no DOPA or tyrosinase positive cells were observed by the methods used. Mast cells were very common in the dermis but were only demonstrable by special techniques. The melanophore and guano-phore systems are described and although no melanophores or melanocytes were found in the unpigmented areas of partially pigmented hatchery-reared fish, the integrity of the guanophore system was complete in such fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号