首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Technological innovation has helped the zebrafish embryo gain ground as a disease model and an assay system for drug screening. Here, we review the use of zebrafish embryos and early larvae in applied biomedical research, using selected cases. We look at the use of zebrafish embryos as disease models, taking fetal alcohol syndrome and tuberculosis as examples. We discuss advances in imaging, in culture techniques (including microfluidics), and in drug delivery (including new techniques for the robotic injection of compounds into the egg). The use of zebrafish embryos in early stages of drug safety-screening is discussed. So too are the new behavioral assays that are being adapted from rodent research for use in zebrafish embryos, and which may become relevant in validating the effects of neuroactive compounds such as anxiolytics and antidepressants. Readouts, such as morphological screening and cardiac function, are examined. There are several drawbacks in the zebrafish model. One is its very rapid development, which means that screening with zebrafish is analogous to "screening on a run-away train." Therefore, we argue that zebrafish embryos need to be precisely staged when used in acute assays, so as to ensure a consistent window of developmental exposure. We believe that zebrafish embryo screens can be used in the pre-regulatory phases of drug development, although more validation studies are needed to overcome industry scepticism. Finally, the zebrafish poses no challenge to the position of rodent models: it is complementary to them, especially in early stages of drug research.  相似文献   

2.
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.  相似文献   

3.
Teh C  Chong SW  Korzh V 《BioTechniques》2003,35(5):950-954
The zebrafish is widely used for functional studies of vertebrate genes. It is accessible to manipulations during all stages of embryogenesis because the embryo develops externally and is optically transparent. However, functional studies conducted on the zebrafish have been generally limited to the earliest phase of activity of the gene of interest, which is a limitation in studies of genes that are expressed at various stages of embryonic development. It is therefore necessary to develop methods that allow for the modulation of gene activity during later stages of zebrafish development while leaving earlier functions intact. We have successfully electroporated the green fluorescent protein (GFP) reporter gene into the neural tube of the zebrafish embryo in a unidirectional or bilateral manner. This approach can be used for the functional analysis of the late role of developmental genes in the neural tube of zebrafish embryo and larvae.  相似文献   

4.
Mutagenesis screens in zebrafish have uncovered several hundred mutant alleles affecting the development of the retina and established the zebrafish as one of the leading models of vertebrate eye development. In addition to forward genetic mutagenesis approaches, gene function in the zebrafish embryo is being studied using several reverse genetic techniques. Some of these rely on the overexpression of a gene product, others take advantage of antisense oligonucleotides to block function of selected loci. Here we describe these methods in the context of the developing eye.  相似文献   

5.
We have isolated a cDNA encoding chaperonin 10 (cpn10) from the zebrafish. Using northern, western, and in situ hybridization analysis, we observed that the cpn10 gene is expressed uniformly and ubiquitously throughout embryonic development of the zebrafish. Upregulation of cpn10 expression was observed following exposure of zebrafish embryos to a heat shock of 1 hour at 37 degrees C compared to control embryos raised at 27 degrees C. The extracellular form of Cpn10 called early pregnancy factor (EPF), found in the serum of pregnant mammals, was not detected in the serum of either male or female zebrafish. These expression studies suggest that Cpn10 plays a general role in zebrafish development as well as being consistent with the hypothesis that EPF is involved in the embryo implantation process in mammals.  相似文献   

6.
The dorsoventral polarity of the vertebrate embryo is established through interactions between ventrally expressed bone morphogenetic proteins and their organizer-borne antagonists Noggin, Chordin, and Follistatin. While the opposing interactions between Short Gastrulation/Chordin and Decapentaplegic/BMP4 have been evolutionarily conserved in arthropods and vertebrates, there has been up to now no functional evidence of an implication of Noggin in the early patterning of organisms other than Xenopus. We have studied the contribution of Noggin to the embryonic development of the zebrafish. While single-copy noggin genes have been characterized in several vertebrate species, we report that the zebrafish genome harbors three noggin homologues. Overexpression experiments show that Noggin1, Noggin2, and Noggin3 can antagonize ventralizing BMPs. While all three factors have similar biological activities, their embryonic expression is different. The combined expression of the three genes recapitulates the different aspects of the expression of the single-copy noggin genes of other organisms. This suggests that the three zebrafish noggin genes and the single noggin genes of other vertebrates have evolved from a common ancestor and that subsequent differential loss of tissue-specific elements in the promoters of the different zebrafish genes accounts for their more restricted spatiotemporal expression. Finally we show that noggin1 is expressed in the fish organizer and able to dorsalize the embryo, suggesting its implication in the dorsoventral patterning of the zebrafish.  相似文献   

7.
Primordial germ cells (PGCs) are the progenitors of reproductive cells in metazoans and are an important model for the study of cell migration in vivo. Previous reports have suggested that Hedgehog (Hh) protein acts as a chemoattractant for PGC migration in the Drosophila embryo and that downstream signaling proteins such as Patched (Ptc) and Smoothened (Smo) are required for PGC localization to somatic gonadal precursors. Here we interrogate whether Hh signaling is required for PGC migration in vertebrates, using the zebrafish as a model system. We find that cyclopamine, an inhibitor of Hh signaling, causes strong defects in the migration of PGCs in the zebrafish embryo. However, these defects are not due to inhibition of Smoothened (Smo) by cyclopamine; rather, we find that neither maternal nor zygotic Smo is required for PGC migration in the zebrafish embryo. Cyclopamine instead acts independently of Smo to decrease the motility of zebrafish PGCs, in part by dysregulating cell adhesion and uncoupling cell polarization and translocation. These results demonstrate that Hh signaling is not required for zebrafish PGC migration, and underscore the importance of regulated cell-cell adhesion for cell migration in vivo.  相似文献   

8.
The expression of at least some biomarkers of toxicity is generally thought to precede the appearance of frank pathology. In the context of developmental toxicity, certain early indicators may be predictive of later drastic outcome. The search for predictive biomarkers of toxicity in the cells (blastomeres) of an early embryo can benefit from the fact that for normal development to proceed, the maintenance of blastomere cellular integrity during the process of transition from an embryo to a fully functional organism is paramount. Actin microfilaments are integral parts of blastomeres in the developing zebrafish embryo and contribute toward the proper progression of early development (cleavage and epiboly). In early embryos, the filamentous actin (F-actin) is present and helps to define the boundary of each blastomere as they remain adhered to each other. In our studies, we observed that when blastomeric F-actin is depolymerized by agents like gelsolin, the blastomeres lose cellular integrity, which results in abnormal larvae later in development. There are a variety of toxicants that depolymerize F-actin in early mammalian embryos, the later consequences of which are, at present, not known. We propose that very early zebrafish embryos (~5-h old) exposed to such toxicants will also respond in a like manner. In this review, we discuss the potential use of F-actin disruption as a predictive biomarker of developmental toxicity in zebrafish.  相似文献   

9.
A major approach to the study of development is to compare the phenotypes of normal and mutant individuals for a given genetic locus. Understanding the development of a complex metazoan therefore requires examination of many mutants. Relatively few organisms are being studied this way, and zebrafish is currently the best example of a vertebrate for which large-scale mutagenesis screens have successfully been carried out. The number of genes mutated in zebrafish that have been cloned expands rapidly, bringing new insights into a number of developmental pathways operating in vertebrates. Here, we discuss work on zebrafish mutants affecting gastrulation and patterning of the early embryo. Gastrulation is orchestrated by the dorsal organizer, which forms in a region where maternally derived beta-catenin signaling is active. Mutation in the zygotic homeobox gene bozozok disrupts the organizer genetic program and leads to severe axial deficiencies, indicating that this gene is a functional target of beta-catenin signaling. Once established, the organizer releases inhibitors of ventralizing signals, such as BMPs, and promotes dorsoanterior fates within all germ layers. In zebrafish, several mutations affecting dorsal-ventral (D/V) patterning inactivate genes functioning in the BMP pathway, stressing the central role of this pathway in the gastrula embryo. Cells derived from the organizer differentiate into several axial structures, such as notochord and prechordal mesoderm, which are thought to induce various fates in adjacent tissues, such as the floor plate, after the completion of gastrulation. Studies with mutants in nodal-related genes, in one-eyed pinhead, which is required for nodal signaling, and in the Notch pathway reveal that midline cell fate specification is, in fact, initiated during gastrulation. Furthermore, the organizer coordinates morphogenetic movements, and zebrafish mutants in T-box mesoderm-specific genes help clarify the mechanism of convergence movements required for the formation of axial and paraxial mesoderm.  相似文献   

10.
Although the zebrafish possesses several favourable characteristics that make it an ideal model for genetic studies of vertebrate development, one disadvantage of this model system is the absence of methods for the production of gene knockouts. The authors' laboratory, and others, are working to develop zebrafish pluripotent embryonic stem (ES) and primordial germ cell (PGC) cultures that can be used for cell-mediated gene transfer and the production of knockout mutant lines of fish. Progress has been made in developing short-term cell cultures that possess the ability to contribute to multiple tissues, including the germ line of a host embryo, and transgenic lines of zebrafish have been established using the embryo cell cultures. Work is in progress to extend the length of time that the embryo cells can be maintained in culture without losing their ability to generate germ-line chimeras.  相似文献   

11.
Fetal alcohol syndrome (FAS) is a severe manifestation of embryonic exposure to ethanol. It presents with characteristic defects to the face and organs, including mental retardation due to disordered and damaged brain development. Fetal alcohol spectrum disorder (FASD) is a term used to cover a continuum of birth defects that occur due to maternal alcohol consumption, and occurs in approximately 4% of children born in the United States. With 50% of child-bearing age women reporting consumption of alcohol, and half of all pregnancies being unplanned, unintentional exposure is a continuing issue2. In order to best understand the damage produced by ethanol, plus produce a model with which to test potential interventions, we developed a model of developmental ethanol exposure using the zebrafish embryo. Zebrafish are ideal for this kind of teratogen study3-8. Each pair lays hundreds of eggs, which can then be collected without harming the adult fish. The zebrafish embryo is transparent and can be readily imaged with any number of stains. Analysis of these embryos after exposure to ethanol at different doses and times of duration and application shows that the gross developmental defects produced by ethanol are consistent with the human birth defect. Described here are the basic techniques used to study and manipulate the zebrafish FAS model.  相似文献   

12.
The zebrafish embryo test is a widely used bioassay for the testing of chemicals, effluents and other types of environmental samples. Oxygen depletion in the testing of sediments and effluents is especially important and may be a confounding factor in the interpretation of apparent toxicity. In order to identify oxygen levels critical to early developmental stages of zebrafish, oxygen consumption of zebrafish embryos between 0 and 96h post-fertilization, minimum oxygen levels required by the embryos for survival as well as the effects of oxygen depletion following exposure to model sediments were determined. No significant effects on zebrafish embryo development were observed for oxygen concentrations between 7.15 and 3.33mg/L, whereas at concentrations between 3.0and 2.0mg/L minor developmental retardations were observed, yet without any pathological consequences. Oxygen concentrations lower than 0.88mg/L were 100% lethal. In the sediment contact tests with zebrafish embryos, native sediments rich in organic materials rapidly developed strongly hypoxic conditions, particularly at the sediment-water interface (0 to 500μm distance to the sediment).  相似文献   

13.
Kim DH  Sun Y  Yun S  Lee SH  Kim B 《Journal of biomechanics》2005,38(6):1359-1353
The zebrafish is a model organism for addressing questions of vertebrate embryo development. In this paper, the softening phenomenon of the chorion envelope of zebrafish embryos at different developmental stages was mechanically quantitated by using a microrobotic force sensing system. The microrobotic system integrates a piezoelectric cellular force sensor to measure the required forces for penetrating the chorion envelope. Magnitude of penetration forces was found to decrease as an embryo develops. The results mechanically quantitate "chorion softening" in zebrafish embryos due to protease activities subtly modifying the chorion structure, providing an understanding of zebrafish embryo development.  相似文献   

14.
Time-lapse imaging is a technique that allows for the direct observation of the process of morphogenesis, or the generation of shape. Due to their optical clarity and amenability to genetic manipulation, the zebrafish embryo has become a popular model organism with which to perform time-lapse analysis of morphogenesis in living embryos. Confocal imaging of a live zebrafish embryo requires that a tissue of interest is persistently labeled with a fluorescent marker, such as a transgene or injected dye. The process demands that the embryo is anesthetized and held in place in such a way that healthy development proceeds normally. Parameters for imaging must be set to account for three-dimensional growth and to balance the demands of resolving individual cells while getting quick snapshots of development. Our results demonstrate the ability to perform long-term in vivo imaging of fluorescence-labeled zebrafish embryos and to detect varied tissue behaviors in the cranial neural crest that cause craniofacial abnormalities. Developmental delays caused by anesthesia and mounting are minimal, and embryos are unharmed by the process. Time-lapse imaged embryos can be returned to liquid medium and subsequently imaged or fixed at later points in development. With an increasing abundance of transgenic zebrafish lines and well-characterized fate mapping and transplantation techniques, imaging any desired tissue is possible. As such, time-lapse in vivo imaging combines powerfully with zebrafish genetic methods, including analyses of mutant and microinjected embryos.  相似文献   

15.
Ya-juan Li  Bing Hu 《遗传学报》2012,39(9):521-534
Zebrafish(Danio rerio) is an ideal model for studying the mechanism of infectious disease and the interaction between host and pathogen.As a teleost,zebrafish has developed a complete immune system which is similar to mammals.Moreover,the easy acquirement of large amounts of transparent embryos makes it a good candidate for gene manipulation and drug screening.In a zebrafish infection model,all of the site,timing,and dose of the bacteria microinjection into the embryo are important factors that determine the bacterial infection of host.Here,we established a multi-site infection model in zebrafish larvae of 36 hours post-fertilization(hpf) by micro-injecting wild-type or GFP-expressing Staphylococcus aereus(5.aureus) with gradient burdens into different embryo sites including the pericardial cavity(PC),eye,the fourth hindbrain ventricle(4V),yolk circulation valley(YCV),caudal vein(CV),yolk body(YB),and Duct of Cuvier(DC) to resemble human infectious disease.With the combination of GFP-expressing S.aureus and transgenic zebrafish Tg(corola:eGFP;lyz:Dsred) and Tg(lyz:Dsred) lines whose macrophages or neutrophils are fluorescent labeled,we observed the dynamic process of bacterial infection by in vivo multicolored confocal fluorescence imaging.Analyses of zebrafish embryo survival, bacterial proliferation and myeloid cells phagocytosis show that the site- and dose-dependent differences exist in infection of different bacterial entry routes.This work provides a consideration for the future study of pathogenesis and host resistance through selection of multi-site infection model.More interaction mechanisms between pathogenic bacteria virulence factors and the immune responses of zebrafish could be determined through zebrafish multi-site infection model.  相似文献   

16.
We have investigated the function of the retinoic acid metabolising enzyme, CYP26B1, by administering an antisense morpholino oligonucleotide to zebrafish embryos. The result was an alteration in the morphology of the embryo in those regions which express the gene, namely an embryo with a smaller head, correspondingly smaller hindbrain rhombomeres and severely reduced numbers of vagal brachiomotor neurons. Most strikingly, these embryos had defective or absent jaw cartilages implying a role for this enzyme in patterning or migration of the neural crest cells which give rise to this tissue type. In order to determine whether this phenotype resembles that of excess retinoic acid or a deficiency of retinoic acid, we compared the jaw defects following retinoic acid treatment or DEAB treatment, the latter being an inhibitor of retinoic acid synthesis. The effects of the inhibitor rather than excess retinoic acid most closely phenocopied the jaw defects seen with the Cyp26B1 morpholino which suggests that, at least in the zebrafish embryo, the action of CYP26B1 in the neural crest may not be simply to catabolise all-trans-RA.  相似文献   

17.
Tumor/endothelial cell cross-talk plays a pivotal role in the growth, neovascularization and metastatic dissemination of human cancer. Recent observations have shown that the teleost zebrafish (Danio rerio) may represent a powerful experimental platform in cancer research. Various tumor models have been established in zebrafish adults, juveniles, and embryos and novel genetic tools and high resolution in vivo imaging techniques have been exploited. In particular, grafting of mammalian tumor cells in zebrafish embryo body may simulate early stages of tumor development, neovascularization, and local invasion whereas the injection of cancer cells in the bloodstream of zebrafish embryo may allow the study of metastatic homing and colonization. This review focuses on the recent advances in tumor xenotransplantation in zebrafish embryo for the in vivo study of the cancer neovascularization, invasion and metastatic processes. This article is part of a Special Issue entitled: Animal Models of Disease.  相似文献   

18.
The zebrafish has emerged as a valuable genetic model system for the study of developmental biology and disease. Zebrafish share a high degree of genomic conservation, as well as similarities in cellular, molecular, and physiological processes, with other vertebrates including humans. During early ontogeny, zebrafish embryos are optically transparent, allowing researchers to visualize the dynamics of organogenesis using a simple stereomicroscope. Microbead implantation is a method that enables tissue manipulation through the alteration of factors in local environments. This allows researchers to assay the effects of any number of signaling molecules of interest, such as secreted peptides, at specific spatial and temporal points within the developing embryo. Here, we detail a protocol for how to manipulate and implant beads during early zebrafish development.  相似文献   

19.
The mechanisms controlling cell movements during vertebrate gastrulation are not known. Studies using the zebrafish embryo show promise at identifying these mechanisms, combining an embryo that is accessible and optically clear with mutations that affect early development. In this article we describe the movements of cells during the midblastula, early epiboly and gastrulation stages of the zebrafish, correlating 'domains of movement' with embryonic morphology. We suggest that these domains of movement may parallel the 'zones of movement' of Xenopus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号