首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new analysis of long jump performance is presented, in which mathematical models of both the approach and aerial phases are considered. Equations describing each phase have been set down and solved by numerical integration. It is demonstrated that both wind and altitude have important effects on long jump performance, and some representative calculations have been made. Increased jump lengths, resulting from wind assistance or altitude, are shown to be primarily attributable to the increased sprinting speed attained during the approach phase. The present work indicates that previous calculations of the increment in jump length due to altitude which Beamon enjoyed when he established his world record at the Mexico Olympics of 1968 may have been underestimated by a wide margin.  相似文献   

2.
It was hypothesized that a crew's rowing performance was predictable based on their total propulsive power, synchrony (a real-time comparison of rower propulsive force magnitudes) and total drag contribution (a measure of the rowers' effect on shell drag forces during the recovery), quantities calculated from individual rower's force-time profiles and recovery kinematics. A rowing pair was equipped with transducers to gather shell velocity, propulsive blade force, oar angular position and seat displacement. Eight subjects (four port, four starboard) participated in two rounds of data collection. The first round pairings were random, while the second round pairings were assigned based on Round 1 results. Regression analysis and ANCOVA were used to test the validity of assumptions inherent in the predictive model and, if applicable, explore a linear model predicting rowing performance based on total propulsive power, synchrony and total drag contribution. Total propulsive power, synchrony and total drag contribution were correlated and further were affected by pairing, violating assumptions inherent in the linear model. The original hypothesis was not supported based on these violations. Important findings include (1) performance cannot be predicted using the simple linear model proposed, (2) rowers' force-time profiles are repeatable between trials, with some but not all rowers adapting their force-time profile dependent on their pair partner, presumably in an effort to increase the level of synchrony between the two, and (3) subtle biomechanical factors may play a critical role in performance.  相似文献   

3.
Proponents of chain training suggest that using chains hung from the ends of barbells rather than using conventional barbells alone enhances strength, power, and neuromuscular adaptations. The purpose of this study was to determine whether a conventional barbell with chains compared to a conventional barbell without chains would affect the performance of an Olympic Clean. The subjects were also asked regarding their perception of how chains affected their lifting. Four male and 3 female competitive weightlifters who used chains as part of their training participated in the study. The testing protocol compared the subjects' lifting 80% and 85% of their 1 repetition maximum (1RM) using conventional barbells and their lifting 80% and 85% of their 1RM using chains (75% conventional barbells + 5% chains and 80% conventional barbells + 5% chains, respectively). Video analysis evaluated the bar's vertical displacement and velocity and the rate of force production. Vertical ground reaction forces for the first-pull, unweighting, and second-pull phases of the lift were evaluated by using a force plate. After testing, the subjects completed a 2-item questionnaire asking individual perception of the effects of the chains. The results showed no significant difference for condition for any of the variables examined. In contrast, all subjects perceived that the chains required a greater effort. In conclusion, the results indicated that the addition of chains provided no greater value over lifting conventional barbells alone in the performance of the Olympic Clean, although the subjects perceived the chains to have a positive effect.  相似文献   

4.
In this study, a procedure for evaluating the performance of an athlete in a squat jump has been developed. The athletes were divided into 2 categories according to their level of merit: elite athletes and non-elite athletes. In some of the subjects, the vertical component of acceleration during the squat jump was acquired with a uniaxial accelerometer. The acceleration-time curves obtained for each category of athletes were analyzed. Some analysis parameters suitable for establishing an athletic training level index were determined. A threshold value for this index that can be used to check gesture learning was also established, allowing the index to be used as a parameter for defining sport performance in a squat jump; thus it can also be used, during the training of an athlete, as the performance index to which reference should be made.  相似文献   

5.
During a vertical drop jump (VDJ), the human neuromuscular system absorbs and reuses external loads applied to the lower extremity by coordinating the musculoskeletal system. This study aims to investigate the influence of the eccentric strength of the knee extensor muscles on the biomechanical factors of a VDJ. Participants were divided into two groups based on the eccentric strength of their knee extension muscles: low eccentric (LECC) and high eccentric (HECC) strength groups. The VDJ joint kinematics and kinetics of the lower extremity, the fascicle behavior of the vastus lateralis, and the muscle activation of the knee extensor muscles were simultaneously recorded during maximum-effort VDJ. Compared with the LECC group, the HECC group showed a higher jump, greater knee and ankle joint stiffness, and smaller fascicle length change. These findings suggest that the eccentric strength capacity of the knee extensor muscles accounts for the different biomechanical strategies (bouncing-type for HECC and absorbing-type for LECC) observed between the groups. Consequently, the eccentric strength of the knee extensor muscle may be an essential factor in determining the biomechanical strategy for VDJ and should be considered in the jumping performance enhancement training paradigm.  相似文献   

6.
Significant benefits in standing long jump performance have been demonstrated when subjects were provided verbal instructions that promoted an external focus of attention compared with an internal focus of attention, suggesting differences in ground reaction forces. The purpose of the present study was to evaluate peak force and jump performance between internal and external focus of attention strategies. Untrained subjects were assigned to both experimental conditions in which verbal instructions were provided to promote either an external or internal focus of attention. All subjects completed a total number of 5 standing long jumps. The results of the study demonstrated that the external focus of attention condition elicited significantly greater jump distance (153.6 ± 38.6 cm) than the internal focus of attention condition (139.5 ± 46.7 cm). There were no significant differences observed between conditions in peak force (1429.8 ± 289.1 N and 1453.7 ± 299.7 N, respectively). The results add to the growing body of literature describing the training and learning benefits of an external focus of attention. Practitioners should create standardized verbal instructions using an external focus of attention to maximize standing long jump performance.  相似文献   

7.
The drop vertical jump is a popular plyometric exercise. Two distinct techniques are commonly used to initiate the drop vertical jump. With the ‘step-off’ technique, athletes step off a raised platform with their dominant limb, while their non-dominant limb remains on the platform. In contrast, with the ‘drop-off’ technique, athletes lean forward and drop off the platform, with both feet leaving the platform more simultaneously. The purpose of this study was to compare landing and jumping kinetics, inter-limb kinetic symmetry, and jump performance when individuals used the step-off and drop-off techniques, and to examine whether potential differences between these techniques are affected by platform height. Sixteen subjects completed drop vertical jumps with the drop-off and step-off techniques, from relatively low and high platform heights. Ground reactions forces were recorded for the dominant and non-dominant limbs during the land-and-jump phase of the drop vertical jump. Subjects demonstrated greater inter-limb asymmetry in peak impact forces when using the step-off technique, vs. the drop-off technique. This difference between the techniques was consistent across platform heights. The step-off technique appears to result in greater asymmetry in limb loading, which could contribute to the development of neuromuscular asymmetries between the limbs and/or asymmetric landing patterns.  相似文献   

8.
Handball is one of the top four athletic games with highest injury risks. The jump shot is the most accomplished goal shot technique and the lower extremities are mostly injured. As a basis for ankle sprain simulation, the aim of this study was to extend the ankle region of an existing musculoskeletal full-body model through incorporation of three prominent lateral ankle ligaments: ligamentum fibulotalare anterius (LFTA), ligamentum fibulotalare posterius (LFTP), ligamentum fibulocalcaneare (LFC). The specific objective was to calculate and visualise ligament force scenarios during the jumping and landing phases of controlled jump shots. Recorded kinematic data of performed jump shots and the corresponding ground reaction forces were used to perform inverse dynamics. The calculated peak force of the LFTA (107 N) was found at maximum plantarflexion and of the LFTP (150 N) at maximum dorsiflexion. The peak force of the LFC (190 N) was observed at maximum dorsiflexion combined with maximum eversion. Within the performed jump shots, the LFTA showed a peak force (59 N to 69 N) during maximum plantarflexion in the final moment of the lift off. During landing, the force developed by the LFTA reached its peak value (61 N to 70 N) at the first contact with the floor. After that, the LFTP developed a peak force (70 N to 118 N). This model allows the calculation of forces in lateral ankle ligaments. The information obtained in this study can serve as a basis for future research on ankle sprain and ankle sprain simulation.  相似文献   

9.
Dynamics of the long jump   总被引:1,自引:0,他引:1  
A mechanical model is proposed which quantitatively describes the dynamics of the centre of gravity (c.g.) during the take-off phase of the long jump. The model entails a minimal but necessary number of components: a linear leg spring with the ability of lengthening to describe the active peak of the force time curve and a distal mass coupled with nonlinear visco-elastic elements to describe the passive peak. The influence of the positions and velocities of the supported body and the jumper's leg as well as of systemic parameters such as leg stiffness and mass distribution on the jumping distance were investigated. Techniques for optimum operation are identified: (1) There is a minimum stiffness for optimum performance. Further increase of the stiffness does not lead to longer jumps. (2) For any given stiffness there is always an optimum angle of attack. (3) The same distance can be achieved by different techniques. (4) The losses due to deceleration of the supporting leg do not result in reduced jumping distance as this deceleration results in a higher vertical momentum. (5) Thus, increasing the touch-down velocity of the jumper's supporting leg increases jumping distance.  相似文献   

10.
11.
12.
The ability to generate lower body explosive power is considered an important factor in many athletic activities. Thirty-one men and women, recreationally trained volunteers, were randomly assigned to 3 different groups (control, n = 10; VertiMax, n = 11; and depth jump, n = 10). A Vertec measuring device was used to test vertical jump height pre- and post-training. All subjects trained twice weekly for 6 weeks, performing approximately 140 jumps. The VertiMax group increased elastic resistance and decreased volume each week, while the depth jump group increased both box height and volume each week. The depth jump group significantly increased their vertical jump height (pre: 20.5 +/- 3.98; post: 22.65 +/- 4.09), while the VertiMax (pre: 22.18 +/- 4.31; post: 23.36 +/- 4.06) and control groups (pre: 15.65 +/- 4.51; post: 15.85 +/- 4.17) did not change. These findings suggest that, within the volume and intensity constraints of this study, depth jump training twice weekly for 6 weeks is more beneficial than VertiMax jump training for increasing vertical jump height. Strength professionals should focus on depth jump exercises in the short term over commercially available devices to improve vertical jump performance.  相似文献   

13.
14.
The purpose of this study was to investigate whether modifying the standing long jump test would enhance its ability to be a better predictor of anaerobic performance compared to other common anaerobic power tests. Three modified box long jump (MBLJ) tests were performed using 1, 2, or 3 boxes. Subjects consisted of 38 healthy males (age, 21.7 +/- 1.7 years) who performed all the testing procedures. All 3 variations of the MBLJ test showed significant correlations (p < 0.05) with the vertical jump (VJ); standing long jump (SLJ); 50-, 100-, 200-, 400-m runs; long jump; triple jump; and shot put ability (r = 0.362-0.891). All 3 variations of the MBLJ test also showed significant correlations with isokinetic peak torque knee extension and flexion, Wingate mean power (W), and Wingate mean power per kilogram (W/kg) (r = 0.357-0.504). Generally, correlations of the 3 MBLJ tests were stronger than correlations between VJ and SLJ ability to the same measure of power. Generally, the 3-box MBLJ tests showed stronger correlations with measures of power than the 1- and 2-box MBLJ tests. Multiple linear regression models indicated that the 3-box MBLJ test is a major predictor of the track and field performances compared to the other tests of anaerobic power. Along with other independent variables, the 3-box MBLJ test explained 55%, 44%, 51%, 61%, 52%, and 72% of the variance of 50-, 100-, 200-, and 400-m runs; long jump; and triple jump performance, respectively. In conclusion, due to the significant correlations between the MBLJ tests, especially the 3-box version, and other measures of power, these tests are appropriate for testing lower body power.  相似文献   

15.
The aim of the present study was to compare the acute effect of a static- vs dynamic-based stretching warm-up on standing long jump (SLJ) performance in primary schoolchildren. The sample was composed of 76 schoolchildren, 43 girls and 33 boys, aged 9–10 years old from three fourth-grade classes of Primary Education. The three groups were cluster-randomly assigned to the control (CG), static (SG) or dynamic (DG) groups. All the schoolchildren performed a standardized warm-up consisting of mobility exercises (five minutes), jogging (five minutes) and the SLJ test. Afterwards the CG schoolchildren received jump theory (eight minutes), the SG performed static stretching (eight minutes) and the DG performed dynamic-bounces stretching (eight minutes). Afterwards, all of them performed the SLJ test again. The results of the one-way ANOVA (F2,73 = 34.184; p < 0.001; η2p = 0.484), followed by the pairwise comparisons with the Bonferroni adjustment, showed that the DG students (MΔ = 11.07, SE = 1.42) made a significant statistical improvement in their SJL levels compared with the CG (MΔ = -3.00, SE = 1.89; p < 0.001, d = 1.51) and SG students (MΔ = -1.85, SE = 0.67; p < 0.001, d = 1.38). However, statistically significant differences between the CG and SG students were not found (p > 0.05, d = 0.12). The dynamic-bouncing stretch as a final part of a warm-up improves explosive strength performance in primary schoolchildren, and seems to be a good option before carrying out explosive strength activities of the lower body.  相似文献   

16.
Numerous studies have demonstrated that using verbal instructions to direct a performers attention externally (i.e., toward the effect of the movement) significantly enhances motor skill performance. Limited research has also demonstrated that increasing the distance of an external focus relative to the body magnifies the effect of an external focus of attention. The purpose of this study was to investigate the effect of increasing the distance of an external focus of attention on standing long jump performance. Using a counterbalanced within-participant design, recreationally trained male subjects (n = 35) performed 2 standing long jumps following 3 different sets of verbal instructions (total of 6 jumps; each separated by 1 minute of seated rest). One set of instructions was designed to focus attention externally near the body (EXN); another set of instructions directed attention externally to a target farther from the body (EXF); the last set of instructions served as a control condition (CON) and did not encourage a specific focus of attention. The results indicated that the EXN and EXF conditions elicited jump distances that were significantly greater than the CON condition. In addition, the subjects in the EXF condition jumped significantly farther than those in the EXN condition. These findings suggest that increasing the distance of an external focus of attention, relative to the body, immediately improves standing long jump performance.  相似文献   

17.
The purpose of this study was to demonstrate the short-term effects of different stretching exercises during the warm-up period on the lower limbs. A controlled, crossover clinical study involving 49 volunteers (14 women and 35 men; mean age: 20.4 years) enrolled in a "physical and sporting activities monitor" program. The explosive force was assessed using the Bosco test. The protocol was as follows: The test involved a (pre) jump test, general warm-up, intervention and (post) jump test. Each volunteer was subjected to each of the 5 interventions (no stretching [NS] and stretching: static passive stretching [P]; proprioceptive neuromuscular facilitation [PNF] techniques; static active stretching in passive tension [PT]; static active stretching in active tension [AT]) in a random order. The jump test was used to assess the squat jump, countermovement jump (CMJ), elasticity index (EI), and drop jump. An intragroup statistical analysis was performed before and after each intervention to compare the differences between the different stretching exercises. An intergroup analysis was also performed. Significant differences (p < 0.05) were found between all variables for the interventions "P," "PNF," and "TA" in the intragroup analysis, with each value being higher in the postjump test. Only the "P" intervention showed a significant difference (p = 0.046) for "EI," with the postvalue being lower. Likewise, significant differences (p < 0.05) were observed for the "CMJ" measurements during the intergroup analysis, especially between "NS" and the interventions "P," "PNF," "AT," and "PT," with each value, particularly that for "AT," being higher after stretching. The results of this study suggest that static active stretching in AT can be recommended during the warm-up for explosive force disciplines.  相似文献   

18.
Optimal control simulations of the standing long jump were developed to gain insight into the mechanisms of enhanced performance due to arm motion. The activations that maximize standing long jump distance of a joint torque actuated model were determined for jumps with free and restricted arm movement. The simulated jump distance was 40 cm greater when arm movement was free (2.00 m) than when it was restricted (1.60 m). The majority of the performance improvement in the free arm jump was due to the 15% increase (3.30 vs. 2.86 m/s) in the take-off velocity of the center of gravity. Some of the performance improvement in the free arm jump was attributable to the ability of the jumper to swing the arms backwards during the flight phase to alleviate excessive forward rotation and position the body segments properly for landing. In restricted arm jumps, the excessive forward rotation was avoided by "holding back" during the propulsive phase and reducing the activation levels of the ankle, knee, and hip joint torque actuators. In addition, swinging the arm segments allowed the lower body joint torque actuators to perform 26 J more work in the free arm jump. However, the most significant contribution to developing greater take-off velocity came from the additional 80 J work done by the shoulder actuator in the jump with free arm movement.  相似文献   

19.
The beneficial role of carbohydrate (CHO) supplementation in endurance exercise is well documented. However, only few data are available on the effects of CHO loading on resistance exercise performance. Because of the repetitive use of high-threshold motor units, it was hypothesized that the power output (power-endurance) of multiple sets of jump squats would be enhanced following a high-CHO (6.5 g CHO kg body mass(-1)) diet compared to a moderate-CHO (4.4 g CHO kg body mass(-1)) diet. Eight healthy men (mean +/- SD: age 26.3 +/- 2.6 years; weight 73.0 +/- 6.3 kg; body fat 13.4 +/- 5.0%; height 178.2 +/- 6.1 cm) participated in 2 randomly assigned counterbalanced supplementation periods of 4 days after having their free-living habitual diet monitored. The resistance exercise test consisted of 4 sets of 12 repetitions of maximal-effort jump squats using a Plyometric Power System unit and a load of 30% of 1 repetition maximum (1RM). A 2-minute rest period was used between sets. Immediately before and after the exercise test, a blood sample was obtained to determine the serum glucose and blood lactate concentrations. No significant difference in power performance existed between the 2 diets. As expected, there was a significant (p 相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号